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I. INTRODUCTION 

Cholera is an acute diarrheal disease caused by ingestion of food or water contaminated with bacterium Vibrio 

cholerae and has a short incubation period of two hours to five days.  As well in the world in general and in 

Africa in particular, cholera remains a redoubtable plague.  The first cholera epidemics in Africa were striking 

with thousands of cases and deaths in few months [1]. The World Health Organization estimates at 1.3 to 4 

million cases of cholera per year in the world, including 21 000 to 143 000 deaths [2]. Since 2000, the incidence 

of cholera has increased steadily, culminating to 317 534 reported cases worldwide, including 7543 deaths with 

a case-fatality rate of 2.38% in 2010(The World Health Organization, 2011). Cameroon, just like any other area 

in the world, faces issues related to frequent Cholera outbreaks throughout the years which led to many deaths. 

The burden of cholera has increased during the past two decades; the annual number of reported cases(The 

World Health Organization, 2011) increased, with 4026 cases in 1991, 5796 in 1996, 8005 in 2004(The World 

Health Organization, 2004),  and 10 759 in 2010(The World Health Organization, 2010). From 1971 to June 

2013, 77152 Cholera cases and 3788 deaths have been reported in Cameroon (Cameroon ministry of the public 

health). From 1996 to 2011, a total of 24 825 cholera cases were reported in the Cameroon Far North Region 

with 1736 death [3]. The epidemics that caused more damage were recorded in 2010 and 2011, represented by 

figure 1 (Epidemiologic center of the public health of Cameroon Far North Region). In 2014, cholera epidemic 

was at origin of devastations in 19 health districts of Cameroon Far North Region with 2865 cases and 153 
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ABSTRACT 

Cholera continues to emerge in Far North Region of Cameroon and remains an important health 

challenge. In this work, dynamical system of mathematical model obtained from existing techniques of 

modelling was studied. The various numerical values obtained such as eigenvalues and basic 

reproduction number determine the stability of equilibrium points. Cholera epidemiological data given 

by the Regional Delegation of Health of Far North Region (Cameroon) allowed us to obtain the results 

using MATLAB software to implement the discretization of the Runge Kutta 4 (RK4) method. The 

numerical simulations lead us to predict the dynamics of population in the various compartments of the 

SIR-B cholera transmission model. The results show that when basic reproduction number exceeds 

one, endemic equilibrium is globally asymptotically stable, epidemic becomes permanent. When basic 

reproduction number is less than one, disease free equilibrium is locally asymptotically stable, 

epidemic tends to disappear. Overall findings revealed dynamics of propagation of cholera during 

epidemic period, and so planning the right control actions and strategies could be possible. 
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deaths (Regional Delegation of the Ministry of the Public Health of Far North). In spite of provisions taken by 

the public health, cholera causes enormous damage in human lives and continues to make devastations. The 

unsafe water, low socio-economic status and poor sanitation are the major transmitting factors of cholera, 

highlighting other contributing factors like human behavior and practices which are cultural in nature.  Then, 

how can the dynamics of this disease be predicted?  in this optics various works was undertaken on 

mathematical models which make it possible to describe propagation and control of infectious diseases 

[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. 

Jin Wang and Shu Liao have developed mathematical model for which transmission of the disease is done by 

two different ways [19]. The susceptible host becomes infected either by direct contact with infectious hosts or 

via indirect contact with bacteria in contaminated water [19]. Majority of inhabitants of  Far North Cameroon 

are attached to their traditional practices. In addition to the two modes of infections of cholera cited in the model 

of Jin Wang and Shu Liao, we note a third specific form in Far North Cameroon. The contamination by contact 

between body of cholera death and a healthy people during funeral rites which lasts a few days before the 

inhumation. By taking into account a considerable number of infected during traditional practices, it is important 

to integrate the factor of propagation of cholera by contact between cholera death and susceptible people in 

model of Jin Wang and Shu Liao. This, in order to appreciate the impact of that contamination rate on the 

dynamical behavior of the system. Also, a more precise tool with an efficient forecasting of epidemic evolution 

could be obtained. 

Within the framework of our paper, we reconsider the model of Jin Wang and Shu Liao [19] by incorporating 

the transmission of cholera during funeral (contact between susceptible individual and cholera death) ceremony. 

Therefore, this study developed mathematical model of cholera disease that can describe dynamics of cholera 

transmission in the area of Far North Region of Cameroon. 

II. STUDY SITE 

The Far North Region is located in the Sudano-Sahelian zone (Fig. 1) and counts about 855398 habitants 

(Cameroon Regional Delegation of Public Health of Far North) which 70 % of the population lives in rural 

zone. It is bordered by the North Region to the south, the Republic of Chad to the East, and the Federal Republic 

of Nigeria to the West. The Far North Region covers an area of 34 263 km
-1

 subdivided in six administrative 

Divisions (Diamaré, Mayo-Kani, Mayo-Tsanaga, Mayo-Danay, Mayo-Sava and Logon-and-Chari). Concerning 

health, that region account 3 regional hospitals, 27 hospitals of districts, 31 health districts, 284 medicals 

formations and 290 health areas. This region has long and porous border with Chad and Nigeria (10 health 

district with Chad and 09 health district with Nigeria). It reigns there a tropical climate with a long dry season 

which lasts 8 to 9 months. Access to clean and safe water or basic sanitary facilities particularly in densely 

populated areas is poor. Most water used for drinking and domestic activities comes from wells, rivers or 

community boreholes. Besides the climatic predisposition, it is equally important to note that over 70% of the 

illnesses in the Far North Region are directly or indirectly associated with poor water supply and sanitation. The 

endemicity of cholera is caused by weak regards of measurements of  hygienes by population, water scarcity in 

the dry season and water abundance in the raining season, strong defecation out of latrines, human behavior and 

traditional practices. 

