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Abstract 
 In this letter, a phase-sensitive, swept-source 

optical coherence tomography (SS-OCT) system 

is implemented for the optical measurement of 

nanostructures. A new approach is proposed to 

reduce the phase errors, resulting from trigger 

jitter of the swept source and the 

asynchronization between the A-scan trigger 

and OCT signal at the data acquisition end, with 

a narrowband fiber Bragg grating to generate 

the accurate A-scan trigger. Furthermore, 

combining the common-path configuration with 

the proposed approach, the displacement 

sensitivity can be calculated to be 80 pm when 

the swept source is operated at 30 kHz. Finally, 

the conducting glass was scanned with the 

proposed approach to quantitatively measure 

the thickness of conducting layer. The results 

show that the proposed SS-OCT approach can 

make be a potentially useful tool for 

noninvasive, real-time inspection of 

nanostructures. 

  

Keywords- Conducting glass, optical coherence 

tomography, optical imaging, phase imaging. 
 

I.  INTRODUCTION  
 OPTICAL coherence tomography (OCT) 

can provide non-invasive, real-time, and depth-

resolved information on the structure of material 

samples, which has been widely used for various 

studies including biomedical [1-3], archaeological 

[4], and industrial applications [5, 6]. The recent 

development of Fourier-domain OCT, including 

spectral-domain OCT (SD-OCT) [7, 8] and swept-

source OCT (SS-OCT) [9, 10], has led to greatly 

improved OCT system sensitivities and imaging 

speeds. In addition to providing the morphological 

information of the sample on micrometer scales, 

OCT can also be implemented to retrieve 

nanometer and even sub-nanometer scale 

displacement for cell studies [11, 12]. However, 

most of the previously reported Fourier-domain 

OCT studies are based on the SD-OCT mechanism 

due to the better phase stability than that of the SS-

OCT mechanism [13]. Previous studies have also 

demonstrated that SD-OCT can achieve higher 

displacement sensitivity (DS) compared to the 

conventional SS-OCT approach. In addition, 

several methods have been proposed to improve the 

DS and increase the measurable optical path 

difference beyond half a wavelength for SD-OCT  

 

 

systems [14, 15]. One such method involves the 

employment of a thin glass slide on top of the 

sample to provide a reference plane and produce 

the interference with the sample, while another 

includes the implementation of a phase unwrapping 

algorithm to overcome the 2π ambiguity restriction. 

In those two cases, the DS of SD-OCT systems can 

achieve 25 pm and 34 pm. Advances in the SS-

OCT approach have also led to significant 

improvements in the performance. For example, 

Adler et al. have demonstrated an excellent DS 

with a SS-OCT system using a buffered Fourier 

domain mode-locked (FDML) laser combined with 

an external calibration arm for phase noise 

reduction [16]. In this case, a DS of 39 pm was 

achieved at an A-scan rate of 42 kHz. Additionally, 

the DS decreases as the A-scan rate of the FDML 

laser increases. Although FDML or buffered 

FDML lasers can improve the DS in SS-OCT 

systems, FDML laser systems are not yet 

commercially available. However, for conventional 

swept sources, a DS of 475 pm was measured at an 

A-scan rate of 16 kHz, as shown in a previous 

report [17]. In this letter, we propose a new 

approach to reduce the phase noise for SS-OCT 

with conventional swept sources. The causes of 

time-induced phase errors of SS-OCT system 

originate from the trigger jitter of swept sources, 

the asynchronization between the laser trigger and 

OCT signal at the data acquisition end, and 

environment disturbances. The time-induced phase 

errors result from the asynchronization between the 

OCT signal and the trigger signal of the swept 

source, which are time-dependent. Thus far, the 

different approaches that have been demonstrated 

to reduce the time-induced phase errors have been 

implemented using either an extra reference arm or 

a Mach-Zehnder interferometer for real-time 

wavelength calibration [18, 19]. However, both of 

those approaches significantly increase the 

complexity of the optical measurement system. 

Although SS- OCT systems are typically difficult 

to use for quantitative phase imaging due to time-

induced phase errors compared with SD-OCT 

systems, commercial CCDs are not optimized in 

1.3-μm spectral range. Furthermore, 1.3-μm OCT 

systems can provide deeper imaging depths than 

that of 0.8-μm OCT systems. In our previous study, 

the phase errors in SS-OCT can be significantly 

improved with single-channel acquisition for 

vascular imaging. Here, we propose a common-

path configuration combining with the single-

channel acquisition using a narrowband fiber Bragg 
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grating (FBG) to minimize time-induced phase 

errors for quantitative phase imaging. Based on the 

single-channel acquisition, only one channel is 

required for wavelength calibration and data 

storage, reducing the data acquisition and storage 

memory requirements by half.   

 

II. EXPERIMENTAL SETUP AND METHOD 
 For data acquisition and processing in 

conventional SS-OCT systems, two channels for 

recording the OCT data and the trigger signals from 

the swept sources, or one channel for recording the 

OCT data and one external trigger channel for the 

trigger signals are required. The schematic setup of 

our system, combining the common-path 

configuration with the single-channel acquisition in 

the SS-OCT system. The backscattered signal from 

the sample surface was used as the reference signal. 

The swept source (HSL-2000, Santec) can provide 

a scan rate of 30 kHz with a full width at half 

maximum of 110 nm centered at 1310 nm. 

Subsequently, ninety percent of the laser output 

power was connected to a common-path SS-OCT 

system. The interfered signals from the sample arm 

were split into two optical paths through a 50/50 

fiber coupler. To reduce the time-induced phase 

errors, a narrowband FBG was used to reflect the 

1270- nm signal, which was combined with one of 

the output ports of the 50/50 fiber coupler by a 

10/90 fiber coupler. The used FBG in our system 

has a Bragg wavelength at 1270 nm with a narrow 

bandwidth of 0.1 nm. The other output port of the 

50/50 fiber coupler was connected to the other 

10/90 fiber coupler, enabling the DC component of 

the interfered intensity to be easily removed using 

the balanced detector and to reserve the 1270-nm 

signal as the trigger for each A-scan. Here, the 

reduction in the time difference between the trigger 

signal and OCT signal at the detection end can be 

achieved by accurately controlling the optical path 

difference between the FBG and OCT signals. 

Then, the signal was received by a balanced 

detector (PDB150C, Thorlabs). Finally, the signal 

was digitized using a high-speed digitizer (PXIe-

5122, National Instruments), and only one channel 

was required for recording the trigger signals and 

interfered signals. In our experience, the output 

intensity of the narrowband FBG was accurately 

adjusted to 1.2 V at the detection end to minimize 

reductions in the dynamic range of the system. 

