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I. INTRODUCTION 
In fixed filter, the filter coefficients are calculated at design time, and they do not change thereafter whereas in 

adaptive filter the filter coefficients keep on changing continuously under the control of optimizing algorithm. 

The adaptive filtering involves two basic processes namely; filtering process and adaptation process which work 

interactively with each other. Thus an adaptive filter may be defined as, a filter that self adjusts its transfer 

function under control of an optimizing algorithm. Although the adaptive filters can be designed as linear and 

non linear, but due to simplicity in design and analysis linear adaptive filters are much more popular. As the 

power of digital signal processors has increased accompanied with decrease in its price adaptive filters have 

become commercially viable. Adaptive filters find applications in telecommunication, geophysical signal 

processing, biomedical signal processing, radar and sonar signal processing, mobile phones, MODEM, 

camcorders, digital cameras, and medical monitoring equipments etc. 

An adaptive digital filter can be implemented either as FIR or IIR. FIR filters are characterized by advantages 

like linear phase response, guaranteed stability, no feedback requirement but also disadvantages like higher 

order and thus more computational time compared to their counterpart. However, the advantages of FIR filter 

outweigh their disadvantages, therefore adaptive filters are usually implemented as FIR filter. Adaptive 

algorithm allows the filter to learn the initial statistics of the input signal and to track them afterwards for any 

further changes. The error signal, which is the difference between primary signal and estimated output of 

adaptive filter, is used to tune filter coefficients in order to minimize the cost function. The most commonly 

employed cost function is the mean square of the error signal (MSE) [1].  The general plan of adaptive filter is 

represented in Fig. 1.  

ABSTRACT: This paper presents the implementation of novel Complementary Pair Variable Step 

Size (CP-VSS-LMS) algorithm that uses two filters working in parallel, one with large step size 

called as speed mode filter and the other with small step size called as accuracy mode filter. This 

dual filter structure is originally proposed by MinSoo Park and Woo-Jin Song and later improved 

by Bilcu Radu C. by incorporating Variable step size for faster convergence and smaller 

misadjustment. But the algorithm proposed by them suffers from the drawback of increased 

computational complexity. Because of higher computational complexity, this algorithm has higher 

implementation cost which render it unsuitable especially for applications with long impulse 

response such as echo cancellation. To overcome this drawback, the proposed algorithm uses the 

combination of VSSLMS and signed LMS feature. In Signed LMS, the multiplication of coefficient 

update equation is replaced by addition, thus computational complexity is reduced significantly 

without significant increase in mean square error (MSE).   
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Fig. 1.Adaptive Filter Structure 

 

The underlying FIR filter used in adaptive filter is most commonly a transversal filter which is also known as 

tapped delay line structure as shown in Fig. 2. This structure requires only delay line, adders, and multipliers as 

digital hardware resources. Here w0, w1...wM-1 are filter coefficients and Z
-1

 represents delay line. The adaptive 

filtering algorithm iteratively adjusts filter coefficients to minimize the cost function.  

 

 
Fig. 2.Transversal FIR Filter 

 

1.1 Signal Enhancement application- Biomedical Signal Processing: 

There are various applications where fixed filters cannot work. When signal and noise have distinct spectrum 

and the characteristics of the signal, noise, and channel are known, fixed filters are the choice. On the other hand 

when there is a spectral overlap between signal and noise or when the characteristics of the input signal, noise, 

and dynamics of channel are unknown or change with time, fixed filters are of no use but adaptive filters only 

come for rescue. The practical example is fetal ECG as shown in Fig. 3 where fetal ECG is signal and mother’s 

ECG and myographic signals are noise. Both have the same frequency spectrum and noise is stronger than the 

signal. Such examples need adaptive filters. 

 

 
Fig.3. a) Clean ECG, b) ECG of fetus 

 

1.2 Performance Parameters 

Following are the performance parameters of the adaptive filters that may be used to evaluate the effectiveness 

of the improved algorithm.  
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1.2.1 Convergence rate:  

This is defined as the number of iterations required for the algorithm to converge to its steady state mean square 

error in case of stationary input. Thus a faster rate of convergence means that it requires less no of iterations to 

converge. Usually real time applications require faster rate of convergence. 