 

 
                                (a)                                                            (b) 

Figure 1: Distribution of the cases of cholera per District of Health (a) in 2010 and (b) 2011(Cameroon 

Regional Delegation of Public Health of Far North). 

 

III. MATHEMATICAL MODEL 

1.1 Model formulation 
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The model proposed here is an extension of Jin Wang and Shu Liao model [19], used to describe the 

cholera epidemics. In our formulation, the cholera infection by handling of cholera deaths during funeral 

ceremonies was included since this practice could impact seriously the cholera dynamics in Far North region of 

Cameroon. The total human population is divided into three categories depending on epidemiological status of 

individuals. Symbols are listed in Table 1 and a diagrammatic representation of the model is shown in Figure 2. 

The rectangular boxes represent people: susceptible (S); infectious (I); and recovered (R). The circle represents 

water reservoir for cholera bacterial agents. 

There are several arrows to highlight the different processes below: 

a) the first compartment is constituted of Susceptible  people S(t)  who can be infected following  contact with 

individuals infected, contaminated water by V. cholera and cholera deaths, 

b) the second compartment represents  Infected people I(t) who contribute to bacteria shedding, 

c) the third compartment represents Recovered people R(t). 

d) The last compartment represents concentration of bacteria B(t) in the environment. 

Susceptible people become infected/infectious and they later recover and become immune. Immunity obtained 

through infection lasts longer than the timeframe studied by the model so the possibility of waning immunity by 

recovered people is neglected. 

In this paper we introduce a mode of contamination by handling the cholera death during funeral ceremony. The 

diagram of the model which illustrates the propagation of cholera in Cameroon Far North Region is given by the 

fig (2) 

 
Figure 2:   SIR- B Model of cholera 

 

With 𝜆𝑒 =
αB

ϵ+B
,  𝜆𝑕 = 𝛽𝐼 and𝜆𝑑 = 𝜎𝐼. Susceptible individuals acquire cholera infection by ingesting V. cholerae 

from contaminated water at the rate 𝜆𝑒 , human-to-human transmission at the rate 𝜆𝑕  and cholera death-to-human 

at the rate 𝜆𝑑 . 

 

Table 1. The descriptive parameters 

Parameters Values  

β                                          The rate of contact between infected individuals and susceptible people(day
-1

). 

α                                                                                    The rate of exposure to contaminated water (day
-1

). 

σ                                                            Rate of infection due to the cholera death -to-human contact(day
-1

). 

γ                                                                   The rate of the cured and immunized individuals (day
-1

). 

δ The contribution of each infected individual of V.cholerae in the aquatic environment (cell/ml day-1 person
-1

). 

ϵ                  Concentration of V .cholerae in the water that yields 50% of chance to    be  infected (cells/ml). 

μ               The natural death rate (day
-1

). 

d                                                                          Loss rate of V. cholerae in the aquatic environment (day
-1

). 

Ʌ                                                                                                     Recruitment rate (day
-1

)

 

1.2 Equations System of the model 

By considering the above model compartimental, the following differential system is obtained 
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𝑑𝑆

𝑑𝑡
=𝛬−𝜇S−βSI−

αBS

ϵ+B
−σSI ,

𝑑𝐼

𝑑𝑡
=βSI+

αBS

ϵ+B
+σSI− 𝜇+ϒ I,

𝑑𝑅

𝑑𝑡
= ϒ𝐼 − 𝜇𝑅,

𝑑𝐵

𝑑𝑡
= 𝛿𝐼 − 𝑑𝐵,

  

where,   

 the first equation of the system characterizes the dynamics of Susceptible people which increase by the rate 

of new comer Λ. The number of Susceptible people decreases by natural death at the rate μ and 

contaminated persons determined by expressions−βSI, −
αBS

ϵ+B
, −σSI which sacking respectively to the 

infected persons by human-to-human contact, contaminated water and contact with cholera deaths. The 

contaminated people are transferred to the infected class.  

 The second equation of system characterizes dynamics of infected people which decreases by natural death 

at the rate μ and recovery rate  . 

 The third equation of system translates dynamics of cured persons represented by expression ϒ𝐼 and 

decreases by natural death at the rate μ. 

The fourth equation describes variation of V. cholerae that grows in the environment by contribution of each 

infected person at the rate δ and decreases by natural death rate of bacteria d. 

The initial conditions are defined as follows  

𝑆 0 = 𝑆0 ≥ 0,𝐼 0 = 𝐼0 ≥ 0,𝑅 0 = 𝑅0 ≥ 0, 𝐵 0 = 𝐵0 ≥ 0. 