After the trigger signal of each A-scan, 1450 data 

points were obtained and then resampled to be 

evenly spaced in the frequency domain with 

software wavelength calibration [6]. Because the 

OCT system setup is based on an interferometer 

configuration, the cross-correlation term of 

interfered intensity from the single reflector and the 

spectral density of the light source, δk is the 

spectral channel bandwidth, Rr is the reflectivity 

from the reference plane, Rs is the reflectivity from 

the sample plane, n is the refractive index of the 

sample, k is the wave number, z is the physical 

length difference between the sample and reference 

planes, and δz is the optical path displacement. 

Then, the Fourier transformation of I (k) can be 

expressed as where S0 is equal to S(k)dk. Here, the 

phase term of Eq. (2), φ = 2k0nδz , can be obtained 

and the optical path displacement, δz = λ0φ/4nπ, 

can also be calculated. 

 We consider the following anycast field 

equations defined over an open bounded piece of 

network and /or feature space 
dR . They 

describe the dynamics of the mean anycast of each 

of p node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]
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i i ij j ij j

j

ext
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i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T









   




   
   



  We give an interpretation of the various 

parameters and functions that appear in (1),  is 

finite piece of nodes and/or feature space and is 

represented as an open bounded set of 
dR . The 

vector r  and r  represent points in   . The 

function : (0,1)S R  is the normalized sigmoid 

function: 

1
( ) (2)

1 z
S z

e



  

 It describes the relation between the input 

rate iv  of population i  as a function of the packets 

potential, for example, [ ( )].i i i i iV v S V h    

We note V  the p   dimensional vector 

1( ,..., ).pV V The p  function , 1,..., ,i i p   

represent the initial conditions, see below. We note 

  the  p   dimensional vector 1( ,..., ).p   The 

p  function , 1,..., ,ext

iI i p  represent external 

factors from other network areas. We note 
extI  the 

p   dimensional vector 
1( ,..., ).ext ext

pI I The 

p p  matrix of functions , 1,...,{ }ij i j pJ J   

represents the connectivity between populations i  

and ,j  see below. The p  real values 

, 1,..., ,ih i p  determine the threshold of activity 

for each population, that is, the value of the nodes 

potential corresponding to 50% of the maximal 

activity. The p real positive values 

, 1,..., ,i i p   determine the slopes of the 

sigmoids at the origin. Finally the p real positive 

values , 1,..., ,il i p   determine the speed at 

which each anycast node potential decreases 
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exponentially toward its real value. We also 

introduce the function : ,p pS R R  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     and 

the diagonal p p  matrix 0 1( ,..., ).pL diag l l

Is the intrinsic dynamics of the population given by 

the linear response of data transfer. ( )i

d
l

dt
  is 

replaced by 
2( )i

d
l

dt
  to use the alpha function 

response. We use ( )i

d
l

dt
  for simplicity although 

our analysis applies to more general intrinsic 

dynamics. For the sake, of generality, the 

propagation delays are not assumed to be identical 

for all populations, hence they are described by a 

matrix ( , )r r  whose element ( , )ij r r is the 

propagation delay between population j  at r  and 

population i  at .r  The reason for this assumption 

is that it is still unclear from anycast if propagation 

delays are independent of the populations. We 

assume for technical reasons that   is continuous, 

that is 
20( , ).p pC R 

   Moreover packet data 

indicate that   is not a symmetric function i.e., 

( , ) ( , ),ij ijr r r r   thus no assumption is made 

about this symmetry unless otherwise stated. In 

order to compute the righthand side of (1), we need 

to know the node potential factor V  on interval 

[ ,0].T  The value of T  is obtained by 

considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT   

A. Mathematical Framework 

 A convenient functional setting for the 

non-delayed packet field equations is to use the 

space 
2 ( , )pF L R   which is a Hilbert space 

endowed with the usual inner product: 

 
1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0 ([ ,0], )mC C F   with 

[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we 

write (1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 
 Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the 

papers on this subject assume   infinite, hence 

requiring .m      

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0 ( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  

finite-time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

B. Boundedness of Solutions 

 A valid model of neural networks should 

only feature bounded packet node potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...min i p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l
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Let us show that the open route of F  of center 0 

and radius , ,RR B  is stable under the dynamics of 

equation. We know that ( )V t  is defined for all 

0t s  and that 0f   on ,RB  the boundary of 

RB . We consider three cases for the initial 

condition 0.V If 
0 C

V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose 

that ,T R  then ( )V T  is defined and belongs to 

,RB  the closure of ,RB  because  
RB is closed, in 

effect to ,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts 

the definition of T. Thus T R  and 
RB is stable. 

Because f<0 on , (0)R RB V B   implies that 

0, ( ) Rt V t B   . Finally we consider the case 

(0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 

2
0, 2 ,

F

d
t V

dt
     thus ( )

F
V t  is 

monotonically decreasing and reaches the value of 

R in finite time when ( )V t  reaches .RB  This 

contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity 

of   shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r

i i r

n

i i r r

r i r

E A E A E

A E E

    

  



  

 

  

   

  

  

 

  

Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    

If ,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with ijE  in place of X . Since  X

is the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is 

vacuously satisfied, and the conclusion holds for 

every ( )f C K . Note that  K need to be 

connected. 

Proof: By Tietze’s theorem, f  can be extended to 

a continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 
2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 

2 1z z   . Since f  is uniformly continous, we 

have 
0

lim ( ) 0 (1)


 


  From now on, 

  will be fixed. We shall prove that there is a 

polynomial P  such that  

( ) ( ) 10,000 ( ) ( ) (2)f z P z z K   

  

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z
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Where X  is the set of all points in the support of 

  whose distance from the complement of K  

does not  . (Thus  X contains no point which is 

“far within” K .) We construct  as the 

convolution of f  with a smoothing function A. 

Put ( ) 0a r   if ,r  put  

2
2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . 

We claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 The constants are so adjusted in (6) that 

(8) holds.  (Compute the integral in polar 

coordinates), (9) holds simply because A  has 

compact support. To compute (10), express A  in 

polar coordinates, and note that 0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           
 

Since f  and A  have compact support, so does 
. Since  

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
And 

( ) 0A    if ,    (3) follows from (8). The 

difference quotients of A  converge boundedly to 

the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

 The last equality depends on (9). Now (10) 

and (13) give (4). If we write (13) with x  and 

y  in place of ,  we see that   has 

continuous partial derivatives, if we can show that 

0   in ,G  where G  is the set of all z K  

whose distance from the complement of K  

exceeds .  We shall do this by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior 

of K  for all   with .   The mean value 

property for harmonic functions therefore gives, by 

the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  For all z G  , we have now proved (3), 

(4), and (5) The definition of X  shows that X is 

compact and that X  can be covered by finitely 

many open discs 1,..., ,nD D  of radius 2 ,  whose 

centers are not in .K  Since 
2S K  is connected, 

the center of each jD  can be joined to   by a 

polygonal path in 
2S K . It follows that each 

jD contains a compact connected set ,jE  of 

diameter at least 2 ,  so that 
2

jS E  is 

connected and so that .jK E     with 2r 

. There are functions 
2( )j jg H S E   and 

constants jb  so that the inequalities. 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

 Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    
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Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

 And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





 Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

 (18) shows that F  is a finite linear combination of 

the functions jg  and 
2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



 

 Observe that the inequalities (16) and (17) 

are valid with R  in place of jQ  if X   and 

.z   Now fix  .z   , put ,iz e     and 

estimate the integrand in (22) by (16) if 4 ,   

by (17) if 4 .    The integral in (22) is then 

seen to be less than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  Since ( ), ,F H K    and 

2S K  is connected, Runge’s theorem shows that 

F  can be uniformly approximated on K  by 

polynomials. Hence (3) and (25) show that (2) can 

be satisfied. This completes the proof. 

