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I. INTRODUCTION 
Predator-prey interactions are one of the most important ways that species interact in ecological communities. 

Whenever an organism consumes another living organism, this interaction is termed as “predation". To study 

these interactions, mathematical models have been developed and  utilized to forecast and analyse the growth 

and decline of populations of various species at distinctive times [1, 3, 5, 8]. The famous Lotka-Volterra model 

consisting of two differential equations, describing the prey-predator interactions laid the foundation to study the 

dynamical behavior of prey-predator population [9]. Over the years, the researchers evolved discrete-time 

models for non-overlapping generations as discrete-time models are more suitable compared to continuous time 

models. It is observed that discrete-time models present resourceful computer simulations for numerical 

computations which exhibit rich and varied dynamical behavior than continuous - time models [2, 6]. 

 

II. DISCRETE TIME PREY - PREDATOR MODEL 
In ecology, many species have non- overlappping  consecutive generations, thus their population advance into 

discrete-time steps [7, 10, 11] and such populations are aptly described by difference equations. We consider the 

discrete prey-predator interactions by the following non linear system of difference equations 
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                             (1) 

In (1), tx and ty represent the number of prey and predator population respectively in the n
th

 generation. The 

parameter   is the intrinsic growth rate of the prey population with carrying ability one in the absence of 

predator. The death rate of predator is denoted by  and   denotes the growth rate of predator in the presence 

of the prey. The parameters  ,   and   have positive values and for mathematical and biological feasibility, 

we consider the dynamics of  system (1) in the first octant of 2R . 
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are investigated in this paper. The dynamics of the system such as the existence of non negative 

equilibria, local stability of the equilibrium states are analyzed. It is seen that the system goes 

through Flip and Neimark – Sacker bifurcation about axial and positive equilibrium states with prey 

growth rate as the bifurcation factor. It is also observed that the model is sensitive to the initial 
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III. EQUILIBRIA AND THEIR FEASIBILITY 
We study the existence of equilibrium points for (1), the following are the equilibrium states of system (1) in the 

x - y plane
0 = (0,0)E , 

1

1
= 1 ,0E



 
 

 
and

2 = ,( 1)E
 


 

 
  

 
. The equilibrium states exist only when all its 

components are positive. The first equilibrium state
0E , always exists, 

1E  if >1 , and similarly >



 

 for 

2E . 

 

Stability Analysis: We now discuss the local behavior of (1) around each equilibrium state. The local stability 

is analyzed with the Variational matrix related to each equilibrium state. The Variation matrix of system (1) is  

2
( , ) =

(1 )

x y x
V x y

y x

 

  

   
 

               

(2)    

For the Variation matrix (2) the characteristic equation is given  by 2 [ ] = 0TrV DetV        (3) 

where =1 ( 2 )TrV x y         and = ( 2 )(1 )DetV x y x xy         . Hence the system (1) is a 

dissipative dynamical system if ( 2 )(1 ) <1x y x xy         . In order to discuss the local stability 

conditions, we consider the relations between  eigenvalues and coefficients of the quadratic equation at the 

positive equilibria, for this we propose the subsequent lemma.  

 

Lemma 3.1. Let 2( ) =P B C    and (1) > 0P with
1  and 

2 as two roots of ( ) = 0P  . Then   

 1 < 1  and 2 < 1  if and only if ( 1) > 0P   and (0) <1P ; 

 1 < 1  and 2 > 1  if and only if  ( 1) < 0P  ;  

 1 > 1  and 2 > 1  if and only if ( 1) > 0P   and (0) >1P ; 

 
1 = 1   and 

2 1   if and only if ( 1) = 0P   and (0) 1P   ; 

 1 1   and 2 1   if and only if  2 4 < 0B C  and (0) =1P then 
1  and 

2  are complex. 

 

Let 
1  and 

2 be  the  two roots of (3) then positive equilibrium state ( , )x y  is a sink if 1 < 1  and 2 < 1 . A 

sink is always locally asymptotically stable.The state ( , )x y  is a source if 1 > 1  and 2 > 1  . A source is  

unstable. The state ( , )x y  is a saddle if 1 > 1  and 2 < 1  and the state ( , )x y  is non-hyperbolic if either 1 = 1  or 

2 = 1 .  