Let us pose 𝑓 𝐼, 𝐵 =
αB

ϵ+B
+ (σ + β)Iand  𝑔 𝐼, 𝐵 = 𝛿𝐼 − 𝑑𝐵, where 𝑓 𝐼, 𝐵 is the incidence function that 

determines the rate of new infection and 𝑔 𝐼, 𝐵 describes the rate of change of V. cholerae in environment. 

To give a biological meaning to this model, we assume that the two functions f and g satisfy the conditions 

below for I≥ 0 and B ≥ 0: 

i) 𝑓 0,0 = 0, 𝑔 0,0 = 0, 

ii) 𝑓 𝐼, 𝐵 ≥ 0, 

iii) 
𝜕𝑓 𝐼,𝐵 

𝜕𝐼
≥ 0, 

𝜕𝑓 𝐼,𝐵 

𝜕𝐵
≥ 0, 

𝜕𝑔 𝐼,𝐵 

𝜕𝐼
≥ 0, 

𝜕𝑔 𝐼,𝐵 

𝜕𝐵
≤ 0. 

             We also suppose that the functions  𝑓 𝐼, 𝐵  and 𝑔 𝐼, 𝐵  are concaves, i.e., 

iv) 
𝜕2𝑓 𝐼,𝐵 

𝜕𝐼2 ≤ 0 , 
𝜕2𝑔 𝐼,𝐵 

𝜕𝐵2 ≤ 0. 

The condition i) confirms the existence of unique disease free equilibrium (DFE) 𝐸0of the system (1). The 

condition ii) translates a positive incidence rate. The first two inequalities of iii) express a higher incidence rate 

due to the great   infection of susceptible people and fast multiplication of V. cholerae in environment. In the 

same way, the third inequality    states that increased infection is a consequence of higher growth rate of  V. 

cholera  in environment (owing to higher defecation out of the latrines, washings of the clothes and the bodies 

of the deaths of cholera in environment). The fourth inequality characterizes reduction of the bacteria of 

environment due to the deaths of V. cholerae. Condition iv) is the same assumption condition for nonlinear 

incidence [20, 21, 22]. About this model, this condition ensures the functions f and h as biologically feasible 

incidence via a consequence of the effects of saturation.  When the number of infected people or concentration 

of the V. cholerae in environment, is very high, many individuals are exposed to the disease agent and the 

incidence rate will respond more slowly than linearly to the expansion of I and B. 

 

IV. CHOLERA DATA 

The  weekly  cholera  epidemiological  data  used for this work were obtained  from  the  Regional  Delegation  

of  Health  for  the  Far  North Cameroon.  All  cholera  cases were  based  on  hospital  data  which  were  

reported  to  the  various  health  centers  and aggregated  by  health  district  before  being  channelled  to  the  

regional  delegation  of  Health.  The  population  data  includes  the  total  number  of  people  living  in each 

health district during the year of occurrence of various outbreaks. In 2014, The Regional Delegation of Health 

recorded 2865 cases of cholera with 153 deaths in 19 health Districts. We count 2464 cases of contaminations 

by infected water, 206 cases by contacts human-to-human and 195 cases by handling of cholera deaths. These 

data are recapitulated in the following table. 

Table 2. Data of cholera epidemic and contaminations sources of Cameroon Far North(Cameroon Far North 

Regional Delegation of Public Health) 

Total population of                                Contaminations              Infected               Deaths       Recovered 

Far North Region                                            sources                     number              number      number 

Cameroon in 2014  

3 855 398                                              Contamination by                  2464                      53              2411 

(1) 

(2)  

(3)  

(4)  

(5)  

(6)  
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                                                           infected water 

                                                   Contamination by contact  

                                                           human-to-human                        206                      75                131   

                                                   Contamination by handling  

                                                             cholera deaths                          195                        25               170 

  

 

V. BASIC REPRODUCTION NUMBER 

The basic reproduction number usually called R0is a quantity without dimension which, under certain conditions 

makes it possible to study the stability of equilibrium points of a dynamic system. This parameter generally used 

in modeling in ecology, demography and epidemiology is a key and significant concept that the mathematicians 

brought to the theory epidemics. 

The disease free equilibrium (DFE) of system (1) is given by 

𝐸0 =  𝑆0 , 𝐼0, 𝑅0, 𝐵0 = (𝛬/𝜇, 0, 0, 0)We evaluate the basic reproduction number to determine the behavior of 

equilibrium points. The basic reproduction number, R0 is the average number of secondary infections produced 

by an infectious individual during his period of infectivity in a population completely consisted of Susceptible 

[18, 13]. 

 We calculate the basic reproduction number by using the next generation operator approach introduced by van 

den Driessche and Watmough [23].The new infection generation terms and the remaining transition terms 

denoted by two matrices 𝐹 and 𝑉are as follows: 

𝐹 =  
𝜕𝐹𝑖 𝑥 

𝜕𝑥𝑗
 
𝑥=𝑥0

and 𝑉 =  
𝜕𝑉𝑖 𝑥 

𝜕𝑥𝑗
 
𝑥=𝑥0

 

where 𝐹𝑖 𝑥  is the speed of appearance of new infection in compartment i. They are the new ones infected, 

obtained by transmission of all left. 𝑉𝑖 𝑥  is the net transfer rate of compartment i, other than infection. On the 

basis of the system of equations (1) we obtain a new system   including the compartments of infectious: 

 

𝑑𝐼

𝑑𝑡
= βSI +

αBS

ϵ+B
+ σSI −  𝜇 + ϒ I,

𝑑𝐵

𝑑𝑡
= 𝛿𝐼 − 𝑑𝐵.

