

# **B**<sub>*a*\*\*</sub>-Closed Sets In Topological Space

A.Punitha Tharani<sup>1,</sup> T.Delcia<sup>2</sup>

<sup>1</sup>Associate Professor, Department of Mathematics, St.Mary'sCollege (Autonomous), Thoothukudi-628001, TamilNadu, India. Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli-627012, India

<sup>2</sup> Research Scholar (Register No:12335), Department of Mathematics, St.Mary's College (Autonomous), Thoothukudi-628001, TamilNadu, India. Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli- 627012, India.

Corresponding Author: A.Punitha Tharani

ABSTRACT: In this paper we introduce and study new class of sets called Bg\*\*-closed sets in topological spaces. Also we discuss some of their properties and investigate the relations between other closed sets.

**KEYWORDS:** b-closed, bcl(A,)B<sub>g\*\*</sub>-closed,B<sub>g\*\*</sub>-open,g\*\*-closed,g\*\*-open,g\*-open

Date of Submission: 27-12-2018

Date of acceptance: 11-01-2019

### **INTRODUCTION** I.

In 1970, Levine introduced the concept of generalized closed set and discussed the properties of sets, closed and open maps, compactness, normal and separation axioms. Later in 1996 Andrievic gave a new type of generalized closed set in topological space called b closed sets.. A.A.Omari and M.S.M. Noorani made an analytical study and gave the concepts of generalized b closed sets in topological spaces. In this paper, a new class of closed set called B<sub>0\*\*</sub>-closed set is introduced to prove that the class forms a topology. Throughout this paper  $(X,\tau)$  and  $(Y,\sigma)$  represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.Let  $A \subseteq X$ , the closure of A and interior of A will be denoted by cl (A) and int (A) respectively, union of all b-open sets X contained in A is called b-interior of A and it is denoted by bint (A),the intersection of all b-closed sets of X containing A is called b-closure of A and it is denoted by bcl (A).

#### II. **PRELIMINARIES:**

Before entering into our work we recall the following definitions which are due to Levine. **Definition 2.1:** 

- (1) a pre-open set [11] if  $A \subseteq int(cl(A))$  and a preclosed set if  $cl(int(A)) \subseteq A$ .
- (2) a semi-open set [9] if  $A \subseteq cl(int(A))$  and and semi-closed set if int  $(cl(A)) \subseteq A$ .
- (3) a semi-preopen set [2] if  $A \subseteq cl(int(cl(A)))$  and a semi-preclosed set [1] if  $int(cl(int(A))) \subseteq A$
- (4) an  $\alpha$ -open set [15] if  $A \subseteq int(cl(int(A)))$  and an  $\alpha$ -closed set [17] if  $cl(int(cl(A))) \subseteq A$ .
- (5)a b-open set[3] if  $A \subseteq cl(intA) \cup int (cl(A))$  and a b-closed set if  $(cl(intA)) \cap (int(cl(A)) \subseteq A)$
- (6)a generalised closed set (briefly g-closed) [8] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open  $in(X, \tau)$ . The complement of g-closed set is g-open in X.
- (7)a g\*-closed[20] if cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is g-open in(X,  $\tau$ ). The complement of g\*closed set is g\*-open in X.
- (8)a g\*\*-closed[19] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is g\*-open. The complement of g\*\*-closed set is g\*\*-open in X.
- (9) an generalised semi pre-closed set (briefly gsp-closed) [6] if spcl(A)⊆U whenever A⊆U and U is open in  $(X,\tau)$
- (10)a generalized b-closed set(briefly gb-closed )[16]if bcl(A)⊆U whenever A⊆U and U is open in X
- (11)a generalized  $\alpha$  closed set (briefly  $g\alpha$ -closed)[10] if  $\alpha$ cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\alpha$ -open in X.
- (12) a weakly closed set (briefly W-closed)[18] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in X
- (13)a generalized pre-closed (briefly gp-closed)[12] if  $pcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X
- (14) a semi generalized closed set(briefly sg-closed)[5] if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi open in X

- (15)A subset A of a topological space  $(x,\tau)$  is called b\*-closed[14] set if int(cl(A)  $\subseteq U$  whenever A  $\subseteq U$  and U is b-open.
- (16) A subset A of a topological space  $(X,\tau)$  is called b\*\*-open set[17] if A⊆int(cl(int(A)))Ucl(int(cl(A))) and b\*\*-closed set if cl(int(cl(A))) ∩ int(cl(int(A))) ⊆ A.

