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I. INTRODUCTION 
A range of image-based steganographic embedding tech- niques have been proposed in the literature, 

which in turn have led to the development of a large number of stega- nalysis techniques. The reader is referred 

to Ref. 1 for a review of the field. These techniques could be grouped into two broad categories, namely, specific 

and universal stega- nalysis. The specific steganalysis techniques, as the name suggests, are designed for a 

targeted embedding technique. These types of techniques are developed by first analyzing the embedding 

operation and then (based on the gained knowledge) determining certain image features that become modified as 

a result of the embedding process. The design of specific steganalysis techniques requires detailed knowl- edge 

of the steganographic embedding process. Conse- 
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quently,specificsteganalysistechniquesyieldveryaccurate decisions when they are used against the particular 

stega- nographictechnique. 

The second group of steganalyzers, universal tech- niques, were proposed to alleviate the deficiency of 

specific steganalyzers by removing their dependency on the behav- ior of individual embedding techniques. To 

achieve this, a set of distinguishing statistics that are sensitive to wide va- riety of embedding operations are 

determined and col- lected. These statistics, obtained from both the cover and stego images, are then used to 

train a classifier, which is subsequently used to distinguish between cover and stego images. Hence, the 

dependency on a specific embedder is removed at the cost of finding statistics that distinguish between stego 

and cover images accurately and classifica- tion techniques that are able to utilize these statistics. 

Much research has been done on finding statistics that are able to distinguish between cover and stego 

images ob- tained through different embedding techniques.
2–5

Although previous studies report reasonable 

success on controlled data sets, there is a lack of assessment on howvarious proposed techniques compare to 

each other. This is mainly because previous work is limited either in the number of embedding techniques 

studied or the quality of the data set usedinadditiontotheclassificationtechniqueemployed. 

For example, Ref. 5 uses a data set of images consisting of only 1800 images. These images were 

compressed at the same rate and were of the same size. In Ref. 2, two stega- nalysis techniques are studied using 

the same data set of 1800 images. A larger study was done in Refs. 4 and 6, employing 40,000 images with 

Abstract. We investigate the performance of state of the art univer- sal steganalyzers proposed in 

the literature. These universal stega- nalyzers are tested against a number of well-known 
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experiments are performed using a large data set of JPEG images obtained by randomly crawling a 

set of publicly avail- able websites. The image data set is categorized with respect to size, quality, 

and texture to determine their potential impact on ste- ganalysis performance. To establish a 

comparative evaluation of techniques, undetectability results are obtained at various embed- ding 
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constant size and compres- sion rate, where only one steganalysis technique was inves- tigated. Thus, there is a 

lack of a study that provides com- parative results among a number of universal steganalysis techniques over 

data sets of images with varyingproperties, e.g., source, nature, compression level, size, etc. Our goal in this 

work is twofold: first, to evaluate a range of embed- ding techniques against the state of the art universal stega- 

nalysis techniques, and second, to investigate the effect of image properties on the performance of steganalysis 

tech- niques. In this regard, we are interested in answering ques- tions such as 

1. What are the impacts of the factors such as size, tex- ture,orsourceonsteganographyandsteganalysis? 

2. How do compression and recompression operations affect the steganalysisperformance? 

3. Does the image domain used for steganographic em- bedding have to match with the domain of 

steganaly- sis? 

4. What are the required computational resources for deploying asteganalyzer? 

Some of these questions are inherently hard to answer and are subjects of ongoing research. For example, 

techniques aimed at reliably determining the source of an image (e.g., digital camera, scanner, computer 

graphics, etc.) are just emerging and have certain shortcomings.
7,8

 

The rest of this paper is organized as follows. We begin by introducing the data set used in our experiments in 

Sec. 

2. Section 3 discusses our experimental setup. Section 4 evaluates a number of discrete cosine transform (DCT)-  

based embedding techniques. Section 5 discusses the effect of recompression on the performance of 

steganalyzers. The performances of spatial- and wavelet-based embedding techniques are evaluated in Secs. 6 

and 7, respectively. Sec- tion 8 discusses the effects of JPEG compression artifacts on spatial and wavelet 

domain embedding technique. In Sec. 9, we investigate the effect of image texture on the performance of 

steganalyzers. Issues concerning the poor performance of a wavelet-based steganalyzer,
4
 the maxi- mum 

embedding rate achievable by each embedding tech- nique, and the required computational resources are ad- 

dressedalongwithourdiscussioninSec.10. 

 

II. DESCRIPTION OF DATA SET 
One of the important aspects of any performanceevaluation work is the data set employed in the 

experiments. Our goal was to use a data set of images that would include a variety of textures, qualities, and 

sizes. At the same time, we wanted to have a set that would represent the type of im- ages found in the public 

domain. Obtaining images by crawling Internet sites would provide us with such data set. Thus, we obtained a 

list of 2 million JPEG image links from a web crawl. We chose the JPEG image format due to its wide 

popularity. From this list, we were able to access and download only a total number of 1.5 million images, out of 

which 1.1 million unique and readable images were extracted. Image uniqueness was verified by comparing 

SHA1 (secure hash algorithm 1) hashes of all available images. A histogram of total number of pixels in 

theimages is given in Fig.1(a). 

JPEG images are compressed using a variety of quality factors. But since one has a freedom in 

selecting the quan- tization table when compressing an image using the JPEG algorithm, there is no standard 

definition of a quality factor. Therefore, we approximated the quality factor of the im- ages in our data set by 

deploying the publicly available Jpegdump program.
9
 Essentially, Jpegdump estimates the quality factor of the 

image by comparing its quantization 
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Fig. 1 (a) Normalized histogram of number of pixels in each image, with a bin size of 25,000 pixels. The five 

main peaks (denoted by circles) correspond to images of size 480 × 640, 600 × 800, 768 

× 1024, 1280 × 960, and 1200 × 1600 respectively. (b) Normalized histogram of estimated JPEG quality factors.  