  

By using the system of equations (7) we can write  

𝐹𝑖 =  
βSI +

αBS

ϵ+B
+ σSI

0
  and  𝑉𝑖 =  

 𝜇 + ϒ I
𝑑𝐵

 . 

Partial derivatives of  𝐹𝑖  and 𝑉𝑖  according to I and B at the disease free equilibrium give us; 

𝐹 =  
β

Λ

μ
+ σ

Λ

μ

α

ϵ

Λ

μ

0 0
  and 𝑉 =  

𝜇 + Υ 0
0 𝑑

  

It follows that: 

𝑉−1= 

1

𝜇+Υ
0

0
1

𝑑

 . 

𝑅0 is the dominant eigenvalue of the matrix 𝐹𝑉−1, where                             

𝐹𝑉−1 =  
β

Λ

μ 𝜇 + Υ 
+ σ

Λ

μ 𝜇 + Υ 

α

ϵd

Λ

μ

0 0

 . 

The spectral radius for 𝐹𝑉−1gives the effective basic reproduction number    

R0 = β
Λ

μ 𝜇+Υ 
+ σ

Λ

μ 𝜇+Υ 
. 

𝑅0 determines the extinction or the persistence of the epidemic as well as the stability of equilibrium points. 

Theorem 4.1: The disease-free equilibrium 𝐸0 is locally asymptotically stable when R0 < 1 and unstable when 

R0 > 1[6, 24]. 

Theorem 4.2: The system (1) has a unique endemic equilibrium 𝐸∗ if R0 > 1[24]. 
 

VI. LINEARSTABILITYANALYSIS 

Here we analyze the existence and local stability of the disease-free and endemic equilibria. Stability means that 

the trajectories do not change too much under small perturbations.  

We linearized the system (1), to analyze the stability of SIR-B model. The corresponding Jacobian matrix is set 

as 

(9) 

(8) (8) 

(7) 
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𝐽 𝐸0 =

 

 
 
𝜇
0
0
0

−
𝛽𝛬

𝜇
−

𝜎𝛬

𝜇

+
𝛽𝛬

𝜇
+

𝜎𝛬

𝜇
− 𝜇 − ϒ

ϒ

𝛿

0
0
−𝜇
0

−
𝛼𝛬

𝜇𝜖

𝛼𝛬

𝜇𝜖

0
−𝑑  

 
 

. 

The characteristic polynomial of 𝐽 𝐸0 is 

Det(𝜆𝐼 − 𝐽 𝐸0 )= 𝜇 + 𝜆 2(𝜆2 +  − 𝛽 + 𝜎 𝑆0 + 𝜇 + ϒ + 𝑑 𝜆 − 𝑆0  𝜎𝑑 +
𝛼𝛿

𝜖
+ 𝑑𝛽 + 𝑑(𝜇 + ϒ)). 

The disease free equilibrium  𝐸0 is asymptotically stable if and only if all roots of the above polynomial have 

negative real parts. 

To solve the equation Det(𝜆𝐼 − 𝐽)=0, means that one can write  

 𝜇 + 𝜆 2(𝜆2 +  − 𝛽 + 𝜎 𝑆0 + 𝜇 + ϒ + 𝑑 𝜆 − 𝑆0  𝜎𝑑 +
𝛼𝛿

𝜖
+ 𝑑𝛽 + 𝑑 𝜇 + ϒ ) = 0. 

We notice that  𝜆 = −𝜇is a negative root.  It returns to us to determine the sign of the real part of the various 

roots of equation (12). This fact we will hold discussions according to the various values of delta. 

𝜆2 +  − 𝛽 + 𝜎 𝑆0 + 𝜇 + ϒ + 𝑑 𝜆 − 𝑆0  𝜎𝑑 +
𝛼𝛿

𝜖
+ 𝑑𝛽 + 𝑑 𝜇 + ϒ = 0, 

let us evaluate the determinant of equation (12).  

Δ =  − 𝛽 + 𝜎 𝑆0 + 𝜇 + ϒ + 𝑑 2 +
4𝛼𝛿

𝜖
+ 4𝑑(+ 𝛽 + 𝜎 𝑆0 − (𝜇 + ϒ)). 

When Δ = 0, we obtain a double solutions  

𝜆1,2 =
 𝛽+𝜎 𝑆0−𝜇−ϒ−𝑑

2
. 

by considering 𝜆1,2 < 0, we obtain 

 𝛽 + 𝜎 𝑆0 − 𝜇 − ϒ < 0, 

we end to 𝑅0 < 1, then there exist a locally asymptotically stable equilibrium point 𝐸0. In the contrary case the 

disease free equilibrium point becomes locally unstable. 

WhenΔ < 0,we obtain 

 𝛽 + 𝜎 𝑆0 − 𝜇 − ϒ < 0, 

thus we arrive at 𝑅0 < 1, then The disease-free equilibrium 𝐸0is locally asymptotically stable. 