 

1.2.2 Computational complexity:  

The computational complexity of the algorithm influences the price of the processor needed to implement the 

adaptive filter. It can be evaluated with the number of operations the algorithm requires to accomplish single 

iteration. In addition, the size of memory for storing the data and program is also another important 

consideration. The need for reducing the computational complexity comes from two aspects. Firstly, for the 

inherently demanding algorithm like RLS, the O(L
2
) complexity will occupy a large amount of computation and 

storage resources. Secondly, some applications like echo cancellation themselves are very much hardware 

demanding since in acoustic echo cancellation (AEC) problem, the echo paths spread over a relatively long 

length in time. For a sampling rate of 8 kHz, this would mean 800-2000 taps. In such situations, even the O (L) 

algorithm like NLMS is also much hardware demanding.  

 

1.2.3 Numerical Robustness:  

The implementation of adaptive filtering algorithms on a digital computer that has finite word-lengths, results in 

quantization errors. These errors sometimes can cause numerical instability of the adaptation algorithm. 

Adaptive filtering algorithm is numerically robust when its digital implementation using finite-word-length 

operations is stable. 

 

1.2.4 Mathematical tractability:  

An algorithm should be mathematically tractable, means that the convergence of the algorithm can be 

mathematically proved. Mathematical tractability is a desired feature of any adaptive algorithm.   

 

1.2.5 Misadjustment:  

As per the theory of optimal filter, no other filter than the optimal filter gives minimum MSE. The 

misadjustment parameter indicates a filter under consideration is how much closer to the optimal filter. The 

misadjustment is defined as excess MSE to minimum MSE. Misadjustment is given by following expression,  

                                             minJ

J
M ex

                            

                                         min
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J

JJss
M




                             
1.2.6 Stability 

An algorithm is said to be stable if the mean-squared error converges to a finite value.   

1.3 Applications of Adaptive Filters 

There are following four categories of applications of adaptive filter. 

1.3.1 System Identification (Channel modeling) 

As shown in Fig. 4, system identification application requires both the unknown system and the adaptive filter 

driven by same input. After performing several iterations the filter estimates a linear model that closely matches 

with the unknown system.  

 
Fig.4. System Identification 

 

1.3.2 Equalization (Inverse Channel Modeling) 

As shown in Fig. 5, in equalization application unknown system and adaptive filter are connected in cascade and 

the input signal drives this cascade connection and delay line. To minimize the error signal, the adaptive 
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algorithm brings the transfer function of the adaptive filter closer to the inverse of the unknown system’s 

transfer function. The adaptive equalizers are widely used in routers and repeaters.  

 
Fig.5. Equalization (Inverse Channel Modeling) 

 

1.3.3 Signal Enhancement (Noise cancellation) 

As shown in Fig. 6, in signal enhancement application, correlated noise is the input signal which drives the 

adaptive filter. The primary signal consists of a signal x(n) corrupted by an additive noise w1(n) and the filter 

input signal is w2(n) which is correlated with w1(n) but uncorrelated with x(n). The adaptive filter output is 

estimate of noise w1(n) present in primary signal which gets subtracted to produce clean sound. This application 

can be found in hearing aids and noise cancellation system in aircraft, and outdoor news recording.  

 

 
Fig.6. Signal Enhancement (Noise Cancellation) 

 

1.3.4 Prediction (Beamforming) 

If adaptive filter is configured as shown in Fig.7, it forms prediction system which is able to predict the present 

sample of the input signal using past values of the signal. This configuration is widely used in beamforming in 

smart antenna, where antenna can sense Direction of Arrival (DOA) of signal and for proper beam steering. 

Another application of this system could be in speech coding for prediction based compression.  

 
Fig.7. Prediction (Beamforming) 

 

II. WEINER FILTER 
Wiener mathematically solved the optimization problem of adaptive filter, and the resulting filter is known as 

Weiner filter or optimal filter. The output of FIR filter with transversal structure (convolution sum) is given in 

(1) where w is the filter coefficient and x is the input signal vector.  

xw
Tny )(                    

(1)  

Error signal e(n) which is the difference between primary signal (desired signal) d(n) and filter output y(n) given 

in (2).  