# III. BASIC PROPERTIES OF $B_{G^{**}}$ -CLOSED SETS:

**Definition 3.1:** A subset A of a topological space  $(X,\tau)$  is called  $B_{g^{**}}$ -closed if  $bcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $g^{**}$ -open in X. The family of all  $B_{g^{**}}$ -closed sets are denoted by  $B_{g^{**}}$ -C(X).

**Definition 3.2:** The complement of  $B_{g^{**}}$ -closed set is called  $B_{g^{**}}$ -open set. The family of all  $B_{g^{**}}$ -open sets of X are denoted by  $B_{g^{**}}$ -O(X).

**Example 3.3:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$  then  $\{\emptyset, X, \{2\}, \{3\}, \{1,3\}, \{2,3\}\}$  are

 $B_{g^{**}}\text{-}closed$  sets and {Ø,X,{1},{2},{1,2},{1,3}} are  $B_{g^{**}}\text{-}open$  sets in X.

**Proposition 3.4:** Every closed set is B<sub>g\*\*</sub>-closed set.

**Proof:** Let A be a closed set in X such that  $A \subseteq U$ .Let U be  $g^{**}$ -open.Since A is closed, cl(A)=A.Since

 $bcl(A) \subseteq cl(A) = A$ . Therefore  $bcl(A) \subseteq U$ . Hence A is a  $B_{g^{**}}$ -closed set in X.

The converse of the above theorem need not be true as seen from the following example.

**Example 3.5:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$  then A={2} is a B<sub>g\*\*</sub>closed set but not a closed set of (X, $\tau$ ).

**Theorem 3.6:**Every b-closed set is B<sub>g\*\*</sub>-closed set.

**Proof:**Let A be a b-closed set in X such that  $A \subseteq U$  and U is  $g^{**}$ -open.Since A is b-closed, bcl(A)=A.Therefore bcl(A) \subseteq U.Hence A is B<sub>g^{\*\*</sub>-closed set.

The converse of the above theorem need not be true as seen from the following example.

**Example 3.7:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1\}, \{1,2\}\}$  then A={1,3} is B<sub>g\*\*</sub>-closed but not a bclosed set.

**Theorem 3.8:** Every b\*-closed set is B<sub>g\*\*</sub>-closed set.

Proof follows from the definition.

The converse of the above theorem need not be true as seen from the following example.

**Example 3.9:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1,2\}\}$  then A={1,3} is B<sub>g\*\*</sub>-closed but not a

b\*-closed set.

**Theorem 3.10:**Every b\*\*-closed set is B<sub>g\*\*</sub>-closed set.

Proof follows from the definition.

**Example 3.11:** Let  $X = \{1,2,3\}$  with the topology  $\tau = \{\emptyset, X, \{1\}, \{1,3\}\}$  then  $A = \{1,2\}$  is  $B_{g^{**}}$ -closed but not a b\*\*-closed set.

**Theorem 3.12:** Every sb\*-closed set is B<sub>g\*\*</sub>-closed set

Proof follows from the definition.

The converse of the above theorem need not be true as seen from the following example.

**Example 3.13:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{2\}, \{2,3\}\}$  then A={1,2} is B<sub>g\*\*</sub>-closed but not a sb\*-closed set

**Theorem 3.14:** Every B<sub>g\*\*</sub>-closed set is gb-closed set.

**Proof:**Let A be a  $B_{g^{**}}$ -closed set in X such that A $\subseteq$ U and U is open.Since every open set is  $g^{**}$ -open and A is  $B_{g^{**}}$ -closed,bcl(A) $\subseteq$ U.Hence A is gb-closed.

The reverse implication need not be true as seen from the following example.

**Example 3.15:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1\}\}$ . Let A={1,3} be the subset of  $(X, \tau)$ . Here A is gbclosed but not B<sub>e\*\*</sub>-closed set of  $(X, \tau)$ .