 

table to the suggested quantization table in the JPEG stan- dard. A histogram of estimated JPEG quality factors 

is given in Fig. 1(b). 

Given the variety in size as well as the quality of the images obtained, we decided to break up our data set 

into a number of categories. Table 1 provides the number of im- ages in each category. We restricted our 

experiments to the medium-size images with high, medium, and low qualities, where only 100K randomly 

selected images from among the medium-quality images were used in the experiments. Furthermore, since some 

of the studied techniques were designed to operate only on gray-scale images (and their color image extensions 

are the subjects of further study), all images are converted to gray scale by having their color information 

stripped off. The image size histograms (in number of pixels), as well as the estimated JPEG quality factors are 

given in Fig.2. 

 

III. EXPERIMENTAL SETUP 

Universal steganalyses are composed of two important components. These are feature extraction and feature 

clas- 

Table 1  Cover image data set. 

 
 High (90 to 100) Medium (75 to 90) Low (50 to 75) Poor (50 to0) 

Large (75 K to 2000 K) 74,848 60,060 22,307 10,932 
Medium (300 K to 750 K) 54,415 207,774 83,676 31,340 

Small (10 K to 300 K) 77,120 301,685 102,770 44,329 

 

 



Comparision of common image steganalysis techniques 

www.ijceronline.com                                          Open Access Journal                                                         Page 64 

sification. In feature extraction, a set of distinguishing sta- tistics are obtained from a data set of images. There 

is no well-defined approach to obtaining these statistics, but of- ten they are proposed by observing general 

image features that exhibit strong variation under embedding. The second component, feature classification, 

operates in two modes. First, the obtained distinguishing statistics from both cover and stego images are used to 

train a classifier. Second, the trained classifier is used to classify an input image as either being clean (cover 

image) or carrying a hidden message  (stego image). In this context, the three universal tech- niques studied in 

this work take three distinct approaches in obtaining distinguishing statistics from images (i.e., feature 

extraction). These techniques are: 

5. BSM: Avcibas et al.
2,10

 considers binary similarity measures (BSMs), where distinguishing features are 

obtained from the spatial domain representation of the image. The authors conjecture that correlation be- tween 

the contiguous bit planes decreases after a message is embedded in the image. More specifically, the method 

looks at seventh and eight bit planes of an image and calculates three types of features, which include computed 

similarity differences, histogram and entropy related features, and a set of measures  based on a neighborhood-

weightingmask. 

6. WBS (wavelet-based steganalysis): A different ap- proach is taken by Lyu and Farid
3,4

 for feature extrac- 

tion from images. The authors argue that most of the specific steganalysis techniques concentrate on first- order 

statistics, i.e., histogram of DCT coefficients, but simple countermeasures could keep the first-order statistics 

intact, thus making the steganalysis tech- nique useless. So they propose building a model for natural images by 

using higher order statistics and then show that images with messages embedded in them deviate from this 

model. Quadratic mirror filters (QMFs) are used to decompose the image into wave- let domain, after which 

statistics such as mean, vari- ance, skewness, and kurtosis are calculated for each subband. Additionally the same 

statistics are calcu- lated for the error obtained from a linear predictor of coefficient magnitudes of each subband, 

as the sec- ond part of the feature set. More recently, in Ref. 6, Lyu and Farid expand their feature set to include a 

set of phase statistics. As noted in their work, these ad- ditional features have little effect on the performance of 

the steganalyzer. Therefore, we employed only the originalsetoffeaturesasproposedinRef.3 

7. FBS (feature-based steganalysis): Fridrich
5
 obtains a setofdistinguishingfeaturesfromDCTandspatial 

domains. As the the main component of the proposed approach, a simple technique is used to estimate sta- tistics 

of the original image, before embedding. Esti- mation is simply done by decompressing the JPEG image, and 

then cropping its spatial representation by four lines of pixels in both horizontal and vertical directions. 

Afterward, the image is JPEG recom- pressed with the original quantization table. The dif- ference between 

statistics obtained from the given 

 

 
Fig. 2 (a) Normalized histogram of number of pixels in each image, with a bin size of 25,000 pixels, for images 

in the medium-size cat- egories with high, medium, and low quality factors, and (b) normal- ized histogram of 

their estimated JPEG quality factor. 
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JPEG image and its original estimated version are obtained through a set of functions that operate on both 

spatial and DCT domains. 

All three steganalysis techniques were implemented in the C programming language and verified by comparing 

test results against those reported by the authors. In the following, we discuss our experimental setup including 

is- sues related to embedded message length and the type of classifierused. 

Note that the BSM and WBS techniques operate in spa- tial domain; therefore in the case of JPEG and 

JPEG2000 images, the images are first decompressed before being fed into the steganalyzer. In the case of the 

FBS technique, which operates on JPEG images, non-JPEG images are compressed with a quality factor of 100 

and then fed in to the steganalyzer, to avoid the steganalyzer detecting differ- ent image formats rather than 

embedding artifacts. 

 

MessageSize 

When creating the stego data set, we had a number of op- tions in defining the length of the message to be 

embedded. In essence there are three possible approaches in defining the messages length: 

1. Setting message size relative to the number of coef- ficients that the embedder operates on (i.e., change- 

able coefficients). This approach guarantees an equal percentage of changes over allimages. 

2. Setting constant message size. In such an approach, message sizes are fixed irrespective of the image 

size. As a down side, the data set created with such an approach could contain a set of images that have very few 

relative changes with respect to their size and images that have maximal changes incurred during the 

embeddingprocess. 