Theorem 3.1. If <1  and 0 < < 2 then
0E  is a sink. If >1  and > 2  then 

0E  is a source. If <1  and > 2  

then 
0E  is a saddle and if either =1  or 2   then 

0E  is non-hyperbolic.  

Proof: The Variation  matrix V  at 
0E  is  

0

0
( ) = .

0 1
V E





 
 

 
 

Hence, the eigenvalues are 
1 =   and 

2 =1  . The equilibrium state 
0E  is sink if <1  and 0 < < 2 , source 

if >1  and > 2 , saddle if <1  and > 2  and non-hyperbolic if either =1  or 2  . 

Theorem 3.2. When 1   there are a minimum of four dissimilar topological forms of 
1E , for all permitted 

values of parameters   

 if 1< < 3  and 
1 1

1 < < 2 1  
 

   
     

   
then 

1E is a sink  

 if > 3  and 
1

2 1 


 
   

 
then 

1E is a source 

 if 1< < 3  and 
1

2 1 


 
   

 
then 

1E is a saddle 

 if = 3  or
1

2 1 


 
   

 
then 

1E is a non-hyperbolic 
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Proof: The Varation matrix V  at 
1E  is 1

1
2 1

( ) = .
1

0 (1 ) 1

V E




 


 
  

 
  

    
    

Hence, the eigenvalues are 
1 = 2   and 

2

1
= (1 ) 1  



 
   

 
. The equilibrium state

1E is sink if 1< < 3  

and 
1 1

1 < < 2 1  
 

   
     

   
, source if > 3  and 

1
2 1 



 
   

 
, saddle if 1< < 3  and 

1
2 1 



 
   

 
 

and non-hyperbolic if either = 3  or 
1

2 1 


 
   

 
. 

Theorem 3.3. If >



 

, then the positive equilibrium state
2E  

 (i).  is a sink if one of the below criterion holds:   

          (i.a) 0   and 
( 4)

< <
( 2) ( 1)

  


    



   
;  (i.b) < 0  and <

( 1)




  
;  

 (ii). it is a source if one of the below criterion  holds:   

          (ii.a) 0   and 
( 4)

> ,
( 2) ( 1)

max
  


    

 
 

    
;  (ii.b) < 0  and 

( 1)




 


 
;  

(iii). it is non-hyperbolic if one of the below criterion holds:   

          (iii.a) 0   and 
( 4)

=
( 2)

 


  



 
;   (iii.b) < 0  and 

( 1)




 


 
;  

 (iv). for all  the other  parameter values of excluding those values in  (i) - (iii).  

Proof: If 
2E  exists, the Variation matrix V at 

2E  is 
2

1
( ) = .

( 1) 1

V E

 

 

  

 
  

 
   

 

Therefore, the eigenvalues of 
2( )V E  are 

1,2 = 1
2






 
   

 
, where 

2

= (1 ) 1
4

  
 

 

 
    

 
.  

It is straightforward to see that 1,2  satisfy the characteristic equation 

2

1 2( ) = = 0P S S                                                                           (4) 

where 
1

2
= ( ) = 2ES trace V




  and 

2
2

= det( ) =1 ( 1) (1 )ES V


  


    . By means of Jury’s criterion [4], the 

necessary and sufficient condition for local stability of the positive equilibrium state 
2E  is satisfied as the above 

condition holds. 

 

IV. NUMERICAL SIMULATIONS 
This section presents the time plots and phase space to illustrate the results of the previous section and exhibit 

some interesting complex dynamics of system (1).   

 

Example 4.1. This example considers the parameter values = 0.89 , = 0.49 , = 0.89  with initial values 

0 = 0.2x  and 0 = 0.3y . At equilibrium state 0E , the eigenvalues are 1 = 0.51  and 2 = 0.89  so that 1,2 < 1 . 

Hence 0E is stable. The phase portraits and the time series confirm the end result, in Figure - 1. In this case prey 

and predator populations both will disappear over the time. 
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Figure 1: Time series and Phase portrait are stable at E0. 