**Theorem 3.16:**  $\check{E}$  very  $\alpha$ -closed set is  $B_{g^{**}}$ -closed.

**Proof:** Let A be a  $\alpha$ -closed set in X such that A  $\subseteq$  U and U be g\*\*-open.Since A is  $\alpha$ -closed bcl(A) $\subseteq \alpha$ cl(A) $\subseteq U$ .Therefore bcl(A) $\subseteq U$ .Hence A is B<sub>g\*\*</sub>-closed.

The converse of the above theorem need not be true as seen from the following example.

**Example 3.17:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{2,3\}\}$ . Let A={3} be the subset of  $(X, \tau)$ . Here A is B<sub>g\*\*</sub>-closed but not a  $\alpha$ -closed set of  $(X, \tau)$ .

**Theorem 3.18:** Every semi-closed set is B<sub>g\*\*</sub>-closed.

**Proof**:Let A be a semiclosed set in X such that  $A \subseteq U$  where U is  $g^{**}$ -open.Since A is semiclosed

 $bcl(A) \subseteq scl(A) \subseteq U$ , Therefore  $bcl(A) \subseteq U$ . Hence A is  $B_{g^{**}}$ -closed set in X.

The reverse implication need not be true as seen from the following example.

**Example 3.19:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1,3\}\}$ . Let A={2,3} be the subset of  $(X, \tau)$ . Here A is  $B_{g^{**}}$ -closed but not semi-closed set of  $(X, \tau)$ .