3. Set message size relative to image size. Similar to the preceding, we could have two images of the same 

size, but with a different number of changeable coefficients. 

In creating our data set, we use the first approach in setting the message size as it also takes into account the 

image (content) itself, unlike the latter two. Note that the number of changeable coefficients in an image does 

not necessarily indicate the embedding rate achievable by a particular steganographic technique (as discussed in 

Sec. 10.2). In the following sections, we discuss in more detail the number of changeable coefficients with 

respect to the image type and the embeddingtechnique. 

 

Classifier 

As noted earlier, the calculated features vectors obtained from each universal steganalysis technique are used to 

train a classifier, which in turn is used to classify between cover and stego images. A number of different 

classifiers couldbe employed for this purpose. Two of the techniques more widely used by researchers for 

universal steganalysis are Fisher’s linear discriminate (FLD) and support vector ma- chines (SVMs). SVMs are 

more powerful, but on the down side, require more computational power, especially ifanonlinear kernel is 

employed. To avoid high computational cost and to obtain a reasonable success, we have employed a linear 

SVM (Ref. 11) in our experiments. 

To train and test a classifier, the following steps were performed: 

4. A random subset of images, 10%, was used to train the classifier. Here, if the two sets of images (i.e., 

cover and stego) are nonequal, 10% of the smaller set ischosenasthesizeofthedesignset. 

5. The rest of images (i.e., cover and stego), 90%, were tested against the designed classifier, anddecision 

values were collected foreach. 

6. Given the decision values, the receiver operating curves (ROCs) curves areobtained.
12

 

7. The area under the ROC curve, also known as AUR, was calculated as the accuracy of the designed clas- 

sifier against previously unseenimages. 

 

IV. DCT-BASED EMBEDDERS 
DCT domain embedding techniques are very popular due to the fact that DCT-based image format, 

JPEG, is  widely used in the public domain in addition to being the most common output format of digital 

cameras. Although modi- fications of properly selected DCT coefficients during em- bedding will not cause 

noticeable visual artifacts, they will nevertheless cause detectable statistical changes. Various steganographic 

embedding methods are proposed, with the purpose of minimizing the statistical artifacts introduced to DCT 

coefficients. We studied four of these methods, namely Outguess,
13

 F5 (Ref. 14), model based,
15

 and per- turbed 

quantization
16

(PQ) embeddingtechniques. 

Note that since these techniques modify only nonzero DCT coefficients, message lengths are defined 

with respect to the number of nonzero DCT coefficients in the images. More specifically we have used 

embedding rates of 0.05, 0.1, 0.2, 0.4, and 0.6 BPNZ-DCT. In the rest of this section we introduce the results 

obtained for each of the mentioned embedding techniques. 
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Outguess 

Outguess, proposed by Provos
13

 realizes the embeddingprocess in two separate steps. First, it identifies 

the redun-dant DCT coefficients that have minimal effect on the coverimage, and then depending on the 

information obtained inthe first step, chooses bits in which it would embed themessage. Note that at the time 

Outguess was proposed, oneof its goals was to overcome steganalysis attacks that lookat changes in the DCT 

histograms after embedding. Provos,proposed a solution in which some of the DCT coefficientsare left 

unchanged in the embedding process so that follow-ing the embedding, the remaining coefficients are 

modifiedto preserve the original histogram of the DCT coefficients.We embedded messages of length 0.05, 0.1, 

and 0.2BPNZ-DCT in our cover data set using the Outguess
13

 em-bedding technique. The code for Outguess is 

publicly avail-able and implemented quite efficiently
17

 in C. The perfor-mance of the universal steganalysis 

techniques, in terms ofAUR, are given in Fig. 3. As part of the embedding pro-cess, the Outguess program, first 

recompresses the image,with a quality factor defined by the user, and then it uses 

 

 
Fig. 3 AUR for the Outguess (+) embedding technique with mes- sagelengthsof0.05,0.1,and0.2ofBPNZ-

DCT.Stegoversuscover images are indicated by solid lines, and stego versus recomp-cover 

areshownwiththedashedlines.ActualvaluesareprovidedinSec. 
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12. The symbols ☐, O, and O correspond to high-, medium-, and low-quality images, respectively. 

the obtained DCT coefficient to embed the message. To minimize recompression artifacts, we communicated 

the estimated quality factor of the image to the Outguess pro- gram. But a question that comes to mind is 

whether the steganalyzer is distinguishing between cover and stego im- ages or cover and recompressed cover 

images. To investi- gate this question, we also looked at how the steganalysis technique performs when it is 

asked to distinguish between the set of stego images and recompressed cover images (where the latter is 

obtained by recompressing the original images using their estimated quality factor). The results ob- tained are 

given in Fig. 3. 

 

F5 

F5 (Ref. 14) was proposed by Westfeld and embeds mes- sages by modifying the DCT coefficients. (For a 

review of jsteg, F3, and F4 algorithms that F5 is built on, please refer to Ref. 14.) The most important operation 

done by F5 is matrix embedding with the goal of minimizing the amount of changes made to the DCT 

coefficients. Westfeld
14

 takes n DCT coefficients and hashes them to k bits, where k  and n are computed based 

on the original images as well as the secret message length. If the hash value equals the message bits, then the 

next n coefficients are chosen, and so on. Otherwise one of the n coefficients is modified and thehash is 

recalculated. The modifications are constrained by the fact that the resulting n DCT coefficients should not have 

a hamming distance of more than dmax from the original n DCT coefficients. This process is repeated until the 

hash value matches the messagebits. 