 

Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of 

all continuously differentiable functions in the 

plane, with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  The right side of (2) is therefore equal to 

the limit, as 0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 For each 0,r   is periodic in ,  with 

period 2 . The integral of /    is therefore 

0, and (4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


 and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a   , is an 

ideal. The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one 

to one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals 

in  k X  are exactly the ideals ( ), 1nX n  , and 

the zero ideal (corresponding to the empty set A ). 

We write |X A   for the ideal 

corresponding to A  (subspace generated by the 

,X a   ). 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S    is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is 

divisible by one of the , |X S    

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 
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n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A   is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial 

ideal, and it equals 1( ( ),..., ( ))nLT g LT g  for 

some 1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described 

as the ideal generated by the leading monomials 

(rather than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in 

 1 ,..., nk X X is finitely generated; more 

precisely, 1( ,..., )sa g g  where 1,..., sg g are 

any elements of a  whose leading terms generate 

( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 

 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in 

it is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , 

implies that every monomial occurring in r  is 

divisible by one in ( )iLT g . Thus 0r  , and 

1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, 

S is a standard basis if the leading term of every 

element of a is divisible by at least one of the 

leading terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated 

by single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every 

polynomial f  in n  variables 1,... nX X  can be 

expressed uniquely as a polynomial in nX  with 

coefficients in 1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

 r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form 

an ideal 
'a  in A ,  and since A  is Noetherian, 

'a

will be finitely generated. Let 1,..., mg g  be 

elements of a  whose leading coefficients generate 
'a , and let r be the maximum degree of ig . Now 

let ,f a  and suppose f  has degree s r , say, 

...sf aX   Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find 

that 1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let 
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da  be the subset of A  consisting of 0 and the 

leading coefficients of all polynomials in a  of 

degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g  be polynomials of degree d  whose 

leading coefficients generate da . Then the same 

argument as above shows that any polynomial df  

in a  of degree d  can be written 

1 ,1 ,mod( ,... )
dd d d d mf f g g  With 1df   

of degree 1d  . On applying this remark 

repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence  

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
 

 and so the polynomials 
01 0,,..., mg g  generate a   

 One of the great successes of category 

theory in computer science has been the 

development of a “unified theory” of the 

constructions underlying denotational semantics. In 

the untyped  -calculus,  any term may appear in 

the function position of an application. This means 

that a model D of the  -calculus must have the 

property that given a term t  whose interpretation is 

,d D  Also, the interpretation of a functional 

abstraction like x . x  is most conveniently 

defined as a function from Dto D  , which must 

then be regarded as an element of D. Let 

 : D D D    be the function that picks 

out elements of D to  represent elements of 

 D D  and  : D D D    be the 

function that maps elements of D to functions of D.  

Since ( )f  is intended to represent the function 

f  as an element of D, it makes sense to require 

that ( ( )) ,f f    that is, 
 D D

o id 


   

Furthermore, we often want to view every element 

of D as representing some function from D to D 

and require that elements representing the same 

function be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

 The latter condition is called 

extensionality. These conditions together imply that 

and   are inverses--- that is, D is isomorphic to 

the space of functions from D to D  that can be the 

interpretations of functional abstractions: 

 D D D   .Let us suppose we are working 

with the untyped calculus  , we need a 

solution ot the equation  ,D A D D    

 where A is some predetermined domain 

containing interpretations for elements of C.  Each 

element of D corresponds to either an element of A 

or an element of  ,D D  with a tag. This 

equation can be solved by finding least fixed points 

of the function  ( )F X A X X    from 

domains to domains --- that is, finding domains X  

such that  ,X A X X    and such that for 

any domain Y also satisfying this equation, there is 

an embedding of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
R

X

R

Y

f o f id

f o f id




  

 Where f g  means that 

f approximates g  in some ordering 

representing their information content. The key 

shift of perspective from the domain-theoretic to 

the more general category-theoretic approach lies in 

considering F not as a function on domains, but as 

a functor on a category of domains. Instead of a 

least fixed point of the function, F. 

 

Definition 1.3: Let K be a category and 

:F K K  as a functor. A fixed point of F is a 

pair (A,a), where A is a K-object and 

: ( )a F A A  is an isomorphism. A prefixed 

point of F is a pair (A,a), where A is a K-object and 

a is any arrow from F(A) to A 

Definition 1.4 : An chain  in a category K  is 

a diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       
 Recall that a cocone   of an 

chain    is a K-object X and a collection of 

K –arrows  : | 0i iD X i    such that 

1i i io f    for all 0i  . We sometimes write 

: X   as a reminder of the arrangement of 

' s  components Similarly, a colimit 

: X  is a cocone with the property that if 

': X   is also a cocone then there exists a 

unique mediating arrow 
':k X X  such that for 

all 0,, i ii v k o  . Colimits of chains  

are sometimes referred to as limco its . 
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Dually, an 
op chain   in K is a diagram of the 

following form: 
1 2

1 2 .....
of f f

oD D D    
 
A cone 

: X   of an 
op chain    is a K-object 

X and a collection of K-arrows  : | 0i iD i   

such that for all 10, i i ii f o    . An  
op -

limit of an 
op chain     is a cone 

: X   with the property that if 

': X  is also a cone, then there exists a 

unique mediating arrow 
':k X X  such that for 

all 0, i ii o k    . We write k  (or just  ) 

for the distinguish initial object of K, when it has 

one, and A  for the unique arrow from   to 

each K-object A. It is also convenient to write 

1 2

1 2 .....
f f

D D    to denote all of   except 

oD  and 0f . By analogy, 


 is  | 1i i  . For 

the images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of 

F – that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. 

 With these definitions we can state that 

every monitonic function on a complete lattice has 

a least fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 Theorem 1.4 Let a DAG G given in which 

each node is a random variable, and let a discrete 

conditional probability distribution of each node 

given values of its parents in G be specified. Then 

the product of these conditional distributions yields 

a joint probability distribution P of the variables, 

and (G,P) satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

 Where iPA is the set of parents of iX of 

in G and ( | )i iP x pa is the specified conditional 

probability distribution. First we show this does 

indeed yield a joint probability distribution. 

