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I. INTRODUCTION 
Optical interferometry techniques are increasingly employed in various sciences and engineering 

applications to compute several physical magnitudes which are codified as the phase of a periodic intensity 

profiles, such as micro-displacements and micro-deformations in several scientific and industrial applications 

[1,2]. These nondestructive methods are based on the measurement of small variation of the optical path with 

the interference phenomena. Thus the development of effective and sophisticated phase extraction algorithms is 

continuously needed [3-6]. In this context the wavelet concept is very useful to analyze non-stationary or 

transient signals [7,8].  A good review of wavelet theory has been published by Daubechies [9]. 

This article presents an overview of a phase evaluation method, based on Morlet wavelet algorithm, which 

extracts the phase gradient from a single fringe pattern directly. The spatial phase distribution being obtained by 

integration of the gradient, the complex phase unwrapping step is no longer needed [10]. Thus the use of a 

single image can lead to the phase distribution of dynamic processes, while the unwrapping step, which provides 

a continuous phase distribution over its definition domain, implies several difficulties and requires sophisticated 

algorithms.  

The paper first presents an introduction of the continuous wavelet transform. We present in paragraph 2 the 

wavelet phase analysis method and we propose a discussion on the Morlet wavelet, particularly on the choice of 

space and frequency resolutions. In paragraph 3 we describe the process of phase extraction by the wavelet 

technique.  

Finally, results of numerical simulations are presented in paragraph 4, and demonstrate the ability of the 

presented method to give the phase distribution with good accuracy. 

 

II. WAVELET ANALYSIS 
Wavelets offer a powerful method to quantify how energy is spatially distributed at multiple scales 

[11]. Wavelets transform a signal into a series of coefficients having discrete energies. The original signal is 

completely specified by these coefficients and the analyzing wavelet. Wavelet analysis is similar to the Fourier 

transform (FT). The FT is useful for the analysis of stationary signals but is less suitable for non-stationary 

signals. 

 

2.1. Wavelet transform 

In the Continuous Wavelet Transform CWT, the coefficient W(s,ξ) of two variables, scale s and shift ξ , is given 

by 

𝑊(𝑠, 𝜉) =  ⟨𝑓 |𝛹𝑠,𝜉⟩ =  
1

√𝑠
∫ 𝑓(𝑥)

+∞

−∞

(𝛹 (
𝑥 − 𝜉

𝑠
))

∗

𝑑𝑥 
          

(1) 
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Where * denotes complex conjugation, f(x) is the signal to be analyzed, 𝛹𝑠,𝜉(𝑥) is the analyzing wavelet, s > 0 is 

the scale parameter related to the frequency concept, and 𝜉 is the shift parameter related to position. 

The W(s,ξ) coefficients quantify the similitude between the signal f(x) and the wavelet 𝛹𝑠,𝜉(𝑥). For a given scale 

at a position 𝜉, the magnitude of this resemblance is given by the modulus of W(s,ξ). The W(s,ξ)  is also 

regarded as coordinates of the signal projected in the wavelet basis formed by  𝛹𝑠,𝜉(𝑥) set. 

From the admissible and localized mother wavelet 𝛹(𝑥), the analyzing wavelet  𝛹𝑠,𝜉(𝑥) is obtained by shifting 

and scaling : 

𝛹𝑠,𝜉(𝑥) =  
1

√𝑠
𝛹 (

𝑥 − 𝜉

𝑠
) 

          

(2) 

 

 

Admissibility and localization conditions are obtained when the analyzing wavelet has respectively a zero mean 

and a zero value outside a given interval in both space and frequency domains. 

The wavelet transform can be expressed, using the Parseval identity, as 

 

𝑊(𝑠, 𝜉) =  
1

2𝜋
⟨𝑓 ̂|�̂�𝑠,𝜉⟩ =  

√𝑠

2𝜋
∫ 𝑓(𝑘)

+∞

−∞

(�̂�(𝑠𝑘))
∗

 𝑒𝑖𝜉𝑘 𝑑𝑘 
          

(3) 

 

 

Where 𝑓 and �̂� are, respectively, the FT of the signal and the mother wavelet, and k is the conjugate of x and 

denotes the angular frequency. 