)()()( nyndne 
                                                                                                                (2)  



Novel Variable Step Size Complementary Pair Least Mean Square (VSS-CPLMS) Algorithm … 

www.ijceronline.com                                                Open Access Journal                                                   Page 56 

)}({)( 2 neEJ w                                                                                                                            (3) 

Weiner uses Mean Square Error (MSE) as cost function of optimization given in (3), and derived that the 

optimization problem of minimization of cost function can be obtained by (4) where R is the correlation matrix 

of input signal and p is the cross correlation vector between input signal and error signal.  

pRw
1opt                                                                                                                                    (4) 

The optimal solution mentioned in (4) is the quadratic function of filter coefficients and thus gives unique local 

minima represented in Fig. 8 by bottom of the bowl shaped curve of MSE surface w.r.t first order filter 

coefficients w0 and w1. 

 
Fig. 8.Wiener solution for first order filter 

 

Although Wiener gives one step optimal solution still it is of little practical significance because  

1) It is computationally intensive as matrix inversion is required 

2) It requires priori statistical information of the input signal in the form of autocorrelation matrix and cross 

correlation vector, which is generally not available 

So instead of Weiner solution, all practical adaptive filters find approximate optimal solution by the method of 

iteration.  

2.1 Gradient Search Algorithm (GSA) 

This coefficient update equation of GSA is given in (5), where g(n) is the direction vector, which is 

JHg -1- =  
 

)()()1( nnn gww 
                                                            (5)

 

Thus, 

JHww -1- (n) = 1)+(n                        
(6) 

 Equation (6) is called as Newton’s algorithm. From this, it is evident that Newton’s algorithm 

converges in just one step if the Hessian matrix H and gradient J are known. The computation of inverse of H 

is computationally intensive. So, (6) cannot be practically used for real time applications. So, instead of direct 

computation of H
-1

, various iterative methods are used for approximation that results into different algorithms.  

 

2.2 Steepest Descent Algorithm 

Steepest Descent Algorithm (SDA) algorithm starts by assuming small initial filter coefficients (zero in most 

cases), and then by finding the gradient of the MSE cost function, the coefficients are updated iteratively at each 

step. That is, if the MSE gradient is positive, it implies the error is increasing positively, which indicates to 

reduce the weights. In the same way if the gradient is negative, it indicates to increase the weights. SDA 

approximates H
-1

 required in Newton’s method by substituting H = 2I, and an additional parameter µ, called as 

convergence rate (step size) parameter is introduced to control the rate of convergence. The factor ½ is added 

for computational simplicity purpose only. Here Newton’s method gets converted into (7), 

 
2

 - (n)  1)(n Jww 


                                     (7)                 

But the gradient of cost function is given in (8) 

RwPJ 22                                                                                                                            (8) 

Coefficient update equation for SDA is obtained in (9) by substituting the gradient in (8)         

)]([)()1( nnn Rwpww  
                              (9)  
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Equation (9) is called as SDA, and the flowchart of this is given in Fig.9. According to the quadratic relation 

between the MSE and the filter coefficient, it is guaranteed that the error performance surface always has 

minima and therefore, eventually reaches the minimum point after some iteration. 

 
Fig.9. Steepest Descent Algorithm 

 

The steps encountered in SDA are represented in the Flowchart of Fig.10. 

 
Fig.10. Flowchart of Steepest Descent Algorithm 

 

2.3 LMS Algorithm: 

The LMS algorithm has become immensely popular because performance, simplicity and stability of LMS 

algorithms outweigh other algorithms. The legendry LMS Algorithm was invented in 1959 by Bernard Widrow, 

and his first doctoral research scholar, Ted Hoff of Stanford University through their studies of pattern 

recognition. LMS algorithm stands as the benchmark against which all other adaptive filtering algorithms are 

judged. There are various variants of the LMS algorithm, and the original one mentioned in this section is called 

as standard LMS algorithm. In stationary environment, the LMS filter is expected to converge to the Wiener 

filter, and in non stationary environments, the filter is expected to track time variations of the signal and vary its 

filter coefficients accordingly. The LMS algorithm simply approximates autocorrelation matrix R and cross 

correlation vector p by replacing expected value with instantaneous value of the quantity as, 

R = E[x(n) x
T
(n)]≈ x(n) x

T
(n)          

p = E[d(n)x(n)]   ≈ d(n)x(n)          

The filter coefficient update equation of LMS algorithm is as in (10) 

  w(n+1)=w(n)+ µx(n)e(n)                       (10) 

where, 

w(n+1) :  filter coefficient for next iteration 

w(n)      :    filter coefficient at current iteration 

µ           :    step size parameter 

x(n)       :      filter input at current iteration 

e(n)        :     error signal at current iteration 
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Now the computational complexity of LMS algorithm is discussed in following section.  