Clearly, 1 20 ( , ,... ) 1nP x x x   for all values of 

the variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the 

conditional distributions they notationally represent 

in the joint distribution. Finally, we show the 

Markov condition is satisfied. To do this, we need 

show for 1 k n   that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

 Where kND is the set of nondescendents 

of kX of in G. Since k kPA ND , we need only 

show ( | ) ( | )k k k kP x nd P x pa . First for a 

given k , order the nodes so that all and only 

nondescendents of kX precede kX in the ordering. 

Note that this ordering depends on k , whereas the 

ordering in the first part of the proof does not. 

Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 We define the 
thm cyclotomic field to be 

the field   / ( ( ))mQ x x
 
Where ( )m x is the 

thm cyclotomic polynomial.   / ( ( ))mQ x x  

( )m x  has degree ( )m over Q since ( )m x

has degree ( )m . The roots of ( )m x  are just 

the primitive 
thm roots of unity, so the complex 

embeddings of   / ( ( ))mQ x x are simply the 

( )m maps  
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 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it 

follows that ( ) ( )k

m mQ Q  for all k relatively 

prime to m . In particular, the images of the i

coincide, so   / ( ( ))mQ x x is Galois over Q . 

This means that we can write ( )mQ  for 

  / ( ( ))mQ x x without much fear of ambiguity; 

we will do so from now on, the identification being 

.m x  One advantage of this is that one can 

easily talk about cyclotomic fields being extensions 

of one another,or intersections or compositums; all 

of these things take place considering them as 

subfield of .C  We now investigate some basic 

properties of cyclotomic fields. The first issue is 

whether or not they are all distinct; to determine 

this, we need to know which roots of unity lie in 

( )mQ  .Note, for example, that if m is odd, then 

m is a 2 thm root of unity. We will show that this 

is the only way in which one can obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ 

so the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, 

then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a 

primitive 
thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ  

has degree ( )mn
 
over  Q , so we must have 

   ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2  For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 

 

PROOF.    Write 

1 1

1 1...... ....k ke fe f

k km p p and p p where the ip are 

distinct primes. (We allow i ie or f to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 An entirely similar computation shows 

that ( , )( ) ( ) ( )m n m nQ Q Q   
 

 Mutual information measures the 

information transferred when ix  is sent and iy  is 

received, and is defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

 In a noise-free channel, each iy is 

uniquely connected to the corresponding ix  , and 
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so they constitute an input –output pair ( , )i ix y  

for which 

 2

1
( ) 1 ( , ) log

( )
i

i j
j i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the 

self-information that corresponds to the input ix
 
In 

a very noisy channel, the output iy and input ix

would be completely uncorrelated, and so 

( ) ( )i
i

j

x
P P x

y
  and also ( , ) 0;i jI x y  that is, 

there is no transference of information. In general, a 

given channel will operate between these two 

extremes. The mutual information is defined 

between the input and the output of a given 

channel. An average of the calculation of the 

mutual information for all input-output pairs of a 

given channel is the average mutual information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 

 bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful 

for modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 

2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  is 

usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an 

output symbol jy provides ( ) ( )XH X H
Y

  

bits of information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  

And by interchanging input and output it is also 

true that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

 This last entropy is usually called the 

noise entropy. Thus, the information transferred 

through the channel is the difference between the 

output entropy and the noise entropy. Alternatively, 

it can be said that the channel mutual information is 

the difference between the number of bits needed 

for determining a given input symbol before 

knowing the corresponding output symbol, and the 

number of bits needed for determining a given 
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input symbol after knowing the corresponding 

output symbol ( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and 

is spite of the fact that for some , ( / )j jy H X y  

can be larger than ( )H X , this is not possible for 

the average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

 The above expression can be applied due 

to the factor ( ) ( ),i jP x P y which is the product of 

two probabilities, so that it behaves as the quantity 

iQ , which in this expression is a dummy variable 

that fits the condition 1ii
Q  . It can be 

concluded that the average mutual information is a 

non-negative number. It can also be equal to zero, 

when the input and the output are independent of 

each other. A related entropy called the joint 

entropy is defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

Theorem 1.5: Entropies of the binary erasure 

channel (BEC) The BEC is defined with an 

alphabet of two inputs and three outputs, with 

symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the 

state s , let n be a fixed positive integer, and ( )p x

an arbitrary probability density function on 

Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

 Set ( )

1

1
k

k

k ix i
B A B




  , If the process 

does not terminate in a finite number of steps, then 

the sequences 
( )ix and decoding sets 

, 1, 2,..., ,iB i u form the desired code. Thus 

assume that the process terminates after t  steps. 

(Conceivably 0t  ). We will show t u  by 

showing that  

   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x
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C. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in 

A is a subset such that a is subgroup of A regarded 

as a group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is 

easy to verify that this is in fact an ideal, and that it 

consist of all finite sums of the form 
i i

rs  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by 

a b . The ideal generated by  

 | ,ab a a b b  is denoted by ab . Note that 

ab a b  . Clearly ab consists of all finite 

sums 
i i

a b  with ia a  and ib b , and if 

1( ,..., )ma a a  and 1( ,..., )nb b b , then 

1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an ideal 

of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b   is a one to 

one correspondence between the ideals of /A a  

and the ideals of A  containing a An ideal p  if 

prime if p A  and ab p a p    or b p . 

Thus p  is prime if and only if /A p  is nonzero 

and has the property that  

0, 0 0,ab b a      i.e., /A p is an 

integral domain. An ideal m  is maximal if |m A  

and there does not exist an ideal n  contained 

strictly between m and A . Thus m is maximal if 

and only if /A m  has no proper nonzero ideals, 

and so is a field. Note that m  maximal   m

prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 Let A  be a ring. An A -algebra is a ring 

B  together with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , 

i.e., such that the homomorphism 

 1,..., nA X X B  sending iX  to  ix is 

surjective.  A ring homomorphism A B  is 

finite, and B  is finitely generated as an A-module. 

Let k  be a field, and let A be a k -algebra. If 

1 0  in A , then the map k A  is injective, we 

can identify k with its image, i.e., we can regard k
as a subring of A  . If 1=0 in a ring R, the R is the 

zero ring, i.e.,  0R  . Polynomial rings.  Let  

k  be a field. A monomial in 1,..., nX X  is an 

expression of the form 1

1 ... ,naa

n jX X a N  . 