If the inverse wavelet transform exists, the original signal can be reconstructed by: 

 

𝑓(𝑥) =  
1

𝐶𝛹

=  ∫ ∫ 𝑊(𝑠, 𝜉)𝛹𝑠,𝜉(𝑥)
+∞

−∞

𝑑𝑠𝑑𝜉

𝑠2

+∞

0

 
          

(4) 

 

Where 

𝐶𝛹 =  ∫
|�̂�(𝑘)|²

𝑘

+∞

−∞

 𝑑𝑘 
          

(5) 

 

This reconstruction of the signal is possible when 𝐶𝛹 has a finite value. 

 

2.2. Paul wavelet 

The appropriate choice of the mother wavelet Ψ(x), characterized by its shape, is important for specific 

applications. For phase evaluation problems, several well localized mother wavelet, like ‘‘Morlet’’ [12,13], 

‘‘Hermitian’’ [14,15] or ‘‘Paul’’ [16] wavelet could be chosen. In the present work, our purpose is to use the 

second order of Paul wavelet which is formulated by  

 

𝛹(𝑥) =
2𝑛(1 − 𝑖𝑥)−(𝑛+1)

2𝜋√(2𝑛)! 2⁄
 

          

(6) 

 

where n is the order of the Paul wavelet. Its FT is 

 

�̂�(𝑘) =
2𝑛

√𝑛(2𝑛 − 1)!
𝑘𝑛𝑒−𝑥𝐻(𝑘) 

          

(7) 

 

where H is the Heaviside distribution. 

 

The analyzing wavelet, obtained by shifting and scaling the Paul wavelet is 

 

𝛹𝑠,𝜉(𝑥) =  
1

√𝑠
𝛹 (

𝑥 − 𝜉

𝑠
) =

1

√𝑠

2𝑛(1 − 𝑖
𝑥 − 𝜉

𝑠
)−(𝑛+1)

2𝜋√(2𝑛)! 2⁄
 

          

(8) 

 

In space domain, the center of the analyzing wavelet is given by  

 

𝑥𝑐 = =
∫ 𝑥|𝛹𝑠,𝜉(𝑥)|²𝑑𝑥 

+∞

−∞

∫ |𝛹𝑠,𝜉(𝑥)|²𝑑𝑥 
+∞

−∞

=  𝜉 
          

(9) 
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and the associated variance is 

   

(∆𝑥)2  =
∫ (𝑥 − 𝑥𝑐)2|𝛹𝑠,𝜉(𝑥)|²𝑑𝑥 

+∞

−∞

∫ |𝛹𝑠,𝜉(𝑥)|²𝑑𝑥 
+∞

−∞

=  
𝑠2

2𝑛 − 1
 

          

(10) 

 

then  

∆𝑥 =  
𝑠

√2𝑛 − 1
           

(11) 

 

we note that the resolution ∆𝑥 in the space domain depends on the used order and particularly the scale s. 

Information about the structure of the signal is concentrated in the interval [𝑥𝑐 − ∆𝑥, 𝑥𝑐 + ∆𝑥]. 

 

Similarly, in frequency domain, the center of the analyzing wavelet is given by 

 

𝑘𝑐 = =
∫ 𝑘|�̂�𝑠,𝜉(𝑘)|²𝑑𝑘 

+∞

−∞

∫ |�̂�𝑠,𝜉(𝑘)|²𝑑𝑘 
+∞

−∞

=  
2𝑛 + 1

2𝑠
 

          

(12) 

 

and the associated variance is   

 

(∆𝑘)2  =
∫ (𝑘 − 𝑘𝑐)2|�̂�𝑠,𝜉(𝑘)|²𝑑𝑘 

+∞

−∞

∫ |�̂�𝑠,𝜉(𝑘)|²𝑑𝑘
+∞

−∞

=  
2𝑛 + 1

4𝑠2
 

          

(13) 

 

then  

∆𝑘 =  
√2𝑛 + 1

2𝑠
 

          

(14) 

 

we note that frequency resolution ∆𝑘, depends on the used order and particularly the scale s. In this case, the 

most important information about the structure of the signal is concentrated in the interval [𝑘c − ∆𝑘, 𝑘c + ∆𝑘].  