**Theorem 3.20:** Every pre-closed set is B<sub>g\*\*</sub>-closed.

**Proof**:Let A be a preclosed set in X such that  $A \subseteq U$  where U is  $g^{**}$ -open.Since A is preclosed,

 $bcl(A) \subseteq pcl(A) \subseteq U$ . Therefore  $bcl(A) \subseteq U$ . Hence A is  $B_{\sigma^{**}}$ -closed set in X. The reverse implication need not be true as seen from the following example. **Example 3.22:** Let  $X = \{1,2,3\}$  with the topology  $\tau = \{\emptyset, X, \{2\}, \{2,3\}\}$  then  $A = \{1,2\}$  is  $B_{over}$ -closed but not a pre-closed set of  $(X,\tau)$ **Theorem 3.21:** Every g\*-closed set is B<sub>g\*\*</sub>-closed. **Proof**:Let A be a g\*-closed set in X such that  $A \subseteq U$  where U is g\*\*-open.Since A is g\*-closed,  $bcl(A) \subseteq cl(A) \subseteq U$ . Therefore  $bcl(A) \subseteq U$ . Hence A is  $B_{g^{**}}$ -closed set in X. The converse of the above theorem need not be true as seen from the following example. **Example 3.22:** Let  $X = \{1,2,3\}$  with the topology  $\tau = \{\emptyset, X, \{1,2\}, \{3\}\}$  then  $A = \{1,3\}$  is  $B_{e^{**}}$ -closed but not a g\*-closed set of  $(X,\tau)$ **Theorem 3.23:** Every gα-closed set is B<sub>g\*\*</sub>-closed. **Proof**: Let A be a ga-closed set in X such that  $A \subseteq U$  where U is g\*\*-open. Since A is ga-closed,  $bcl(A) \subseteq acl(A) \subseteq U$ . Therefore  $bcl(A) \subseteq U$ . Hence A is  $B_{g^{**}}$ -closed set in X. The converse of the above theorem need not be true as seen from the following example. **Example 3.24:** In example 3.11,  $A = \{1, 2\}$  is  $B_{g^{**}}$ -closed but not  $\alpha$ -closed. **Theorem 3.25:** Every B<sub>g\*\*</sub>-closed set is gsp-closed set. **Proof**:Let A be a  $B_{g^{**}}$ -closed set in X such that A  $\subseteq$  U where U is open in X.Since every open set is  $g^{**}$ -open and A is  $B_{g^{**}}$ -closed, spcl(A)  $\subseteq$  bcl(A)  $\subseteq$  U.Hence A is gsp-closed. The converse of the above theorem need not be true as seen from the following example. **Example 3.26:** Let  $X = \{1,2,3\}$  with the topology  $\tau = \{\emptyset, X, \{1\}\}$  then  $A = \{1,3\}$  is gsp-closed but not  $B_{q^{**}}$ -closed set of  $(X,\tau)$ . Theorem 3.27: A set A is Bg\*\*-closed iff bcl(A)-A contains no nonempty g\*\*-closed set **Proof**:Necessity:Let F be a  $g^{**}$ -closed set of  $(x,\tau)$  such that  $F \subseteq bcl(A)$ -A. Then  $A \subseteq X$ -F. Since A is  $B_{g^{**}}$ -closed and X-F is  $g^{**}$ -open,then  $bcl(A)\subseteq X$ -F.This implies  $F\subseteq X$ -bcl(A) so  $F \subseteq (X-bcl(A)) \cap (bcl(A)-A) \subseteq (X-bcl(A)) \cap (bcl(A)) = \emptyset$ . Therefore  $F = \emptyset$ . Sufficiency: Assume that bcl(A)-A contains no nonempty g\*\*-closed set.Let A⊆U and U is g\*\*-open.Suppose that bcl(A) is not contained in U,  $bcl(A) \cap U^c$  is a nonempty g<sup>\*\*</sup>-closed set of bcl(A)-A which is a contradiction. Therefore  $bcl(A) \subseteq U$  and hence A is  $B_{\sigma^{**}}$ -closed. **Theorem 3.28:**A B<sub>g\*\*</sub>-closed set A is b-closed iff bcl(A)-A is b-closed. **Proof**: If A is b-closed then bcl(A)-A =Ø.Conversely suppose bcl(A)-A is b-closed in X.Since A is Bg\*\*-closed by theorem3.27,bcl(A)-A contains no nonempty g\*\*-closed set in X.Then bcl(A)-A=Ø. Hence A is b-closed **Theorem 3.29:** If A and B are  $B_{g^{**}}$ -closed then A B is also  $B_{g^{**}}$ -closed. **Proof**: Given that A and B are two  $B_{g^{**}}$ -closed sets in X.Let  $A \cap B \subseteq U, U$  is  $g^{**}$ -open set in X.Since A is  $B_{g^{**}}$ closed bcl(A)  $\subseteq$  U, whenever A  $\subseteq$  U, U is g\*\*-open in X.Since B is B<sub>g\*\*</sub>-closed, bcl(A)  $\subseteq$  U, whenever B  $\subseteq$  U, U is g\*\*-open in X. Corallary 3.30: The intersection of a B<sub>g\*\*</sub>-closed set and a closed set is a B<sub>g\*\*</sub>-closed set. The above corallary can be proved by the following example. **Example 3.31:** Let  $X = \{1, 2, 3, 4\}$  with the topology  $\tau = \{\emptyset, X, \{1, 2, 4\}\}, \{3\}$  is the only closed set of  $(X, \tau)$ .  $B_{g^{**}}\text{-closed sets of } (X,\tau) \text{ are } \{1\},\{2\},\{3\},\{4\}\{1,2\},\{1,3\},\{1,4\}\{2,3\},\{2,4\},\{3,4\}\{1,2,3\}\{1,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\},\{2,3,4\}$ The intersection of a  $B_{g^{**}}$ -closed set and {3} is again a  $B_{g^{**}}$ -closed set. **Remark 3.32:** If A and B are B<sub>g\*\*</sub>-closed then their union need not be B<sub>g\*\*</sub>-closed. The above Remark can be proved by the following Example.

**Example3.33:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{1,2\}\}$  Here A={1} and B={2} are B<sub>g\*\*</sub>-closed. But AUB={1,2} is not B<sub>g\*\*</sub>-closed set.

Theorem 3.34: If A is both g\*\*-open and Bg\*\*-closed then A is b-closed.

**Proof:**Since A is  $g^{**}$ -open and  $B_{g^{**}}$ -closed in X,bcl(A) $\subseteq$ A.But always A $\subseteq$ bcl(A).Then A=bcl(A).Hence A is b-closed.