The total degree of the monomial is 
ia . We 

sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  

   With the obvious notions of equality, 

addition and multiplication. Thus the monomials 

from basis for   1,..., nk X X  as a k -vector 

space. The ring  1,..., nk X X is an integral 

domain, and the only units in it are the nonzero 

constant polynomials. A polynomial 

1( ,..., )nf X X  is irreducible if it is nonconstant 

and has only the obvious factorizations, i.e., 

f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide 

a nonzero polynomial into another: let f  and g  

be polynomials in  k X with 0;g   then there 

exist unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding 

whether ( )f g , namely, find r and check 

whether it is zero. Moreover, the Euclidean 

algorithm allows to pass from finite set of 

generators for an ideal in  k X to a single 

generator by successively replacing each pair of 

generators with their greatest common divisor. 

a A
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 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by 

lexicographic(dictionary) order. More precisely, let 

1( ,... )na a   and 1( ,... )nb b   be two 

elements of 
n ; then     and  X X 

(lexicographic ordering) if, in the vector difference 

   , the left most nonzero entry is 

positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order 

them: it would put XXXYYZZZZ  after 

XXXYYZ . Graded reverse lexicographic order 

(grevlex). Here monomials are ordered by total 

degree, with ties broken by reverse lexicographic 

ordering. Thus,    if 
i ia b  , or 

i ia b   and in    the right most 

nonzero entry is negative. For example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on 

the monomials in  1,... nk X X . Then we can 

write an element f  of  1,... nk X X  in a 

canonical fashion, by re-ordering its elements in 

decreasing order. For example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 0 ;  

 The leading coefficient of 
f

to be LC(
f

)=
0

a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

 For the polynomial 
24 ...,f XY Z   

the multidegree is (1,2,1), the leading coefficient is 

4, the leading monomial is 
2XY Z , and the leading 

term is  
24XY Z . The division algorithm in 

 1,... nk X X . Fix a monomial ordering in 
2 . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g  of polynomials; the division algorithm 

then constructs polynomials 1,... sa a  and r   such 

that 1 1 ... s sf a g a g r      Where either 

0r   or no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 

1( ) | ( )LT g LT f , divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , 

and so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 

1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, 

the ideal 
2 3( )a Y X   contains 

2 3Y X but 

not 
2Y  or 

3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, 

and let  |A X a  . Then A satisfies the 

condition 

, ( )nA           And a  

is the k -subspace of  1,..., nk X X  generated by 

the ,X A   . Conversely, of A  is a subset of 

n  satisfying   , then the k-subspace  a  of 

 1,..., nk X X  generated by  |X A  is a 

monomial ideal. 
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PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

  
If a permutation is chosen uniformly and 

at random from the !n  possible permutations in 

,nS  then the counts 
( )n

jC  of cycles of length j  

are dependent random variables. The joint 

distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows 

from Cauchy’s formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by 

exploiting cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    when ,j jc m  

which occurs between the ingredients in Cauchy’s 

formula and the falling factorials in the moments. 

Write 
jm jm . Then, with the first sum 

indexed by 1( ,... ) n

nc c c    and the last sum 

indexed by  1( ,..., ) n

nd d d    via the 

correspondence ,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  This last sum simplifies to the indicator 

1( ),m n  corresponding to the fact that if 

0,n m   then 0jd   for ,j n m   and a 

random permutation in n mS   must have some cycle 

structure 1( ,..., )n md d  . The moments of 
( )n

jC   

follow immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  Where the jZ  are independent Poisson-

distribution random variables that satisfy 

( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides 

a formula for the joint distribution of the cycle 

counts ,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the 

inclusion-exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles 

of length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the “property” G  of having ;  that is,  

G is the set of permutations nS   such that   

is one of the cycles of .  We then have 

( )!,G n j   since the elements of 

 1,2,...,n  not in   must be permuted among 

themselves. To use the inclusion-exclusion formula 

we need to calculate the term ,rS  which is the sum 

of the probabilities of the r -fold intersection of 

properties, summing over all sets of r distinct 

properties. There are two cases to consider. If the 
r properties are indexed by r cycles having no 

elements in common, then the intersection specifies 

how rj  elements are moved by the permutation, 

and there are ( )!1( )n rj rj n   permutations in 

the intersection. There are 
[ ] / ( !)rj rn j r  such 

intersections. For the other case, some two distinct 

properties name some element in common, so no 

permutation can have both these properties, and the 
r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

 Finally, the inclusion-exclusion series for 

the number of permutations having exactly k  

properties is 

,

0

( 1)l

k l

l

k l
S

l
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 Which simplifies to (1.1) Returning to the 

original hat-check problem, we substitute j=1 in 

(1.1) to obtain the distribution of the number of 

fixed points of a random permutation. For 

0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 
 

 The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for 

each fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with 

mean 1/ ;j  we use the notation 
( )n

j d jC Z  

where (1/ )j oZ P j   to describe this. Infact, the 

limit random variables are independent. 

 

Theorem 1.6   The process of cycle counts 

converges in distribution to a Poisson process of 

  with intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  Where the , 1, 2,...,jZ j   are 

independent Poisson-distributed random variables 

with  
1

( )jE Z
j

   

Proof.  To establish the converges in distribution 

one shows that for each fixed 1,b   as ,n   

( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

 The proof of Theorem says nothing about 

the rate of convergence. Elementary analysis can be 

used to estimate this rate when 1b  . Using 

properties of alternating series with decreasing 

terms, for 0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  


  

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  We see from (1.11) that the total variation 

distance between the distribution 
( )

1( )nL C  of 

( )

1

nC  and the distribution 1( )L Z  of 1Z
 

 Establish the asymptotics of 
( )( )n

nA C     under conditions 0( )A  and 01( ),B  

where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



   

and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived 

from 
'Z . It thus follows that 
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( ) (1 )[ ( )]n d

nP A C Kn    for a constant K , 

depending on Z  and the 
'

ir  and computable 

explicitly from (1.1) – (1.3), if Conditions 0( )A  

and 01( )B  are satisfied and if 
'

( )g

i O i    from 

some 
' 0,g   since, under these circumstances, 

both 
 

1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to 

zero as .n   In particular, for polynomials and 

square free polynomials, the relative error in this 

asymptotic approximation is of order 
1n

 if 
' 1.g    

For 0 /8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where 
 7,7

( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n





 

  
 

 



 

  

 Suppressing the argument Z  from now 

on, we thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0

0 0

[ ]
[ ] 1

[ ]

bn
b

r n

P T n r
P T r

P T n 

  
   

 
  

[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n

b
b

r n r b

P T r
P T r

P T n 


  


   

0

0

[ ]( [ ] [ ]
n

b bn bn

s

P T s P T n s P T n r
 

 
       
 


[ /2]

0 0

/2 0

[ ] [ ]
n

b b

r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n

b bn n

s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

 Required order under Conditions 

0 1( ), ( )A D  and 11( ),B  if ( ) .S    If not, 

   10.8
n

 can be replaced by 
   10.11

n
in the 

above, which has the required order, without the 

restriction on the ir  implied by ( )S   . 

Examining the Conditions  0 1( ), ( )A D  and 11( ),B

it is perhaps surprising to find that 11( )B  is 

required instead of just 01( );B  that is, that we 

should need 1

2
( )

a

ill
l O i 


   to hold for 

some 1 1a  . A first observation is that a similar 

problem arises with the rate of decay of 1i  as well. 