WhenΔ > 0,we obtain 
 𝛽 + 𝜎 𝑆0 − 𝜇 − ϒ > 0, 

Then we can write 𝑅0 > 1,  so that the disease-free equilibrium is unstable. There exist endemic equilibrium 

point  𝐸∗.  

Moreover we determine the endemic equilibrium point 𝐸∗of the system (1). This point is given by 

𝐸∗ =  𝑆∗, 𝐼∗, 𝑅∗, 𝐵∗ = (
Λ 𝑑𝜖+𝛿𝐼∗ 

μ 𝑑𝜖+𝛿𝐼∗ +𝛼𝛿 𝐼∗+ 𝛽+𝜎 𝐼∗ 𝑑𝜖+𝛿𝐼∗ 
,

1

2

1

 𝛽+𝜎  𝜇+𝛾 𝛿
  −

𝜇𝛿  𝜇+𝛾 

Λ
−

𝛼𝛿  𝜇+𝛾 

Λ
−

𝑑𝜖  𝜇+𝛾  𝛽+𝜎 

Λ
+

 𝛽 + 𝜎 𝛿 +  
𝜇2𝛿2 𝜇+𝛾 2

Λ
2 +

2𝜇𝛿2𝛼 𝜇+𝛾 2

Λ
2 −

2𝜇𝛿𝑑𝜖  𝜇+𝛾 2 𝛽+𝜎 

Λ
2 −

2𝜇𝛿2 𝜇+𝛾  𝛽+𝜎 

Λ
+

 𝜇+𝛾 2𝛼2𝛿2

Λ
2 +

2𝛼𝛿𝑑𝜖  𝜇+𝛾 2 𝛽+𝜎 

Λ
2 +

2𝛼𝛿2 𝜇+𝛾  𝛽+𝜎 

Λ
+

𝑑2𝜖2 𝜇+𝛾 2 𝛽+𝜎 2

Λ
2 +

2𝑑𝜖𝛿  𝜇+𝛾  𝛽+𝜎 2

Λ
+  𝛽 + 𝜎 2𝛿2 

1
2  Λ ,

𝛾𝐼

𝜇
,
𝛿𝐼

𝑑
). 

The obtained Jacobian matrix with endemic equilibrium 𝐸∗is written as 

𝐽 𝐸∗ =

 

 
 

−𝜇 − 𝛽𝐼∗ −
𝛼𝐵∗

(𝜖+𝐵∗)
− 𝜎𝐼∗

𝛼𝐵∗

𝜖+𝐵∗
+ 𝛽𝐼∗ + 𝜎𝐼∗

0
0

−(𝛽 + 𝜎)𝑆∗

(𝛽 + 𝜎)𝑆∗ − 𝜇 − 𝛾
𝛾
𝛿

0
0
−𝜇
0

−
𝛼𝑆∗

𝜖+𝐵∗
+

𝛼𝐵∗𝑆∗

 𝜖+𝐵∗ 2

𝛼𝑆∗

𝜖+𝐵∗
−

𝛼𝐵∗𝑆∗

 𝜖+𝐵∗ 2

0
−𝑑  

 
 

. 

 

Let us pose𝑎0 = −𝜇 − 𝛽𝐼∗ −
𝛼𝐵∗

𝜖+𝐵∗
− 𝜎𝐼∗, 𝑎1 = −(𝛽 + 𝜎)𝑆∗, 𝑎2 = −

𝛼𝑆∗

𝜖+𝐵∗
+

𝛼𝐵∗𝑆∗

 𝜖+𝐵∗ 2, 𝑎3 =
𝛼𝐵∗

𝜖+𝐵∗
+ 𝛽𝐼∗ + 𝜎𝐼∗, 

𝑎4 = (𝛽 + 𝜎)𝑆∗ − 𝜇 − ϒ. The matrix becomes  

𝐽 𝐸∗ =  

𝑎0
𝑎3

0
0

𝑎1
𝑎4

ϒ

𝛿

0
0
−𝜇
0

𝑎2
−𝑎2

0
−𝑑

 . 

The characteristic polynomial of 𝐽 𝐸∗  is given by 

Det(𝜆𝐼 − 𝐽 𝐸∗ )= 𝜇 + 𝜆  𝑐0𝜆
3 + 𝑐1𝜆

2 + 𝑐2𝜆 + 𝑐3 , 
where 

𝑐0 = 1, 𝑐1 =  𝑑 − 𝑎0 − 𝑎4, 𝑐2 =  𝛿𝑎2 + 𝑎4𝑎0 − 𝑑(𝑎0 + 𝑎4) − 𝑎1𝑎3, 𝑐3 = 𝑑𝑎4𝑎0 − 𝛿𝑎2 𝑎0 + 𝑎3 − 𝑑𝑎1𝑎3 . 

(10) 

(13) 

(12)  

(11)  

(15) 

? 

 

(14) 
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There exists global stability at the endemic equilibrium point 𝐸∗if and only if all roots of the above polynomial 

have negative real parts. Indeed 𝜆 = −𝜇 is a negative solution, we analyze the sign of the other roots. There is a 

general criterion for determining whether all roots of a polynomial equation have negative real part known as 

the Routh–Hurwitz criterion. This gives conditions on the coefficients of a polynomial equation 

𝑐0𝜆
3 + 𝑐1𝜆

2 + 𝑐2𝜆 + 𝑐3 = 0. 