A JAVA implemented version of the F5 code is publicly available. Similar to Outguess, the available 

implementa- tion of F5 first recompresses the image, with a quality fac- tor input by the user, after which the 

DCT coefficients are used for embedding the message. We used the quality fac- tor estimated for each image as 

an input to the F5 code when embedding a message. Messages of length 0.05, 0.1, 0.2, and 0.4 BPNZ-DCT were 

used to create the stego data set. We have also obtained AUR values on how well the techniques could 

distinguish between the stego and recom- pressed images. The results obtained are provided in Fig. 4. 

 

Model-Based EmbeddingTechnique 

Unlike techniques discussed in the two previous subsec-  tions, the model-based technique, proposed by Sallee,
15

 

tries to model statistical properties of an image and pre-  serves them during embedding process. Sallee breaks 

down transformed image coefficients into two parts and replaces the perceptually insignificant component with 

the coded message bits. Initially, the marginal statistics of quantized (nonzero) ac DCT coefficients are modeled 

with a paramet- ric density function. For this, a low-precision histogram of each frequency channel is obtained, 

and the model is fit to each histogram by determining the corresponding model parameters. Sallee defines the 

offset value of a coefficient within a histogram bin as a symbol and computes the cor- responding symbol 

probabilities from the relative frequen- cies of symbols (offset values of coefficients in all histo- grambins). 

At the heart of the embedding operation is a nonadaptive arithmetic decoder that takes as input the message 

signal and decodes it with respect to measured symbol probabili- 
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Fig. 4 AUR for the F5 embedding technique with message lengths of 0.05, 0.1, 0.2, and 0.4 of BPNZ-DCT. 

Stego versus cover images are indicated by solid lines, and stego versus recomp-cover are shown with the 

dashed lines. Actual values are provided in Sec. 12. The symbols ☐, O, and O correspond to high-, medium-, 

and low- quality images, respectively. 
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ties. Then the entropy decoded message is embedded by specifying new bin offsets for each coefficient. In other 

words, the coefficients in each histogram bin are modified with respect to embedding rule, while the global 

histogram and symbol probabilities are preserved. Extraction, on the other hand, is similar to embedding. That 

is, model param- eters are determined to measure symbol probabilities and to obtain the embedded symbol 

sequence (decoded message). (Note that the obtained model parameters and the symbol probabilities are the 

same both at the embedder and detec- tor.) The embedded message is extracted by entropy encod- ing the 

symbol sequence. 

Unlike the previous two techniques, the model-based technique does not recompress the image before embed-  

ding. Therefore, a comparison of recompressed and stego images does not apply in this case. Although Matlab 

code is publicly available for this technique, we implemented this technique in C since given our large data set, 

embedding speed was an important factor. We used message lengths of 0.05, 0.1, 0.2, 0.4, and 0.6 BPNZ-DCT to 

create our data set. The obtained results are given in Fig. 5. 

 

PQTechnique 

Taking a different approach from the previous embedding techniques, Fridrich et al.
16

 propose the PQ 

embedding technique in which the message is embedded while the cover image undergoes compression. That is, 

a JPEGimage is recompressed with a lower quality factor, where only selected set of DCT coefficients that could 

be quantized to an alternative bin with an error smaller than some preset value are modified. The crux of the 

method lies in deter- mining which coefficients are to be used for embedding so that the detector can also 

determine the coefficients carry- ing the payload. For this, the embedder and the detector agree on a random 

matrix as side information. Essentially, the embedding operation requires solving a set of equations in GF(2) 

(Galois Fields 2) arithmetic. Finding the solution to the system requires finding the rank of a k × n matrix, which 

is computationally intensive. Therefore, to speed up the embedding process, the image is broken into blocks of 

smaller sizes, and the system is solved independently for each block. This incurs an additional overhead, which 

must be embedded in each block for successful message extrac- tion. 

The PQ technique was the last DCT-based embedding technique we studied. We implemented the code for this 

technique in C and had a stego data set created with mes- sage lengths of 0.05, 0.1, 0.2 and 0.4 BPNZ-DCT. The 

corresponding steganalysis results are provided in Fig. 6. Similar to previously studied techniques, we 

determined how the universal steganalyzers perform in distinguishing between recompressed (with quantization 

steps doubled) and PQ stego images, as given in Fig. 6. 

 

Recompression Effect 

A good classification-based technique must have a high de- tection rate, and at the same time, a small 

false alarm rate. As we illustrated in the previous section, some of the JPEG-based steganographic embedding 

techniques recom- press the JPEG image before embedding the message in them, which may be the cause of 

false alarms (i.e., classi- fier misclassifying images because of the recompression ar- 
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Fig. 5 AUR for the model-based embedding technique with mes- sage lengths of 0.05, 0.1, 0.2, 0.4, and 0.6 of 

BPNZ-DCT. Stego versus cover images are indicted by solid lines, and stego versus recomp-cover are shown 

with the dashed lines. Actual values are provided in Sec. 12. The The symbols ☐, O, and O correspond to high-, 

medium-, and low-quality images, respectively. 

 

tifacts). Thus, we are interested in how the discussed uni- versal steganalysis techniques perform when asked to 

classify between a set of original cover images and their recompressed versions. We call this procedure the 

universal steganalysis confusion test. Based on the results in the pre- vious section, there are two cases of 

interest: 

8. Recompressing images with the quality factor esti- mated from the original image. As evident from Table 

2,unlikeFBSwhichconfusesrecompressedimages 
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Fig. 6 AUR for the PQ embedding technique with message of lengths of 0.05, 0.1, 0.2, and 0.4 of BPNZ-DCT. 

Stego versus cover images are indicated by solid lines, and stego versus recomp-cover are shown with the 

dashed lines. Actual values are provided in Sec. 

12. The symbols ☐, O, and O correspond to high-, medium-, and low-quality images,respectively. 

 

as stego, BSM and WBS are not able to distinguish between cover and recompressed cover images. This type of 

recompression was seen with Outguess and F5 embeddingtechniques. 