For this reason, 1n  is replaced by 1n


. This makes 

it possible to replace condition 1( )A  by the weaker 

pair of conditions 0( )A and 1( )D in the eventual 

assumptions needed for 
   7,7

,n b  to be of order 

( / );O b n   the decay rate requirement of order 

1i  
 is shifted from 1i  itself to its first 

difference. This is needed to obtain the right 

approximation error for the random mappings 

example. However, since all the classical 
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applications make far more stringent assumptions 

about the 1, 2,i l   than are made in 11( )B . The 

critical point of the proof is seen where the initial 

estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far 

tail element from 1n


 of the form 1 1( ) ( ),n u n   

which is only small if 1 1,a   being otherwise of 

order 11( )aO n  
 for any 0,   since 2 1a   is 

in any case assumed. For / 2,s n  this gives rise 

to a contribution of order  11( )aO n   
 in the 

estimate of the difference 

[ ] [ 1],bn bnP T s P T s     which, in the 

remainder of the proof, is translated into a 

contribution of order 11( )aO tn   
for differences 

of the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in 
 7.7

( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of 

the form [ ] [ ]bn bnP T s P T s t     can be 

directly estimated, at a cost of only a single 

contribution of the form 1 1( ) ( ).n u n   Then, 

iterating the cycle, in which one estimate of a 

difference in point probabilities is improved to an 

estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n        

 for any 0   could perhaps be attained, leading 

to a final error estimate in order  

11( )aO bn n    for any 0  , to replace 

 7.7
( , ).n b  This would be of the ideal order 

( / )O b n for large enough ,b  but would still be 

coarser for small .b   

 With b and n  as in the previous section, 

we wish to show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  Where 

 
121 1

7.8
( , ) ( [ ])n b O n b n b n        for any 

0   under Conditions 0 1( ), ( )A D  and 12( ),B

with 12 . The proof uses sharper estimates. As 

before, we begin with the formula  

 

0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n 

  
   

 


 

  

Now we observe that  

 

[ /2]

0
0

0 00 0

0

[ /2] 1

2 2

0 0 0
/2

0

10.5(2)2 2

0

[ ] [ ]
[ ] 1

[ ] [ ]

[ ]( [ ] [ ])

4 ( max [ ]) / [ ]

[ / 2]

3 ( / 2, )
8 , (1.1)

[0,1]

n

bn b
b

r rn n

n

b bn bn

s n

b b n
n s n

b

b

P T n r P T r
P T r

P T n P T n

P T s P T n s P T n r

n ET P T s P T n

P T n

n b
n ET

P





 

 



 



   
   

  

      

   

 

 

 



  

We have   

     

0[ /2]

0

0

[ /2]

0

0

[ /2]

0 0

0

0 02
0 00

1

010.14 10.8

[ ]

[ ]

( [ ]( [ ] [ ]

( )(1 )
[ ] [ ] )

1

1
[ ] [ ]

[ ]

( , ) 2( ) 1 4 ( )

6

bn

n

r

n

b bn bn

s

n

b n

s

b b

r sn

P T r

P T n

P T s P T n s P T n r

s r
P T s P T n

n

P T r P T s s r
n P T n

n b r s n K n



   



 

 

 

 





 
       

 

  
   

 

   


    









 

 

  



0 10.14

2 2

0 0 10.8

( , )
[0,1]

4 1 4 ( )

3
( ) , (1.2)

[0,1]

b

b

ET n b
nP

n ET K n

nP








  



   

  

 The approximation in (1.2) is further 

simplified by noting that  

[ /2] [ /2]

0 0

0 0

( )(1 )
[ ] [ ]

1

n n

b b

r s

s r
P T r P T s

n



 

  
  

 
 

 

0

0

( )(1 )
[ ]

1
b

s

s r
P T s

n
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[ /2]

0 0

0 [ /2]

1 2 2

0 0 0

( ) 1
[ ] [ ]

1

1 ( 1 / 2 ) 2 1 , (1.3)

n

b b

r s n

b b b

s r
P T r P T s

n

n E T T n n ET



 

 

 

 
  



    

 

 

 

and then by observing that  

 

0 0

[ /2] 0

1

0 0 0 0

2 2

0

( )(1 )
[ ] [ ]

1

1 ( [ / 2] ( 1 / 2 ))

4 1 (1.4)

b b

r n s

b b b b

b

s r
P T r P T s

n

n ET P T n E T T n

n ET







 





  
  

 

    

 

 

 

 

 Combining the contributions of (1.2) –

(1.3), we thus find tha

 

    

 

1

0 0

0 0

7.8

1

010.5(2) 10.14

10.82 2

0

( ( [1, ]), ( [1, ]))

( 1) [ ] [ ]( )(1 )

( , )

3
( / 2, ) 2 ( , )

[0,1]

24 1 ( )
2 4 3 1 (1.5)

[0,1]

TV

b b

r s

b

b

d L C b L Z b

n P T r P T s s r

n b

n b n ET n b
P

n
n ET
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The quantity 
 7.8

( , )n b is seen to be of 

the order claimed under Conditions 0 1( ), ( )A D  

and 12( )B , provided that ( ) ;S     this 

supplementary condition can be removed if 

 10.8
( )n

 is replaced by 
 10.11

( )n
   in the 

definition of 
 7.8

( , )n b , has the required order 

without the restriction on the ir  implied by 

assuming that ( ) .S   Finally, a direct 

calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b

r s

b b

P T r P T s s r

E T ET





  

 
    

 

  

 

 
 

Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , 

the coordinates of the point x O r   are equal 

to the respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The 

vector r such as in the example is called the 

position vector or the radius vector of the point x  . 

(Or, in greater detail: r  is the radius-vector of x  

w.r.t an origin O). Points are frequently specified 

by their radius-vectors. This presupposes the choice 

of O as the “standard origin”.   Let us summarize. 

We have considered 
n  and interpreted its 

elements in two ways: as points and as vectors. 

Hence we may say that we leading with the two 

copies of  :n  
n = {points},      

n = {vectors}  

Operations with vectors: multiplication by a 

number, addition. Operations with points and 

vectors: adding a vector to a point (giving a point), 

subtracting two points (giving a vector). 
n treated 

in this way is called an n-dimensional affine space. 

(An “abstract” affine space is a pair of sets , the set 

of points and the set of vectors so that the 

operations as above are defined axiomatically). 

Notice that vectors in an affine space are also 

known as “free vectors”. Intuitively, they are not 

fixed at points and “float freely” in space. From 
n considered as an affine space we can precede 

in two opposite directions: 
n  as an Euclidean 

space   
n as an affine space   

n as a 

manifold.Going to the left means introducing some 

extra structure which will make the geometry 

richer. Going to the right means forgetting about 

part of the affine structure; going further in this 

direction will lead us to the so-called “smooth (or 

differentiable) manifolds”. The theory of 

differential forms does not require any extra 

geometry. So our natural direction is to the right. 