The Routh–Hurwitz conditions are 

𝑐1 > 0,   𝑐2 > 0,   𝑐3 > 0,   𝑐2𝑐1 > 𝑐0𝑐3. 

The above conditions will be satisfied if  

𝑑 − 𝑎0 − 𝑎4 > 0, 
𝛿𝑎2 + 𝑎4𝑎0 − 𝑑(𝑎0 + 𝑎4) − 𝑎1𝑎3 > 0, 

𝑑𝑎4𝑎0 − 𝛿𝑎2 𝑎0 + 𝑎3 − 𝑑𝑎1𝑎3 > 0, 

(𝑑 − 𝑎0 − 𝑎4)(𝛿𝑎2 + 𝑎4𝑎0 − 𝑑(𝑎0 + 𝑎4) − 𝑎1𝑎3) > 𝑑𝑎4𝑎0 − 𝛿𝑎2 𝑎0 + 𝑎3 − 𝑑𝑎1𝑎3. 

We know that 

𝑎0 = −𝜇 − 𝛽𝐼∗ −
𝛼𝐵∗

 𝜖 + 𝐵∗ 
− 𝜎𝐼∗ ≤ 0, 

 

𝑎1 = −(𝛽 + 𝜎)𝑆∗ ≤ 0, 

𝑎3 =
𝛼

𝜖 + 𝐵∗
+ 𝛽𝐼∗ + 𝜎𝐼∗ ≥ 0, 

 

𝑎4 = (𝛽 + 𝜎)𝑆∗ −
𝑓 𝐼∗,𝐵∗ 𝑆∗

𝐼∗
= −

𝛼𝐵∗𝑆∗

𝐼∗(𝜖+𝐵∗)
≤ 0. 

 

The assumption iv) implies that the surface  f= f (I, B) is below its tangent plane at any point  (𝐼∗, 𝐵∗) ≥ 0; that 

is, 

𝑓 𝐼, 𝐵 ≤ 𝑓 𝐼∗, 𝐵∗ +
𝜕𝑓

𝜕𝐼
 𝐼∗, 𝐵∗  𝐼 − 𝐼∗ +

𝜕𝑓

𝜕𝐵
 𝐼∗, 𝐵∗  𝐵 − 𝐵∗ , 

for all (I, B) ≥ 0. While considering 𝐵 = 𝐵∗, 𝐼 = 0 in equation (22), we obtain 

0 ≤ 𝑓 0, 𝐵∗ ≤ 𝑓 𝐼∗, 𝐵∗ −
𝜕𝑓

𝜕𝐼
 𝐼∗, 𝐵∗ 𝐼∗ 

0 ≤
α𝐵∗

ϵ + 𝐵∗
+  σ + β 𝐼∗ −  σ + β 𝐼∗ 

0 ≤
α𝐵∗

ϵ+𝐵∗
. 

Let us show inequality (18) 

𝑑 − 𝑎0 − 𝑎4 = 𝑑 + 𝜇 + 𝑓 𝐼∗, 𝐵∗ − (𝛽 + 𝜎)𝑆∗ + 𝜇 + ϒ 

= 𝑑 + 𝜇 +
α𝐵∗

ϵ + 𝐵∗
+  σ + β 𝐼∗ − (𝛽 + 𝜎)𝑆∗ +

𝑓 𝐼∗, 𝐵∗ 𝑆∗

𝐼∗
 

= 𝑑 + 𝜇 +
α𝐵∗

ϵ+𝐵∗
+

𝑓 𝐼∗,𝐵∗ 𝑆∗

𝐼∗
> 0. 

Let us check inequality (19). For that let us evaluate the quantity𝛿𝑎2 − 𝑑 𝑎0 + 𝑎4 . 
 

𝛿𝑎2 − 𝑑 𝑎0 + 𝑎4 = −
dα𝐵∗𝑆∗

 ϵ + 𝐵∗ 𝐼∗
+

dα𝐵∗2𝑆∗

 ϵ + 𝐵∗ 2𝐼∗
+ 𝑑 𝜇 +  σ + β 𝐼∗ +

dα𝐵∗

 ϵ + 𝐵∗ 
 

−𝑑(𝛽 + 𝜎)𝑆∗ + (𝛽 + 𝜎)𝑆∗ +
dα𝐵∗𝑆∗

 ϵ + 𝐵∗ 𝐼∗
=

dα𝐵∗2𝑆∗

 ϵ + 𝐵∗ 2𝐼∗
+ 𝑑 𝜇 +  σ + β 𝐼∗ +

dα𝐵∗

 ϵ + 𝐵∗ 
> 0 

Moreover 

𝑎4𝑎0 − 𝑎1𝑎3 =
𝛼𝜇 𝐵∗𝑆∗

 𝜖+𝐵∗ 𝐼∗
+  𝜇 + 𝛾  

𝛼𝐵∗

 𝜖+𝐵∗ 
+  σ + β 𝐼∗ , consequently we can write 

𝛿𝑎2 + 𝑎4𝑎0 − 𝑑 𝑎0 + 𝑎4 − 𝑎1𝑎3 =
dα𝐵∗

2
𝑆∗

 ϵ+𝐵∗ 2𝐼∗
+ 𝑑 𝜇 +  σ + β 𝐼∗ +

dα𝐵∗

 ϵ+𝐵∗ 
+

𝛼𝜇 𝐵∗𝑆∗

 𝜖+𝐵∗ 𝐼∗
+  𝜇 + 𝛾  

𝛼𝐵∗

 𝜖+𝐵∗ 
+

σ+β𝐼∗>0. 