2. Recompressing images with a quality factor smaller than the original quality factor. More specifically 

the quantization steps were doubled. In this case,the 
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Table 2 Effect of the recompression on steganalysis techniques for case 1 and case 2. 

 

  Case 1    Case 2  

 

HQ 

 

MQ 

 

LQ 

  

HQ 

 

MQ 

 

LQ 

BSM 51.13 50.04 53.17  56.76 74.84 83.93 

WBS 51.02 50.55 52.78  63.79 73.56 88.54 

FBS 64.54 69.39 64.88  79.93 84.90 91.07 

HQ, MQ, and LQ refer to high-, medium-, and low-quality image sets, respectively. 

 

FBS technique is affected most. Note that such a re- compression is deployed by the PQ embedding technique. 

 

V. SPATIAL DOMAINEMBEDDERS 

Spatial domain embedding techniques were the first to be proposed in the literature. Their popularity is 

derived from their simple algorithmic nature, and ease of mathematical analysis. We have studied two least 

significant bit tech- niques, LSB and LSB±. In the LSB technique, the LSB of the pixels is replaced by the 

message bits to be sent. Usu- ally the message bits are scattered around the image. This has the effect of 

distributing the bits evenly; thus, on aver- age, only half of the LSBs are modified. Popular stegano- graphic 

tools based on LSB embedding
18–20

 vary in their approach for hiding information. Some algorithms change LSB 

of pixels visited in a random walk, others modify pixels in certain areas of images. Another approach, called 

LSB±, operates by incrementing or decrementing the last bit instead of replacing it; an example of such 

approach is used in Ref. 20. 

The set of BMP (bitmap) images is obtained by decom- pressing the images from the three image sets 

being studied to BMP format. Since all pixels in the image are modifi- able, the number of changeable 

coefficients is equal to the number of pixels in the images. Thus, message lengths of 0.05, 0.1, 0.2, 0.4, and 0.6 

bits/ pixel were used to create the stego data set, where we had implemented the LSB embedder in C. The 

obtained results for the LSB technique are in Fig.7. 

The second studied technique was LSB± with which the pixel values are either incremented or 

decremented by one instead of flipping the pixel’s least significant bit. Again using a C implementation, and 

message lengths as in the LSB case the stego data set was created. Results are shown in Fig. 8. The superior 

performance of FBS with the LSB and LSB± techniques will be discussed in Section 8. 

 

VI. WAVELET DOMAIN EMBEDDING 
Wavelet-domain-based embedding is quite new, and not as well developed or analyzed as DCT-based 

or spatial do- main techniques. But such techniques will gain popularity as JPEG2000 compression becomes 

more widely used. Therefore, we studied a wavelet-based embedding tech- nique called StegoJasper
21

 as part of 

our work. In the pass and the importance of the bit value, the bit is either coded or discarded. Using information 

available to both the encoder and decoder, Su and Kuo first identify a subset of the preserved bits that are used 

for embedding the secret message. Then, bits are modified while keeping in mind the amount of contribution 

they make to the reconstructed im- age at the decoder side. In other words, bits with least level of contributions 

are modified first, this backward embed- ding approach minimizes the embedding artifact on the re- sulting 

stego image. 

To create the JPEG2000 stego data set from our original JPEG data set, we first estimated the bit-rate 

of each JPEG image (by dividing its file size by the image dimensions in pixels). Then the JPEG images were 

compressed with a JPEG2000 compressor using the calculated bit rate in order to obtain the cover set. Similarly, 

JPEG images were fed into a modified JPEG2000 compressor,* to obtain the stego data set. Note that since the 

least significant bits of selected wavelet coefficients are modified, we define the number of changeable 

coefficients in this case equal to the number of selectable coefficients. Obtained accuracy results are given in 

Fig. 9. 

 

JPEG Artifacts 

In the experimental results, we observed that FBS is able to obtain high accuracy with spatial domain 

embedding tech- niques as well, although it was designed exclusively for DCT-based (i.e., JPEG) images. Such 

results can be ex- plained by considering the fact that the BMP images used in the experiments were obtained 

from JPEG images, thus baring JPEG compression artifacts. That is, if the BMP image is compressed back to 

JPEG domain with a quality factor of 100, as we have done in our experiments when  feeding non-JPEG images 
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to the FBS technique, the indi- vidual DCT histograms will contain peaks centered at the quantization step sizes 

of the original JPEG image. But if the same BMP image is compressed to a JPEG image, with a quality factor of 

100, after LSB or LSB± embedding then the added noise will cause the sharp peaks to leak to neigh- boring 

histogram bins. Such a difference is the source of  thehighaccuracyresultsbytheFBStechnique. 

In fact, a close inspection of the results shows that the performance of the steganalysis techniques varies by the 

quality factor of the original JPEG images. Thus, we ob- tained 13,000 gray-scale images, which were down- 

sampled to a size of 640 × 480 to minimize any JPEGcom- 

 

 
Fig. 7 AUR for the LSB embedding technique, with message 

lengthsof0.05,0.1,0.2,0.4,and0.6ofbits/pixels.Actualvaluesare provided in Sec. 12. The symbols ☐, O, and O 

correspond to high-, medium-, and low-quality images,respectively. 
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Fig. 8 AUR for the LSB ± embedding technique, with message 

lengthsof0.05,0.1,0.2,0.4,and0.6ofbits/pixels.Actualvaluesare provided in Sec. 12. The symbols ☐, O, and O 

correspond to high-, medium-, and low-quality images,respectively. 
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Fig. 9 AUR for the StegoJasper embedding technique with mes- sages lengths of 0.05, 0.6, and 1 of 

bits/changeable coefficients. Actual values are provided in Sec. 12. The symbols ☐, O, and O correspondtohigh-

,medium-,andlow-qualityimages,respectively. 