A filter of N taps requires N+1 multiplication and N additions to implement weight update per iteration. The 

filtering process requires N multiplications and N-1 additions. The error equation generation requires one 

addition. Therefore total number of operations per iteration is 2N+1 multiplication and 2N addition and 

consequently this algorithm is called as O (N) algorithm.  

There are various variants of the LMS algorithm, and the original one mentioned in this section is called as 

standard LMS algorithm. In stationary environment, the LMS filter is expected to converge to the Wiener filter, 

and in non stationary environments, the filter is expected to track time variations of the signal and vary its filter 

coefficients accordingly.   

The basic adaptive algorithms those are widely used include LMS (Least Mean Square), and the RLS (Recursive 

Least Square). Though RLS algorithm gives speedy convergence, but it's computational complexity prevent it 

from wide scale popularity. The tradeoff between convergence speed and computational complexity of adaptive 

filtering turns LMS algorithm superior compared to RLS. It utilizes fewer computational resources and memory 

than RLS algorithms. The implementation of the LMS algorithms is less complicated than the RLS. One 

drawback of LMS algorithm is that it can search only local minima but not the global minima. However, by 

simultaneously starting the search at multiple points, this drawback can be overcome. The algorithm of Standard 

LMS algorithm is given as below [2]. 

 

Initialization: 

w(0)=0 

Algorithm: 

For n=0: iterations 

y(n)= w
T 

(n)x(n) 

e(n)= d(n)-y(n) 

w(n+1)=w(n)+ µ x(n) e(n) 

end 

 

2.4 Stability Condition for LMS Algorithm 

 Stability and causality are the two basic requirements that must be fulfilled by any digital filter. This is 

because a non causal filter would be non-realizable and an unstable filter would be of no use. The LMS 

algorithm converges in mean square if and only if the step size parameter µ satisfy (11) where max  is largest 

eigenvalue of the autocorrelation matrix of input signal. 

                                   max

2
0


 

                       (11)  

But in practical situations, Eq. (11) is not much useful because the eigenvalues of the autocorrelation matrix are 

not known, and the more useful equation for step size parameter is given in (12).  

                              
2

)(

2
0

nx
 

                                  (12)

 The term )(nx is called as Euclidean norm of the input signal vector whose squared term represents the power 

of the signal which is usually known or can be estimated a priori [3].  

 

III. LMS ALGORITHM USING SPEED MODE AND ACCURACY MODE FILTER (CP-

LMS) 
The goal of filter design is to construct a computationally simple and numerically robust filter that can be 

implemented easily on a computer with faster convergence and smaller misadjustment. The proposed algorithm 

here targets mainly computationally simplicity issue. From theory of LMS algorithm, we know that convergence 

rate and misadjustment are inversely proportional to each other. Thus with standard LMS, we cannot achieve 

faster convergence with smaller misadjustment, and we are compelled to sacrifice one for other. But in parallel 

filter structure named as Complementary Pair LMS algorithm originally proposed by MinSoo Park and Woo-Jin 

Song, an attempt has been made to achieve both the desirable parameters simultaneously [11]. They have 

achieved this by using speed mode filter for faster convergence and accuracy mode filter for lower 

misadjustment. The speed mode filters is characterized by higher value whereas the accuracy mode filter is 

characterized by lower value of convergence rate parameter (µ) but both are within the limits given by (7). After 

every fixed number of iterations the MSE of both the filters are compared, and if the local average of the 

squared error of speed mode is lower than that of accuracy mode filter, then the later is updated with the 

coefficients of the speed mode filter.      
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 The update equation of the speed filter is given in (13) where w1 (n), x(n) are the vector of the filter 

coefficients and the vector of the input, respectively, e1(n) is the error of the adaptive filter and 

)()()( 11 nyndne  . 

)()()()1( 1111 nnenn xww  ;                                                                  (13) The 

coefficients of the accuracy mode filter are updated by (14): 












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otherwisennen

mCandTnifn
n

)()()(

1)(0mod)1(
)1(

222

1

2
xw

w
w


                                          (14)

 

Here T is the length of the comparison interval, L is the filter length and C(m) is a criteria defined as in (15). 