 

Example 4.2. Considering the parameter values =1.19 , = 0.49 , = 0.89  with initial values 0 = 0.2x  and 

0 = 0.3y , we obtain 1 = (0.1597,0)E and the eigenvalues are 1 = 0.81  and 2 = 0.6521  so that 
1 < 1  and 2| |<1  

. Hence the system (1) is stable for the axial equilibrium state. In Figure – 2, the time series and the phase 

portraits are presented. Here the prey population continues to exist whereas predator population goes to 

extinction. 

 

 
Figure 2: Time series and Phase portrait are stable at E1. 

 

Example 4.3. In this example we take the following set of parameter values = 2.41 , = 0.981 , = 3.391  with 

initial values 0 = 0.4x  and 0 = 0.3y . We obtain 2 = (0.2893,0.7128)E  and the eigenvalues are 

1,2 = 0.6514 0.7601i   so that 1,2 =1.0010 >1 . The trajectory curves  inwards but fails to move towards a single 

point and at the end settles down as a limit cycle. Hence  system (1) is unstable, see  Figure - 3. 
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Figure 3: Time series and Phase portrait are unstable at E2. 

 

Whereas with = 2.51 , =1 , = 3.25  with 0 = 0.2x  and 0 = 0.3y , then the positive equilibrium state

2 = (0.3077,0.7377)E  and the eigenvalues are 1,2 = 0.6138 0.7672i   so that 1,2 = 0.9825 <1 . Hence from Figure 

– 4, we conclude that system (1) is stable. 

 

 
Figure 4: Time series and Phase portrait are stable at E2. 

 

V. BIFURCATION ANALYSIS 
In this section, we discuss the bifurcation parametric conditions for the existence of flip and Neimark-Sacker 

bifurcation at the axial and positive equilibrium states of system (1). With intrinsic growth rate   as the 

bifurcation parameter, it is observed that for axial equilibrium state 1E the flip bifurcation will appear , if   

varies in the small neighborhood of 
1

EFB , where
1

1
= ( , , ) : = 3, 2 1 , >1, , > 0 .EFB         



   
    

     
Example 5.1. First, we take = 2.56 , = 3.82  and [2.6,4]  with the initial values are 0 = 0.3x  and 0 = 0.5y , 

then for system (1), flip bifurcation emerges about the equilibrium state 1 = (0.6667,0)E  at = 3 .The associated 

bifurcation diagram is shown in Figure -5. The characteristic polynomial evaluated at this point is given by  
2 (0.0133) 0.9867 = 0       (5).      Furthermore, the roots of (5) are 1 = 1   and 2 = 0.9867  so that 1 = 1   

and 2 1   . Thus we have 
1

( = 3, 4.5467) EFB    . 
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Figure 5: (a) Flip bifurcation diagram of system (1) in ( )x   plane. (b) Maximum Lyapunov exponents 

associated to (a) 

 

From Figure 5(a), it is seen that the axial equilibrium state 1E  of (1) is stable for < 3   and is unstable  at = 3

due to flip bifurcation and for > 3 there is a cascade of bifurcation. The maximum Lyapunov exponent related 

to Figure 5(a) are computed and plotted in Figure 5(b), which confirms the existence of the chaotic area and 

aperiodic orbits in the parametric space. Furthermore, keeping  the same fixed parameter values and  varying the 

intrinsic growth rate  parameter values [1.8,3] , the time series of system (1)  are presented in Figure 6.  It is 

interesting to observe that in Figure 6(b) - 6(d) , the growth pattern becomes periodic after an initial 

aperiodicity. In Figure  6(b), the period is 2-value cycle at = 3.39 , 6(c) 4 value cycle at = 3.529 , 6(d) 8 value 

cycle at = 3.569 , and 6(e) non periodic oscillations at = 3.64 , that is usually referred to as chaos. 

 

 
Figure 6: Time series for various parameter values of intrinsic growth rate   corresponding                    

to Figure 5(a). 

 

From (4), it is easy to see that ( ) = 0P   has two complex conjugate roots with modulus one. The criterion in the 

terms (iii.b) of Theorem 3.1.3. can be re presented as follows
2

= ( , , ) : = , < 0, >1, , > 0 .
1

ENS


      
 

 
 

  
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then the Neimark - Sacker Bifurcation will appear in the system (1) if the intrinsic growth rate parameter   

varies in the small neighborhood of 
2

ENS .