Let us prove inequality (20).  Firstly let us evaluate the quantity 

−𝛿𝑎2 𝑎0 + 𝑎3 = −𝛿𝑎2  −𝜇 − 𝛽𝐼∗ −
𝛼𝐵∗

 𝜖+𝐵∗ 
− 𝜎𝐼∗ +

𝛼

𝜖+𝐵∗
+ 𝛽𝐼∗ + 𝜎𝐼∗  

= 𝛿𝜇𝑎2 

= −
𝛼𝜇𝑑 𝐵∗𝑆∗

(𝜖+𝐵∗)𝐼∗
+

𝛼𝜇𝑑𝐵 ∗2
𝑆∗

 𝜖+𝐵∗ 2𝐼∗
 . 

In continuation, let us calculate  

𝑑𝑎4𝑎0 − 𝑑𝑎1𝑎3 = 𝑑[( 𝛽 + 𝜎)𝑆∗ − 𝜇 − 𝛾  −𝜇 −
𝛼𝐵∗

 𝜖+𝐵∗ 
−  σ + β 𝐼∗  

(17) 

? 

 
(20) 

? 

 

(21) 

? 

 

(19) 

? 

 

(18) 

? 

 

(22)

 ? 

 
(23) 

 

(24)  

 

(25)

 ? 

 

(16) 

? 
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+ 𝛽 + 𝜎)𝑆∗  
𝛼𝐵∗

 𝜖+𝐵∗ 
−  σ + β 𝐼∗  = 𝑑[𝜇  − 𝛽 + 𝜎)𝑆∗ + 𝜇 + 𝛾 +  𝜇 + 𝛾  

𝛼𝐵∗

 𝜖+𝐵∗ 
+  σ + β 𝐼∗  =

𝛼𝜇 𝑑𝐵∗𝑆∗

 𝜖+𝐵∗ 𝐼∗
+

𝑑 𝜇 + 𝛾  
𝛼𝐵∗

 𝜖+𝐵∗ 
+  σ + β 𝐼∗ . 

Finally let us add equation (24) to (25) to obtain the following expression  

−𝛿𝑎2 𝑎0 + 𝑎3 + 𝑑𝑎4𝑎0 − 𝑑𝑎1𝑎3 =
𝛼𝜇𝑑𝐵 ∗2

𝑆∗

 𝜖+𝐵∗ 2𝐼∗
+ 𝑑 𝜇 + 𝛾  

𝛼𝐵∗

 𝜖+𝐵∗ 
+  σ + β 𝐼∗ > 0. 

We proceed to show inequality  𝑐2𝑐1 > 𝑐0𝑐3. 

𝑐2𝑐1 = 𝑐0𝑐3 + 𝑑 𝛿𝑎2 − 𝑑 𝑎0 + 𝑎4  +  𝑑 𝑎0 + 𝑎4  + 𝑎1𝑎0 − 𝑎4𝑎0) 𝑎0 + 𝑎4  
thus we can write  

(𝑑 − 𝑎0 − 𝑎4)(𝛿𝑎2 + 𝑎4𝑎0 − 𝑑(𝑎0 + 𝑎4) − 𝑎1𝑎3) > 𝑑𝑎4𝑎0 − 𝛿𝑎2 𝑎0 + 𝑎3 − 𝑑𝑎1𝑎3. 

At the end of calculations carried out above we can conclude that  

𝑐1 > 0,   𝑐2 > 0,   𝑐3 > 0,   𝑐2𝑐1 > 𝑐0𝑐3. 

Based on the Routh-Hurwitz stability criterion, we can conclude that all roots of a polynomial equation (15) 

have negative real part. Consequently 𝐸∗ is an endemic equilibrium point which is locally asymptotically stable. 

The numerical values of the eigenvalues and of basic reproduction number are calculated in the section 6. 

 

VII. NUMERICAL SIMULATION 

The various parameters of follow table 3 have been obtained by means of data given by the Cameroon regional 

delegation of the public health of Far North. 

 

Table 3. Parameters values used in Numerical simulations. 

Parameters                                                                                                                                                      Values  

β                                                                                                                                                       0.00894691/day. 

α                                                                                                                                           0.10701551/day. 

σ                                                                                                                                           0.00846916/day. 

γ                                                                                                                                  0.2/day. 

δ                     5.6 (cell/ml day
−1

 person
−1

). 

ϵ                          1000000 cell/ml [1, 24]. 

μ                                     0.001/day. 

d                                                                                                                                                0.33/day [25]. 

Ʌ         246/day.