The parameters T should not be too large or too small. Fig.12 represents schematics of system identification 

using speed mode and accuracy mode adaptive filter (CP-LMS/ VSS-CP-LMS/ Signed-VSS-CP-LMS) 
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2
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                                                      (15)

 

 
Fig.11 System Identification Using CP-LMS Algorithm 

 

3.1 VSS LMS Algorithm Using Speed Mode and Accuracy Mode (CP-LMS)  

Bilcu R.C. further improved this dual mode parallel filter structure by incorporating the concept of VSSLMS 

algorithm [4, 6]. In this they used fixed step size for Speed mode filter and variable step size for accuracy mode 

filter. This further improves rate of convergence as well as maintain small misadjustment.  The equations 

encountered in this algorithm are given in steps 1-3.  

1. The speed mode filter coefficients are updated by )()()()1( 1111 nnenn xww 
 

2. The accuracy mode variable step size filter is updated as, 
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3. The new step size of accuracy mode filter is, 
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Here µ3 is the minimum step size, and α is a parameter whose value is in the range of 0 to 1, which is selected as 

0.5 in our experimentation. The basic idea of this algorithm is to increase the step-size when the algorithm 

converges slowly than speed mode, and decrease the step-size when algorithm is near the steady-state. The 

notation C used here denotes the expectations. The minimum step size µ3 is chosen in such a way to achieve 

convergence within the given training signal length. The number of computation required per test interval for 

this algorithm is: 2T + 2N + 7 multiplications and 2T + 4N + 1 addition. 

 

3.2 Proposed Modified VSS-CP-LMS Algorithm (Signed-VSS-CP-LMS Algorithm)  

The above mentioned algorithm suffers from inherent drawback of higher computational complexity; so this 

algorithm is unsuitable to be used in applications with long impulse response such as echo cancellation. 

Similarly for other applications too like noise cancellation, system identification etc the implementation cost is 

higher. To overcome this drawback, the proposed algorithm uses the combination of VSS and Signed LMS 

feature. In Signed LMS, the multiplication of coefficient update equation is replaced by addition, thus 

computational complexity is reduced significantly without significant increase in MSE. Simulation results 

comparing this algorithm with the other parallel filter structure algorithms indicate there is no significant 

reduction in performance parameters inspite of reduced computations.  

 

3.2 Sign-LMS 

The sign-LMS algorithms replace the multiplication operation of standard LMS algorithms with addition 

operations. Thus it has the advantage of reduced complexity and fast computation compared to the standard 

LMS algorithm, which is obtained at the cost of small or insignificant reduction in convergence speed and 

higher value of misadjustment. The ‘sign’ function used in signed-LMS algorithm is as defined by the following 

equation. 

 

When sign function is applied to standard LMS algorithm, following three types of sign LMS algorithms are 

obtained. 

3.2.1 Sign-error LMS: This algorithm in (16) updates the coefficients of an adaptive filter by applying sign 

function to the error signal e(n). 

 )())(sgn()()1( nnenn xww 
                                                                                        (16) 

From this weight-update equation, it is observed that when e(n) is zero, this algorithm does not involve 

multiplication operations. When e(n) is not zero, this algorithm involves only one multiplication operation per 

iteration. 

3.2.2 Sign-data LMS: This algorithm in (17) updates the coefficients of an adaptive filter by applying sign 

function to the input signal x(n).  

))(sgn()()()1( nnenn xww 
                                                                                              (17) 

From this weight-update equation, it is observed that when input signal x(n) is zero, this algorithm does not 

involve multiplication operations. When x(n) is non zero, this algorithm involves only one multiplication 

operation. 

3.2.3 Sign-sign LMS:  

This algorithm in (18) updates the coefficients of an adaptive filter by applying sign function to both e(n) 

and x(n). In simulation study presented here, we have used this form of signed algorithm.  

))(sgn())(sgn()()1( nnenn xww 
                                                                                     (18) 
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From this weight-update equation, it is observed that when either e(n) or x(n) is zero, this algorithm does not 

involve multiplication operations. When neither e(n) nor x(n) is zero, this algorithm involves only one 

multiplication operation.  