The Euclidean structure, however, is useful for 

examples and applications. So let us say a few 

words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can 

consider lines and planes, and quadric surfaces like 

an ellipsoid. However, we cannot discuss such 

things as “lengths”, “angles” or “areas” and 

“volumes”. To be able to do so, we have to 

introduce some more definitions, making 
n a 

Euclidean space. Namely, we define the length of a 

vector 
1( ,..., )na a a  to be  

1 2 2: ( ) ... ( ) (1)na a a     

 After that we can also define distances 

between points as follows: 

( , ) : (2)d A B AB


  

 One can check that the distance so defined 

possesses natural properties that we expect: is it 

always non-negative and equals zero only for 

coinciding points; the distance from A to B is the 

same as that from B to A (symmetry); also, for 

three points, A, B and C, we have 

( , ) ( , ) ( , )d A B d A C d C B   (the “triangle 

inequality”). To define angles, we first introduce 

the scalar product of two vectors 
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1 1( , ) : ... (3)n na b a b a b     

 Thus ( , )a a a  . The scalar product 

is also denote by dot: . ( , )a b a b , and hence is 

often referred to as the “dot product” . Now, for 

nonzero vectors, we define the angle between them 

by the equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be 

consistent we have to ensure that the r.h.s. of (4) 

does not exceed 1 by the absolute value. This 

follows from the inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three 

names are applied in different books). One of the 

ways of proving (5) is to consider the scalar square 

of the linear combination ,a tb  where t R . 

As  ( , ) 0a tb a tb    is a quadratic polynomial 

in t  which is never negative, its discriminant must 

be less or equal zero. Writing this explicitly yields 

(5). The triangle inequality for distances also 

follows from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  

is simply 
ih .From these examples follows that we 

can rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  which is the standard form. Once again: 

the partial derivatives in (1) are just the coefficients 

(depending on x ); 
1 2, ,...dx dx  are linear 

functions giving on an arbitrary vector h  its 

coordinates 
1 2, ,...,h h  respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 0

nx   at 

0t t  and with the velocity vector 0( )x t   

Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t  , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment 

of ( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

 For a certain ( )t   such that 

( ) 0t   when 0t   (we used the linearity 

of 0( )df x ). By the definition, this means that the 

derivative of ( ( ))f x t  at 0t t  is exactly

0( )( )df x  . The statement of the theorem can be 

expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 To calculate the value Of df  at a point 

0x  on a given vector   one can take an arbitrary 

curve passing Through 0x  at 0t  with   as the 

velocity vector at 0t and calculate the usual 

derivative of ( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     

 
( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  
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0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the 

usual derivative Now, almost without change the 

theory generalizes to functions taking values in  
m  instead of  . The only difference is that now 

the differential of a map : mF U    at a point 

x  will be a linear function taking vectors in 
n  to 

vectors in 
m (instead of  ) . For an arbitrary 

vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 In this matrix notation we have to write 

vectors as vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the 

velocity vector ( )x t  to the velocity vector of the 

curve ( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 
.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  Where ( ) 0t    when 0t  . By 

the definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

For some ( ) 0t    when 0t  .  This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a 

point can be viewed as the velocity vector of some 

curve passing through this point, this theorem gives 

a clear geometric picture of dF  as a linear map on 

vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). 

Let : ( )F x y F x . Then the differential of 

the composite map :GoF U W  is the 

composition of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n  with the 

velocity vector 
.

x . Basically, we need to know to 

which vector in  
p it is taken by ( )d GoF . the 

curve ( )( ( ) ( ( ( ))GoF x t G F x t . By the same 

theorem, it equals the image under dG  of the 

Anycast Flow vector to the curve ( ( ))F x t  in 
m . 

Applying the theorem once again, we see that the 

velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 
.

( )x t . Hence 

. .

( )( ) ( ( ))d GoF x dG dF x   for an arbitrary 

vector 
.

x  . 

 

Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y
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 Then the chain rule can be expressed as 

follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

 Where 
idF  are taken from (1). In other 

words, to get ( )d GoF  we have to substitute into 

(2) the expression for 
i idy dF  from (3). This 

can also be expressed by the following matrix 

formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written 

as  

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  on 

nx  is given by the map F , the 

dependence of 
pz  on 

my  is given by 

the map ,G  and the dependence of  
pz on 

nx is given by the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . Consider also another copy of 

n , 

denoted for distinction 
n

y , with the standard 

coordinates 
1( ... )ny y . A system of coordinates in 

the open domain U  is given by a map 

: ,F V U  where 
n

yV    is an open domain 

of 
n

y , such that the following three conditions are 

satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 The coordinates of a point x U  in this 

system are the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y

  

 Here the variables 
1( ..., )ny y  are the 

“new” coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )), ( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   

   Here 
.

r  and 
.

  are scalar coefficients 

depending on t , whence the partial derivatives 

,x x
r 

 
 

  are vectors depending on point in 

2 . We can compare this with the formula in the 

“standard” coordinates: 
. . .

1 2x e x e y  . Consider 

the vectors   ,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

 From where it follows that these vectors 

make a basis at all points except for the origin 

(where 0r  ). It is instructive to sketch a picture, 

drawing vectors corresponding to a point as starting 

from that point. Notice that  ,x x
r 

 
 

 are, 

respectively, the velocity vectors for the curves 

( , )r x r    0( )fixed   and 

0( , ) ( )x r r r fixed   . We can conclude 

that for an arbitrary curve given in polar 

coordinates the velocity vector will have 
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components 
. .

( , )r   if as a basis we take 

: , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

 A characteristic feature of the basis ,re e  

is that it is not “constant” but depends on point. 

Vectors “stuck to points” when we consider 

curvilinear coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In 

particular, the elements of the basis ii
xe

x



 

(originally, a formal notation) can be understood 

directly as the velocity vectors of the coordinate 

lines 
1( ,..., )i nx x x x   (all coordinates but 

ix  

are fixed). Since we now know how to handle 

velocities in arbitrary coordinates, the best way to 

treat the differential of a map : n mF    is by 

its action on the velocity vectors. By definition, we 

set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt


  Now 0( )dF x  is a linear map that takes 

vectors attached to a point 0

nx   to vectors 

attached to the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  In particular, for the differential of a 

function we always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

 Where 
ix  are arbitrary coordinates. The 

form of the differential does not change when we 

perform a change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in 

the standard coordinates: 

 

A ydx xdy     In the polar coordinates we 

will have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the 

polar coordinates. In particular, we see that this is 

again a 1-form, a linear combination of the 

differentials of coordinates with functions as 

coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear 

function on vectors at every point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that 

the differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path 

 , the integral 



  does not change if we change 

parametrization of   provide the orientation 

remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 Let p  be a rational prime and let 

( ).pK    We write   for p  or this section. 

Recall that K  has degree ( ) 1p p    over .  