 

In this section, we present some numerical results of system (1) to justify properties of stability of equilibrium 

points given by the theorems of section 4. Numerical simulations of the system (1) are carried out by using the 

parameters values given in Table 3. We calculate initially 𝐸0andR0 . By directly computing, we obtain 𝐸0 =
 10000, 0, 0, 0  and 𝑅0 > 1The basic reproduction number is greater than one, that supposes the disease free 

equilibrium 𝐸0 is locally asymptotically unstable and invasion is always possible (see the survey paper by 

Hethcote) [23]. A unique positive endemic equilibrium 𝐸∗ of the system (1) exists becauseR0 > 1. The 

numerical value of 𝐸∗ gives 𝐸∗ =  10, 50,9940,9288 , then we evaluate the eigenvalues of Jacobian matrix;  

𝜆1=−0.623381088978441689+0.1i, 𝜆2=−0.294246155522720154+0.1i, 

𝜆3=-0.0300007503988389788+0.1i, 𝜆4= −0.0100000000000000002+0.1i. 

 All real parts of the eigenvalues are negatives. We affirm that 𝐸∗ is locally asymptotically stable. For this case, 

the disease becomes permanent [24]. 

 Stability of system (1) is described by figure 3: R0  is lower than one; the disease tends to die out. The 

curve of susceptible population decreases slightly (this decrease would be explained by a small part of 

population which becomes infected) simultaneously curve of infected increases slightly and reaches a maximum 

of 343 individuals at the end of 167 day, then goes down (this regression is due to the cured individuals of 

cholera and deaths of some)  and stabilizes itself. Here stability is justified by the weak variation of infected 

individuals.  

 Behaviour of system (1) is described by figure 4: R0  is greater than one; the disease persists. During 

the first two weeks the curve of susceptible individuals decreases exponentially from 10000 to 230 individuals 

before stabilizing itself. During this moment the curve of infected individuals grows quickly and reaches its 

maximum with 7752 individuals. This great contamination of susceptible population is due to the high rates of 

contacts of susceptible population with infected individuals, cholera deaths and contaminated water by the V. 

cholerae. The growth of the curve of infected is justified by the new case of infected. After having reached the 

peak, the curve of infected decrease then is stabilized within 200 days. This stabilization will be explained by 

the immunity of some and the prudence of others face of plague. 
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 The figure 5 shows a considerable reduction of the number of cases when the rate of contamination by 

handling body of cholera death is weak. The number of infected individuals varies from 7752 cases with 

𝜎 = 0.8469 × 10−4(see figure 4) to 5066 cases with 𝜎 = 0.8469 × 10−4. This variation indicates a significant 

diminution of 2686 infected cases.  

 The curves of figure (6a, 6b and 6c) justify stability of equilibrium points. 

 Firstly, the curve of figure 6a shows us phase portrait of susceptible population according to the 

infected individuals when R0 <1, indicating that disease free equilibrium 𝐸0is globally asymptotically stable and 

the disease would die out over time. 

 Secondly, the curve of figure 6b shows us phase portrait of susceptible population according to the 

infected individuals when R0 >1, indicating that endemic equilibrium𝐸∗is locally asymptotically stable. 

 Thirdly, the curves of figure 6c shows us phase portrait of susceptible population according to the 

infected individuals when R0 <1and R0 >1. We see that all these two orbits converge to the endemic 

equilibrium, showing the global asymptotic stability of endemic equilibrium. 

 

 
Figure 3: Numerical Simulation of dynamics of human population when R0 <1. The curves with various colors 

like black, red, blue and green describe respectively evolutions of susceptible individuals, infected people, 

recovered people and the V. cholerae during the cholera epidemic. 

 
Figure 4: Numerical Simulation of dynamics of human population when R0 >1, σ = 0.8469 × 10−4. The 

curves with various colors like black, red, blue and green describe respectively evolutions of susceptible 

individuals, infected people, recovered people and the V. cholera during the cholera epidemic. 
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Figure 5: Numerical Simulation of dynamics of human population when R0 >1, σ = 0.8469 × 10−5. The 

curves with various colors like black, red, blue and green describe respectively evolutions of susceptible 

individuals, infected people, recovered people and the V. cholerae during the cholera epidemic. 

 
Figure 6: A phase portrait of susceptible as function of infected for the system (1) when R0 <1 (a); R0 >1 

(b) and (R0 <1,R0 >1) (c). 

 

VIII. CONCLUSION 

Propagation of cholera is not only fostered by inter-human contact or contact with contaminated water but also 

by contact with deaths of cholera. The analyses made at the ends of the numerical simulations allowed us to 

understand that when R0 >1, the number of  infected people becomes growing during first weeks of  epidemic  

following  multiple contacts of susceptible people with  infected individuals, cholera death and  contaminated 

water  by the V. cholerae. After having reached peak, this number decreases before stabilizing itself: the 

epidemic becomes permanent. By considering R0 <1, the numbers of the infected people remain weak:  

Epidemic tends to disappear. We also underline possibility to reduce the number of infected cases by avoiding   

practices of traditional rites that support contaminations by handling body of cholera death. 

This work clarifies us on evolution of cholera during epidemic period in Far North Region of Cameroon. Thus, 

this produced work will allow the Cameroon public health ministry to effectively conceive fast strategies of 

interventions to extinguish this epidemic. 
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