 

pression artifacts. Using the LSB embedding technique a stegodatasetwascreatedusingamessagelengthequalto 

0.6 bits/pixel. Classifiers were trained for each steganalysis technique using 15% of the data set, and the 

remaining images were used to test the trained classifier. Interestingly, using a linear classifier, none of the 

steganalysis techniques were able to obtain acceptable accuracy results. But after using a nonlinear classifier, we 

were able to obtain good performance results only for the BSM technique. The ob- 

tainedresultsareshowninFig.10. 

Another JPEG-artifact-related phenomenon we observed is that, unlike other techniques studied, in the case of 

the JPEG2000 embedding technique as the quality of images is decreased, the accuracy of steganalyzer 

decreases. This 
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Fig. 10 ROC curves obtained from the studied steganalysis tech- nique against the LSB technique. In this case, 

the image data set was modified to minimize the JPEG artifacts. 

 

could be explained by observing that as the JPEG2000 im- ages are compressed with a lower quality factor, the 

origi- nal JPEG artifacts are minimized making steganalyzers less effective in detecting such stego images. In 

Fig. 9, we see that in the case of FBS, this effect is maximized. 

 

VII. IMAGE TEXTURE 

In the preceding sections we categorized images with re- spect to their JPEG quality factor, and 

observed the effect on the performance of the steganalyzers. But other than the JPEG quality factor, image 

properties such as image texture could be used to categorize the images. There are many approaches to quantify 

the texture of an image. A crude measure of image texture would be the mean variance of JPEG blocks. This 

measure is simple and can be efficiently computed, even with our large data set. 

To examine the effect of image texture on steganalysis, we calculate the mean block variance of all the 

images in our dataset. (The variance is observed to change from 0 to 11,600). Using the mean of the available 

range, the cover image set was divided into two categories—of high and low variance. Each cover image set was 

then used to obtain a stego data set, using the model based embedding tech-  nique, with message lengths of 

0.05, 0.1, 0.2, 0.4 and 0.6 BPNZ-DCT coefficients. The obtained AUR values are dis- played in Fig. 11. From 

the figure we could observe that the performance of the classifier is affected by the variance of the images being 

used. More specifically, the classifier per- forms less accurately when confronted with high-variance 

images(i.e.,highlytexturedornoisy)asexpected. 

 

VIII. DISCUSSION 
In this section, we first explain the poor performance of WBS over DCT-based embedding techniques. Then we 

compare the maximum embedding rate as well as the mes- sage lengths over different embedding domains. 

Last, we note the required computational resources for our experi- ments. 

 

 
Fig. 11 AUR values obtained for the FBS steganalysis technique against the model-based technique. 
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Fig. 12 Effects of message lengths definition on the WBS technique. 

 

WBS’s PoorPerformance 

In the experimental results we have obtained for the WBS technique, we were unable to achieve performance 

numbers in the same range as reported by Lyu and Farid.
4
We be- lieve that the difference in the performance is 

due to the following factors: 

1. We used a linear SVM as opposed to a nonlinear SVM. 

2. Our data set includes images with variety of qualities as well as sizes as opposed to constant quality and 

size. 

3. There are different message lengthdefinitions. 

It is our understanding that the last point in the preced- ing list has the largest effect on the results. We did a 

small experiment to verify this point. As discussed earlier, there are a number of ways to create the stego data 

set. In Ref. 4 constant message sizes are used to create the stego data set. In accordance with that study, we 

selected 2000 gray-scale images of size 800 × 600 with quality of 85 as cover and created a stego data set with 

Outguess (+) technique. 

We defined three message lengths as 1, 5, and 10% of maximum rate, which we defined as 1 bit/ pixel. Thus, 

since all images have constant size in our data set the mes- sage lengths used were 600, 3000, and 6000 bytes. 

Out of 2000 images, we were able to embed into 1954, 1450, and 585 images using messages of size 1, 5, and 

10%. Then for each message length a linear SVM classifier was trained using the set of cover images and stego 

images with that message length, using an equal number of images in the design set. The design set size was set 

to 40% of the smaller of the two cover and stego data sets. The designed classifier was tested against the 

remaining images. The re- sultingROCcurvesaregiveninFig.12. 

Next we created a stego data set with the message length definition we used in our work, where the message 

length ranges from 0.05, 0.1, and 0.2 BPNZ-DCT. The number of images in which we were able to embed a 

message was,  respectively, 1948, 1893, and 1786. Note that the difference in message length definition may lead 

to considerable dif- ferences in embedded message lengths, as indicated by the two sets of numbers. For 

example in Ref. 3, Lyu and Farid report that they were able to embed only into approxi- mately 300 out of 1800 

images with the highest embedding rate used in their experiments. Whereas in our experiments, at highest 

embedding rates (0.2 BPNZ-DCT) we were able to embed into 1786 out of 2000 of the images. Again using the 

same setup as in the previous case, classifiers were designed and tested. The resulting ROC curves are seen in 

Fig. 12. As is evident from the obtained results, the classi- fiers performance changes considerably depending on 

the message length definition used. 

 

Maximum EmbeddingRate 

Earlier we stated that our definition of message length is relative to the number of changeable 

coefficients in image, which is dependent on the embedding technique and the coefficients it used in the process. 

But in the experiments, we observed that the DCT-based embedding techniques were not able to fully utilize the 

changeable coefficients available in the images (where changeable coefficients in this case were non-zero DCT 

coefficients). Thus, we ex- perimentally obtained the maximum embedding rate for each of the four techniques. 