We wish to show that  .KO    Note that   

is a root of 1,px   and thus is an algebraic integer; 

since K  is a ring we have that   .KO   We 

give a proof without assuming unique factorization 

of ideals. We begin with some norm and trace 

computations. Let j  be an integer. If j is not 

divisible by ,p  then 
j  is a primitive 

thp  root of 
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unity, and thus its conjugates are 
2 1, ,..., .p   

 

Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only 

the one conjugate 1, and  
/ ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

 We also need to compute the norm of 

1  . For this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 

for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose 

now that the inclusion is strict. Since 

(1 ) KO  is an ideal of   containing p  

and p is a maximal ideal of  , we must have  

(1 ) KO   
 
Thus we can write 

 1 (1 )     

For some .KO   That is, 1   is a unit in 

.KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex 

embeddings of K  (which we are really viewing as 

automorphisms of K ) with the usual ordering.  

Furthermore, 1
j  is a multiple of 1   in KO  

for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number 

and let | ( )pK    be the 
thp  cyclotomic field. 

Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 
2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next 

consider the algebraic integer  
1 3

0 1 2 2( ) ... ;p

pa a a a    

      This 

is an algebraic integer since 
1 1p    is. The 

same argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring 

( )p  is simply the subring of   of rational 

numbers with denominator relatively prime to p . 

Note that this ring   ( )p is not the ring p of p -

adic integers; to get  p one must complete ( )p . 

The usefulness of ,K pO  comes from the fact that it 

has a particularly simple ideal structure. Let a be 

any proper ideal of ,K pO  and consider the ideal 

Ka O  of .KO  We claim that 

,( ) ;K K pa a O O     That is, that a  is generated 

by the elements of a  in .Ka O  It is clear from 

the definition of an ideal that 

,( ) .K K pa a O O   To prove the other 
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inclusion, let   be any element of a . Then we 

can write /    where KO   and .p   

In particular, a   (since / a    and a  is 

an ideal), so KO   and .p   so 

.Ka O    Since ,1/ ,K pO   this implies 

that ,/ ( ) ,K K pa O O      as claimed.We 

can use this fact to determine all of the ideals of 

, .K pO  Let a  be any ideal of ,K pO and consider 

the ideal factorization of Ka O in .KO  write it 

as 
n

Ka O p b   For some n  and some ideal 

,b  relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  
, , ,( ) n n

K K p K p K pa a O O p bO p O      

Since , .K pbO  Thus every ideal of ,K pO  has the 

form 
,

n

K pp O  for some ;n  it follows immediately 

that ,K pO is noetherian. It is also now clear that 

,

n

K pp O is the unique non-zero prime ideal in 

,K pO . Furthermore, the inclusion 

, ,/K K p K pO O pO  Since , ,K p KpO O p   

this map is also surjection, since the residue class of 

,/ K pO    (with KO   and p  ) is the 

image of 
1 

 in / ,K pO  which makes sense 

since   is invertible in / .K pO  Thus the map is an 

isomorphism. In particular, it is now abundantly 

clear that every non-zero prime ideal of ,K pO is 

maximal.  To show that ,K pO is a Dedekind 

domain, it remains to show that it is integrally 

closed in K . So let K   be a root of a 

polynomial with coefficients in  , ;K pO  write this 

polynomial as  
11 0

1 0

...m mm

m

x x
 

 





    With 

i KO   and .i K pO   Set 0 1 1... .m      

Multiplying by 
m  we find that   is the root of 

a monic polynomial with coefficients in .KO  Thus 

;KO   since ,p   we have 

,/ K pO    . Thus  ,K pO is integrally 

close in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free

-module of rank ,n    

// ( )K K KO N O   Will have order 
/ ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let 

L  be the Galois closure of K  and set 

[ : ] .L K m   

III. RESULTS AND DISCUSSION 
 To evaluate the phase errors of the 

proposed approach, a glass slide with a thickness of 

210 μm was used as the sample and 2000 A-scans 

were recorded. According to Eq. (2), _φ and δz can 

be obtained from the interfered signals. The two-

channel acquisition and the single-channel 

acquisition, both of which were based on the 

common-path configuration. The evaluated DSs of 

the two-channel acquisition and the single-channel 

acquisition were found to be 579 pm and 80 pm, 

respectively. In our experiments, the DSs were 

measured without scanning the optical beam in the 

sample arm. Here, DS is defined as the standard 

deviation of the measured optical path displacement 

[16]. A few spikes can be found in Fig. 2(a), 

possibly resulting from the trigger jitter of swept 

source or the asynchronization between the trigger 

of swept source and the OCT signal at the data 

acquisition end. By contrast, the same phenomenon 

cannot be found . Furthermore, the DSs of the gray 

areas (from 1001th A-scan to 2000th A-scan) are 

also found to be 132 pm and 80 pm, respectively. 

One can see that the proposed approach can 

effectively improve the time-induced phase errors. 

Subsequently, an indium-tin-oxide (ITO) 

conducting glass was scanned with the common-

path SS-OCT system based on the single-channel 

acquisition. The ITO conducting layer was 

deposited on a glass substrate. In our experiment, 

the glass substrate was placed to face the incident 

light as the reference plane. Two-dimensional OCT 
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scanning result. The quantitative phase result 

obtained ,the scanning electron microscope (SEM) 

image, which is obtained from the same sample but 

not exactly obtained from the same location. An 

oblique-angle, radio-frequency magnetron 

sputtering is used to growth the slanted ITO film to 

obtain the changeable refractive index of the 

slanted ITO film from 1.98 to 1.63 [20]. The 

thickness of ITO conducting layer is approximately 

305 nm, which is nearly the calculated result of 310 

nm from SEM. In addition to two-dimensional 

imaging, three-dimensional OCT image of ITO 

conducting glass can also be obtained with our 

system. The 3D OCT image, which enables the 

optical inspection of the quality of the conducting 

glass. The quantitative phase image obtained, 

which enables to measure the thickness of ITO 

conducting layer in real-time. 

 

IV. CONCLUSION 
 In conclusion, we proposed a new 

approach to reduce the time-induced phase errors in 

SS-OCT. Based on the single-channel acquisition, 

the phase errors resulting from the trigger jitter of 

swept source and the asynchronization between the 

trigger of swept source and OCT signal at the data 

acquisition end can be greatly improved. 

Combining the proposed approach with the 

common-path configuration, the displacement 

sensitivity can achieve 80 pm, which is comparable 

with SD-OCT systems and SS-OCT systems that 

employ FDML lasers. Furthermore, based on the 

single-channel acquisition, only one channel is 

required for wavelength calibration and data 

storage, reducing the data acquisition and memory 

requirements by half. The system is also used for 

optical measurement of ITO conducting glass. The 

results show that SS-OCT with the single-channel 

acquisition can be potentially useful tool for real-

time inspection of conducting glass or 

nanostructures. 
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