 

IV. SIMULATIONS RESULTS 
The simulation study presents the results of system identification application of the proposed algorithm versus 

its previous counterparts. The unknown system weights are selected as {1, 2}, and the length of adaptive filter is 

equal to two; i.e. same as the length of unknown system to be identified. The simulation is carried out for 500 

iterations and initial 200 iterations are considered as transient period and later iterations are considered for 

steady state analysis. The reference signal x(n) is generated by random function in Matlab and primary signal 

d(n) is generated by filtering the reference signal with the channel of unknown transfer function (h). In CPLMS 

algorithm, for speed mode filter, fixed and large step size equal to 0.0275 is used and for accuracy mode filter a 

small fixed step size equal to 0.0027 is used. In CPVSS algorithm, the speed mode filter has same step size as in 

previous case, however, the step size of accuracy mode filter changes continuously from iteration to iteration 

under the constraint that the minimum step size of it is 0.001. In simulation, used α is a parameter which is used 

to control the step size of accuracy ode filter which is equal to 0.5 and the iteration interval in which the speed 

mode filter and accuracy mode filter are compared to check which one performs better is, T=50. If in this 

interval speed mode filter performs better, then the coefficients of speed mode filter are copied in accuracy 

mode filter, which is a default filter. Otherwise, the accuracy mode filter updates as per normal LMS update 

equation.  The simulation results are shown in Fig. 12 to Fig.15.  

The graph of filter coefficients versus iteration in Fig.12 shows that CPLMS and VSSCPLMS takes 

approximately 100 iterations while modified algorithm Signed-VSSCPLMS takes approximately 100 iterations 

to converge to the value of coefficients of unknown system. Considering practical scenario 100 iterations is 

acceptable value for convergence. At the same time it is observed that the steady state value of convergence of 

proposed algorithm is comparable to its predecessor high computation demanding algorithms. Thus it can be 

concluded that inspite of reduced complexity; there is no appreciable difference in proposed algorithm and 

predecessors in the estimation of unknown system coefficients. 

 
Fig.12. Filter Coefficient vs. Iteration 

 

The mean square error versus iteration graph is represented in Fig. 13 which also indicates that approximately 

after 100 iterations the MSE value becomes negligible. Thus it can be concluded that the proposed algorithm 

converges to steady state MSE almost identically well compared to its predecessors.   
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Fig.13. MSE vs. Iteration 

 

The estimation error versus iteration graph in Fig. 14 indicates that approximately after 100 iterations estimation 

error becomes negligible as the adaptive filter coefficient converges to unknown system coefficient. Thus the 

error signal is also almost equal for all three algorithms under study, and it tends to zero.  

 

 
Fig.14. Estimation Error for Three Different Implementations 

 

The final value of estimated coefficient is shown in Fig. 15 which indicates that the actual and estimated weight 

obtained at the end of iteration cycle also overlaps with each other and that is 99.99% accurate.  
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Fig.15. Actual vs. Final Estimated Weight 

 

Table 1.Significant Parameters of Adaptive Filter for Proposed Algorithm and its processors 
Parameter CPLMS CPVSSLMS Proposed Algorithm 

Signed CPVSSLMS 

Steady state MSE 0.000009 0.000001 0.000767 

Actual coefficients of first 

order unknown system 

{1,2} {1,2} {1,2} 

Estimated coefficient wo 

after 500 iterations 

0.999998 1.000001 1.005155 

Estimated coefficient w1 

after 500 iterations 

1.999998 1.999999 2.015765 

No of iterations required 

for to achieve 

misadjustment under 1% 

201 180 195 

 

The data represented in Table. 1 shows that inspite of reduced complexity, the performance parameters of 

proposed algorithms are not degraded to any significant scale.  

 

V. CONCLUSIONS 

The major disadvantage of standard LMS algorithm is with this algorithm, faster convergence cannot be 

obtained along with smaller misadjustment. To overcome this limitation, a parallel structure of VSS-LMS 

algorithm, named as VSSCPLMS algorithm is put forth by earlier researchers. Though it can obtain faster 

convergence with low misadjustment but suffer from disadvantage of greedy computational requirement 

because of inherent computational complexity due to parallel structure. To address this issue, proposed 

algorithm uses signed-LMS concept which replaces multiplication in coefficient update equation by addition 

and reduce the complexity. Simulation results show that inspite of reduced complexity, the proposed algorithm 

keeps performance at par with the earlier algorithm.  
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