  

Example 5.2. Let =1.05 , = 3.25  and [2.5,4]  with the initial values are 0 = 0.6x  and 0 = 0.5y , then the 

system (1) endures Neimark-Sacker bifurcation appears at the equilibrium state 2 = (0.3231,0.8333)E for

= 2.7083 . The corresponding bifurcation diagram is shown in Figure - 7. 

 

 
Figure 7: Neimark-Sacker Bifurcation diagram of the system (1) in (a) ( )x   and (b) ( )y   planes. 

 

 
Figure 8: Phase portraits for various parameter values of intrinsic growth rate   corresponding             

to Figure 7. 
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The characteristic equation of the Jacobian Matrix of the system (1) evaluated at this positive equilibrium state 

is given by 2 (1.1250) 1= 0    (6). Furthermore, the roots of (6) are 1 = 0.5625 0.8268i   and 

2 = 0.5625 0.8268i   with 1,2| |=1 . Thus we have 
2

( = 2.7083, = 0.6836 < 0) ENB    . Figure - 7 shows the 

dynamical behavior of system (1) which tends to the stable equilibrium point 2E  for < 2.7083  and loses its 

stability through a Neimark-Scaker bifurcation for = 2.7083 . We observe that for > 2.7083 , the positive 

equilibrium state 2E  becomes unstable and chaotic behavior is visible  in the prey-predator interactions. We may 

conclude that for large values of the intrinsic growth rate parameter  , there is an onset of choas in  prey-

predator model’s behavior. For 2.5 4   the system (1) exhibits complex dynamic behavior. In Figure 8 phase 

portrait corresponding to Figure 7(a-b) for varying values   are presented, which shows the transition from 

smooth invariant circle to attracting chaotic sets. For > 2.7083  there is a circular curve and as   increases and 

at = 3.5  the circle disappears and due to periodic doubling bifurcation chaotic behaviour is observed. 

 

VI. SENSITIVE ANALYSIS 
Being sensitivity to initial conditions is a distinctive  quality  of chaotic behaviour. To exhibit the sensitive 

dependence to initial values of system (1), four time series with initial points 0 0( , )x y  and 0 0( 0.0001, )x y are 

presented. The computational results are shown in Figure - 9 and Figure - 10. From these pictorial 

representations it is observed that at the initiation the difference is indistinguishable but over the time the 

difference between them is quite rapid and obvious. In addition Figure - 9 and Figure - 10 shows sensitive 

dependence on initial conditions, x  - coordinates of the four orbits are plotted against the time with two set of 

parameter values ( , , ) = (3.69,2.56,3.82)    and ( , , ) = (4,1.05,3.25)    of system (1). In the  initial conditions 

the abscissae differ by 0.0001  and the ordinates are fixed. 

 

 
Figure 9: Time series tx  corresponding to the initial conditions (a) (0.3,0.5)  and (b) (0.3001,0.5)                 

of system (1). 

 

 
Figure 10: Time series tx  corresponding to the initial conditions (a) (0.6,0.5)  and (b) (0.6001,0.5)               

of system (1). 
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VII. CONCLUSION 
In this paper a two dimensional discrete prey-predator model is analyzed and it is shown that the system 

demonstrates rich dynamical behavior. Foremost the conditions for the existence of the equilibria of the system 

are obtained and also the conditions essential to study the stability of the system. It is illustrated that the system 

undergoes flip bifurcations and also vital conditions for flip and Neimark - Sacker Bifurcation are derived. It is 

interesting to note that system displays dynamical behavior such as invariant cycles, periodic 2, 3, 4 and   8 

orbits, cascade of period doubling and the chaotic sets. For the co-existence equilibrium point the system is 

stable if the growth rate parameter lies in the range of 2.5 2.7083  , it is unstable for 2.7083  and at 

2.7083   Neimark - Sacker Bifurcation takes place. The phase portrait corresponding to varying values of   

is presented, showing the transition from smooth invariant circle to attracting chaotic sets. 
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