The corresponding results are given in Fig. 13, where the values obtained for each tech- nique are sorted 

independently for better visualization. Note that maximum embedding rates obtained are only es- timates, and in 

some cases optimistic. For example, with the PQ technique, we are showing the ratio of changeable coefficient 

(i.e., coefficients that fall in a small range around the quantization values) over the total number of NZ-DCT 
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coefficients. Actual embedding rate will be lower due to the embedding overhead incurred when splitting the 

image into smaller blocks to speed up the embedding pro- cess. As observed in Fig. 13, the model-based 

embedding technique is able to best utilize the changeable coefficients in the embedding process over different 

image quality val- ues, and Outguess comes in as the worst technique in uti- lizing the changeablecoefficients. 

 

 
Fig. 13 Maximum embedding rates for DCT-based embedding techniques for (a) high-quality, (b) medium-

quality, and (c) low- quality images. 
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Fig. 14 Histogram of changeable coefficients divided by 8 to get embeddable byte values for (a) high-quality, 

(b) medium-quality, and (c) low-quality images. 

 

To compare the message lengths that can be embedded by all studied techniques, we first calculated the 

three dif- ferent types of changeable coefficients, assuming 1 bit em- bedding per changeable coefficient, the 

obtained values are divided by 8 to obtain byte values. The resulting histogram of such values is shown in Fig. 

14. We should note that as shown earlier with the DCT based embedding techniques not all changeable 

coefficients are utilized. For example, with the model based technique on average only 60% of changeable 

coefficients are utilized. As we see in Fig. 14, spatial domain techniques could carry the largest messages. Also, 

we observe that StegoJasper is able to carry messages even larger than the DCT-based embedding techniques. 

We note that we are not considering any detectability con- straints here, but merely investigating how well the 

set of changeable coefficients are utilized by each embedding technique. 

 

Computational Resources 

Working with such a huge data set required much process- ing time. The cover images took about 7 

Gbytes of space, and our stego data set had an overall size of 2 Tbytes. Our experiments were done on a Linux 

box with four Xeon 2.8-GHz processors. In embedding techniques, we found PQ to be the slowest code, taking a 

few days to embed in the cover data set at the largest embedding rate studied.On 
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the other hand, Outguess was the fastest code, completing the embedding process in about 4 h at the largest 

message length studied. 

With steganalysis techniques we found BSM to be the fastest technique, roughly taking about 3 h to process 

100K images. FBS took about 4 h and WBS was the slowest of all taking about 12 h. Note that the processing 

times we obtained are quite implementation specific, and better per- formance could potentially be obtained by 

further optimi- zation of thecodes. 

 

IX. CONCLUSION 
We investigated the performance of universal steganalysis techniques against a number of stegonagraphic 

embedding techniques using a large data set of images. Through our work we made a number of observations. 

The most impor- tant are 
1. The FBS technique outperforms other studied tech- niques in this study. Although as we illustrated  in Sec. 8, 

FBS results on spatial domain embedders are affected by the fact that the image sets used in the experiments 
were originally JPEG compressed. Hence, if true BMP images (i.e., no compression ar- tifacts) are employed 
then the BSM technique obtains superior performance with spatial domain embedding techniques. 

2. ThePQembeddingtechniqueisfoundtobetheleast detectable technique among the considered tech- niques in 

our experiments. 

3. JPEG image quality factor affects the steganalyzers performance. Cover and stego images with high- quality 

factors are less distinguishable than cover and stego image with lowerquality. 

4. JPEG recompression artifacts confuse all steganalyz- ers to varying extent. Furthermore, such artifacts also 

carry over with format conversion (e.g., FBS results with StegoJasper showed dependency on the JPEG 

qualityfactor). 

 

This work aimed at answering a number of questions raised in the introduction. However, some of 

theraised questions are inherently difficult to answer. For example, it is usually argued that images obtained 

from a scanner or generated through computer graphics will behavediffer- ently from high resolution images 

obtained from a digital camera. However, accurate categorization of images based on their origin (e.g., digital 

camera, scanned, computer graphics) remains a difficult task. Another question we were not able to resolve was 

the dependency of the stega- nalyzer’s performance on the size of images. This can be attributed to our data set 

in which the variation in the image sizes was not significant. However, the detection perfor-  mance is likely to 

suffer for smaller images, as the distinc- tiveness of the collected statistics will reduce. These issues are the 

subject of furtherstudy. 

 

Appendix 

AUR values obtained from experiments in Secs. 4, 6, and 7 are presented in this Appendix in Tables 3–11. 

 

Table 3  AUR of high-quality images. 

 
 Outguess F5 Model Based PQ  

0.05 50.38 50.86 50.11 56.34 BSM 

0.05 51.66 50.95 49.61 63.50 WBS 

0.05 63.44 63.16 52.31 80.03 FBS 

0.1 50.08 50.78 50.44 56.58 BSM 

0.1 53.00 51.21 49.64 60.05 WBS 

0.1 66.90 64.04 55.65 80.42 FBS 

0.2 51.41 50.22 51.10 57.14 BSM 

0.2 55.43 52.39 50.10 64.35 WBS 

0.2 82.59 70.11 60.42 80.69 FBS 

0.4 NA 51.34 52.23 58.35 BSM 

0.4 NA 55.68 51.96 73.64 WBS 

0.4 NA 79.86 70.54 90.39 FBS 
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0.6 NA NA 53.58 NA BSM 

0.6 NA NA 53.61 NA WBS 

0.6 NA NA 76.32 NA FBS 

 

 
 

 
 

 



Comparision of common image steganalysis techniques 

www.ijceronline.com                                          Open Access Journal                                                         Page 82 

 
 

 
 

ACKNOWLEDGMENT 
This work was supported by Air Force Research Lab (AFRL) Grant No. F30602-03-C-0091. We would 

like to thank Ismail Avcibas, Emir Dirik, and Nishant Mehta for coding some of the techniques used, Torsten 

Suel and Yen-Yu Chen for providing us with a list of crawled image links, and Po-Chyi Su and C.-C. Jay Kuo 

for providing us with their implementation of StegoJasper. 