 

Paul mother wavelet and its Fourier Transform FT are presented in Figure 1. In Figure 1a, we plot the real part 

(solid line) and imaginary part (dashed line) for the second order Paul wavelet (n = 2). In Figure 1b, we plot the 

Paul wavelet FT. 

 

  
 

Figure 1. (a) Paul wavelet (n = 2); (b) Fourier Transform of Paul wavelet. 

 

 

III. WAVELET PHASE EXTRACTION 
There are many techniques for extracting phase distributions from two-dimensional fringe patterns [4]. 

The fringe patterns, derived from two-beam interferometers, can be mathematically formulated by the sinusoidal 

dependence of the intensity on the spatial coordinates (x,y) of the image plane 
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𝐼(𝑥, 𝑦) =  𝐼0(𝑥, 𝑦)[1 + 𝑉(𝑥, 𝑦)𝑐𝑜𝑠(𝑚𝑦 + 𝜑(𝑥, 𝑦))] (15) 

 

where 𝐼0 is the bias intensity, V the visibility or fringe contrast and 𝜑 the optical phase (argument of the 

sinusoidal dependence). The 𝑚𝑦 added phase to the phase of interest is known as the phase modulated carrier. 

This spatial carrier must respect the following condition: 

 

𝑚 > |
𝜕𝜑

𝜕𝑦
|

𝑚𝑎𝑥

 
 

(16) 

 

The one-dimensional wavelet transform of the fringe pattern intensity, in the y direction, is given by 

 

𝑊(𝑥, 𝑠, 𝜉) =  
1

√𝑠
∫ 𝐼0(𝑥, 𝑦)[1 + 𝑉(𝑥, 𝑦)𝑐𝑜𝑠(𝑚𝑦 + 𝜑(𝑥, 𝑦))] 

+∞

−∞

(𝛹 (
𝑦 − 𝜉

𝑠
))

∗

𝑑𝑦 
 

(17) 

 

Exploiting the localization property of the wavelet, the development of the phase of interest 𝜑 on Taylor series 

near the central value 𝜉, allowed us to write 

𝜑(𝑥, 𝑦) = 𝜑(𝑥, 𝜉) + (𝑦 − 𝜉).
𝜕𝜑

𝜕𝑦
(𝑥, 𝜉) +

1

2
(𝑦 − 𝜉)2.

𝜕²𝜑

𝜕𝑦²
(𝑥, 𝜉) + ⋯ 

(18) 

 

 

Assuming a slow variation of the intensity bias 𝐼0 and the visibility V, which is convenient in usual cases, and 

owing the localization of the wavelet, we can neglect the higher order of (𝑦 − 𝜉) with respect to the phase-

modulated carrier. With these considerations, the wavelet transform becomes 

 

𝑊(𝑥, 𝑠, 𝜉) =  
𝐼0(𝑥, 𝜉)𝑉(𝑥, 𝜉)

√𝑠
∫ 𝑐𝑜𝑠 [𝑚𝑦 + 𝜑(𝑥, 𝜉) + (𝑦 − 𝜉).

𝜕𝜑

𝜕𝑦
(𝑥, 𝜉)].

+∞

−∞

(𝛹 (
𝑦 − 𝜉

𝑠
))

∗

𝑑𝑦 
 

(19) 

 

and the Parseval identity leads to  

𝑊(𝑥, 𝑠, 𝜉) =  
√𝑠

2𝜋
∫ 𝐼𝑎(𝑥, 𝑘)

+∞

−∞

(�̂�(𝑠𝑘))
∗

 𝑒𝑖𝜉𝑘 𝑑𝑘 
 

(20) 

 

where 

𝐼𝑎(𝑥, 𝑘) =  𝐼0(𝑥, 𝜉)𝑉(𝑥, 𝜉)𝜋ℎ(𝑥, 𝜉)  

(21) 

 

with 

ℎ(𝑥, 𝜉) = 𝛿(𝑘 − 𝑚1). 𝑒𝑥𝑝 [𝑖 (𝜑(𝑥, 𝜉) −  𝜉
𝜕𝜑

𝜕𝑦
(𝑥, 𝜉))] + 𝛿(𝑘 + 𝑚1). 𝑒𝑥𝑝 [−𝑖 (𝜑(𝑥, 𝜉) −  𝜉

𝜕𝜑

𝜕𝑦
(𝑥, 𝜉))] 

 

(22) 

 

and  

𝑚1 = 𝑚 +
𝜕𝜑

𝜕𝑦
(𝑥, 𝜉) 

 

(23) 

 

finally, the wavelet transform becomes  

 

𝑊(𝑥, 𝑠, 𝜉) =  
𝐼0(𝑥, 𝜉)𝑉(𝑥, 𝜉)√𝑠

2
[(�̂�(𝑠𝑚1))

∗

 𝑒𝑖(𝜉𝑚+𝜑(𝑥,𝜉)) + (�̂�(−𝑠𝑚1))
∗

 𝑒−𝑖(𝜉𝑚+𝜑(𝑥,𝜉))] 
 

(24) 

 

by introducing Paul mother wavelet, we get  

 

𝑊(𝑥, 𝑠, 𝜉) =  
𝐼0(𝑥, 𝜉)𝑉(𝑥, 𝜉)𝑠𝑛+1 2⁄ . 𝑚1

𝑛𝑒𝑥𝑝(−𝑠𝑚1)

(2𝑛)!
 𝑒𝑖(𝜉𝑚+𝜑(𝑥,𝜉)) 

 

(25) 

 

and its modulus is given by 

|𝑊(𝑥, 𝑠, 𝜉)| = (
𝐼0(𝑥, 𝜉)𝑉(𝑥, 𝜉)𝑚1

𝑛

(2𝑛)!
) 𝑠𝑛+1 2⁄ 𝑒𝑥𝑝(−𝑠𝑚1) 

 

(26) 
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the extremum scale noted S is then given by 

𝑆(𝑥, 𝜉) =
2𝑛 + 1

2𝑚1

 
(27) 

 

Equations (23) and (27) then give the phase gradient by 

 
𝜕𝜑

𝜕𝑦
(𝑥, 𝜉) =

2𝑛 + 1

2𝑆(𝑥, 𝜉)
− 𝑚 

(28) 

 

This leads to the phase by integration of the gradient. Moreover, for determining the phase distribution of two 

dimensional fringe pattern, we proceed as follows: for each row of the image, we extend the fringe pattern at its 

left-and right-hand edges, using zero padding method. This step is necessary to avoid discontinuities and hence 

spurious, large values of the CWT at the edges of the data. 

 

 

IV. SIMULATION RESULTS 
In our numerical simulation, we used the Paul wavelet as a mother wavelet to verify the ability of the 

wavelet technique to determinate the phase with a quite good accuracy. The simulation consists in generating 

numerically a fringe pattern of a given phase distribution, retrieving this phase distribution by the wavelet 

method and comparing to the results obtained by phase shifting technique. The test phase function used is 

 

𝜑(𝑥, 𝑦) = 0.0005((𝑥 − 256)2 + (𝑦 − 256)2)  (29) 

 

and the intensity distribution of fringe pattern is 

 

𝐼(𝑥, 𝑦) = 1 + 0.5cos(𝜑(𝑥, 𝑦) + 𝑚𝑦)  (30) 

 

where  m = 1.28 rad/pixel is the modulation carrier (the maximum gradient of the phase 𝜑 is 0.26 rad/ pixel). 

 

 

 

  
 

Figure 2. (a) Simulated fringe pattern; (b) phase distribution extracted by wavelet method. 

 

 

The result of simulation is illustrated in Figure 2, where the test fringe pattern is depicted in Figure 2a while the 

retrieved phase distribution is plotted in Figure 2b. The phase distribution simulation is computed by MATLAB 

software. The phase accuracy is in the same order than the one obtained previously, by phase shifting algorithm 

[17]. 
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V. CONCLUSION 
In this paper we present an overview of the use of wavelet transform and especially Paul wavelet, to 

extract phase distribution. Numerical simulations obtained by the use of the method presented here, are in 

excellent agreement with those produced by phase shifting methods. It is worth noting that this method gives the 

phase distribution with a single image and without unwrapping, while most phase evaluation methods, requires 

unwrapping phase over its definition domain, in the manner to provide a continuous phase distribution, but more 

sophisticated phase unwrapping algorithms are needed to overcome the difficulties involved in such process. 
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