 



Comparision of common image steganalysis techniques 

www.ijceronline.com                                          Open Access Journal                                                         Page 83 

References 
[1]. M. Kharrazi, H. T. Sencar, and N. Memon, Image Steganography: Concepts and Practice, Lecture Notes Series, Institute for Math- 

ematical Sciences, National University of Singapore, Singapore (2004). 

[2]. I. Avcibas, M. Kharrazi, N. Memon, and B. Sankur, ―Image stega- nalysis with binary similarity measures,‖ EURASIP J. Appl. 

Signal Process. 2005(17), 2749–2757(2005). 
[3]. S. Lyu and H. Farid, ―Detecting hidden messages using higher-order statistics and support vector machines,‖ in Proc. 5th Int. 

Workshopon Information Hiding(2002). 

[4]. S. Lyu and H. Farid, ―Steganalysis using color wavelet statistics and one-class support vector machines,‖ Proc. SPIE 5306, 35–
45(2004). 

[5]. J. Fridrich, ―Feature-based steganalysis for jpeg images and its im- plications for future design of steganographic schemes,‖ in Proc. 

6th Information Hiding Workshop, Toronto(2004). 
[6]. S. Lyu and H. Farid, ―Steganalysis using higher order image statis- tics,‖ IEEE Trans. Inf. Forens. Secur. 1(1), 111–119(2006). 

[7]. S. Dehnie, H. T. Sencar, and N. Memon, ―Digital image forensics for identifying computer generated and digital camera images,‖ in 

Proc. Int. Conf. on Image Processing(2006). 
[8]. S. Lyu and H. Farid, ―How realistic is photorealistic?‖ IEEE Trans. Signal Process. 53(2), 845–850(2005). 

[9]. http://www.programmersheaven.com/zone10/cat453/15260.htm. 

[10]. I. Avcibas, N. Memon, and B. Sankur, ―Steganalysis using image quality metrics,‖ in Proc. Security and Watermarking of 
Multimedia Contents, San Jose, CA(2001). 

[11]. C.-C. Chang and C.-J. Lin, ―LIBSVM: a library for support vector machines,‖ (2001). Software available 

athttp://www.csie.ntu.edu.tw/ 
[12]. ~cjlin/libsvm. 

[13]. T. Fawcett, ―Roc graphs: notes and practical considerations for re- searchers,‖ 

http://www.hpl.hp.com/personal/Tom_Fawcett/papers/ ROC101.pdf. 
[14]. N. Provos, ―Defending against statistical steganalysis,‖ in Proc. 10th USENIX Security Symp.(2001). 

[15]. A. Westfeld, ―F5-a steganographic algorithm: high capacity despite better steganalysis,‖ in Proc. 4th Int. Workshop on Information 

Hid- ing(2001). 
[16]. P. Sallee, ―Model-based steganography,‖ in Proc. Int. Workshop on Digital Watermarking, Seoul, Korea(2003). 

[17]. J. Fridrich, M. Goljan, and D. Soukal, ―Perturbed quantization stega- nography with wet paper codes,‖ in Proc. ACM Multimedia 

Work- shop, Magdeburg, Germany(2004). 
[18]. B. W. Kernighan and D. M. Ritchie, The C programming language, 2nded.,PrenticeHall,EnglewoodCliffs,NJ(1988). 

[19]. F. Collin, Encryptpic, http://www.winsite.com/bin/Info?500000033023. 

[20]. G. Pulcini, Stegotif, http://www.geocities.com/SiliconValley/9210/ gfree.html. 
[21]. Toby Sharp, ―Hide 2.1,‖ http://www.sharpthoughts.org(2001). 

[22]. P.-C. Su and C.-C. J. Kuo, ―Steganography in JPEG 2000 compressed images,‖IEEETrans.Consum.Electron.49(4),824–832(2003). 

 

Mehdi Kharrazi received his BE degree in electricalengineeringfromtheCityCollege of New York and his MS 

and PhD degrees in electrical engineering from the Depart- ment of Electrical and Computer 

Engineer- ing, Polytechnic University, Brooklyn, New York, in 2002 and 2006 respectively. His 

current research interests include network and multimediasecurity. 

 

 

 

 

 

Husrev T. Sencar received his PhD de- gree in electrical engineering from New Jersey Institute of Technology 

in 2004. He is currently a postdoctoral researcher with ISIS Laboratory of Polytechnic 

University, Brooklyn, New York. His research focuses on the use of signal processing ap- 

proaches to address emerging problems in the field of security with an emphasis on multimedia, 

networking, and communica- tion applications. 

 

 

 

 

Nasir Memon is a professor in the Com- puter Science Department at Polytechnic University, New York. His 

research inter- ests include data compression, computer and network security, multimedia 

commu- nication, and digital forensics. He has pub- lished more than 200 papers in journals 

and conference proceedings on these top- ics. He was an associate editor for IEEE 

Transactions on Image Processing, the Journal of Electronic Imaging, and the 

ACM Multimedia Systems Journal. He is currently an associate edi- 

torfortheIEEETransactionsonInformationSecurityandForensics, the LNCS Transaction on 

Data Hiding, IEEE Security and Privacy Magazine, IEEE Signal Processing Magazine, and 

the International Journal on NetworkSecurity. 

http://www.programmersheaven.com/zone10/cat453/15260.htm
http://www.csie.ntu.edu.tw/
http://www.hpl.hp.com/personal/Tom_Fawcett/papers/
http://www.winsite.com/bin/Info?500000033023
http://www.geocities.com/SiliconValley/9210/
http://www.sharpthoughts.org(2001)/