**Theorem 3.35:**For x  $\epsilon$ X,the set X-{x} is B<sub>g\*\*</sub>-closed or g\*\*-open.

**Proof:**Suppose X-{x} is not  $g^{**}$ -open,then X is the only  $g^{**}$ -open set containing X-{x}. This implies bcl(X-{x})  $\subseteq$  X.Then X-{x} is B<sub>g</sub><sup>\*\*</sup>-closed in X.

**Theorem 3.36:** If A is  $B_{g^{**}}$  closed and  $A \subseteq B \subseteq bcl(A)$  then B is  $B_{g^{**}}$ -closed.

**Proof:**Let U be a g\*\*-open set of X such that  $B \subseteq U$ . Then  $A \subseteq U$ . Since A is bg\*\*-closed then  $bcl(A) \subseteq U$ . Now  $bcl(B) \subseteq bcl(bcl(A)) = bcl(A) \subseteq U$ . Therefore B is  $B_{g^{**}}$  closed in X.

**Theorem 3.37:** Let  $A \subseteq Y \subseteq X$  and suppose that A is  $B_{g^{**}}$  closed in X, then A is  $B_{g^{**}}$  closed relative to Y.

**Proof:** Given that  $A \subseteq Y \subseteq X$  and A is  $B_{g^{**}}$ -closed in X. To show that A is  $B_{g^{**}}$ -closed relative to Y. Let  $A \subseteq Y \cap U$ , where U is  $g^{**}$ -open in X. Since A is  $B_{g^{**}}$ -closed,  $A \subseteq U$ , implies  $bcl(A) \subseteq U$ . It follows that

Y ∩bcl(A) ⊆Y ∩ U.Thus A is  $B_{g^{**}}$ -closed relative to Y.

**Theorem 3.31** Suppose that  $B \subseteq A \subseteq X$ , B is  $B_{g^{**}}$ -closed set relative to A and that A is both  $g^{**}$ -open and  $B_{g^{**}}$ -closed subset of X, then B is  $B_{g^{**}}$ -closed set relative to X.

**Proof:** Let  $B \subseteq G$  and G be an open set in X. But given that  $B \subseteq A \subseteq X$ , therefore  $B \subseteq A$  and  $B \subseteq G$ . This implies  $B \subseteq A \cap G$ . Since B is  $B_{g^{**}}$ -closed relative to A,  $A \cap bcl(B) \subseteq A \cap G$ . Implies  $(A \cap bcl(B)) \subseteq A \cap G$ . Thus  $(A \cap bcl(B)) \cup (bcl(B))^c \subseteq G \cup (bcl(B))^c$ . Implies  $A \cup (bcl(B)^c \subseteq G \cup (bcl(B))^c$ . Since A is  $B_{g^{**}}$ -closed in X, we have  $bcl(A) \subseteq G \cup (bcl(B))^c$ . Also  $B \subseteq A$ 

implies  $bcl(B) \subseteq bcl(A)$ . Thus  $bcl(B) \subseteq bcl(A) \subseteq G \cup (bcl(B))^c$ . Therefore  $bcl(B) \subseteq G$ , since bcl(B) is not contained in  $bcl(B)^c$ . Thus B is  $B_{g^{**}}$ -closed set relative to X.

## IV. B<sub>G\*\*</sub>-CLOSED SET IS INDEPENDENT OF OTHER CLOSED SETS

**Remark 4.1:** The following example shows that the concept of W-closed and  $B_{g^{**}}$ -closed sets are independent. **Example 4.2:** Let X={1,2,3} with the topology  $\tau = \{\emptyset, X, \{2\}\}$ . In this topological space the subset A={2} is W-closed but not  $B_{g^{**}}$ -closed set. Also the subset B={1} is  $B_{g^{**}}$ - closed but not W-closed.

**Remark 4.3:** The following example shows that the concept of sg-closed and  $B_{g^{**}}$ -closed sets are independent. **Example 4.4:** Let X={1,2,3} with the topology  $\tau_1 = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$ . In this topological space the subset A={1,2} is sg-closed but not  $B_{g^{**}}$ -closed set. For the topology  $\tau_2 = \{\emptyset, X, \{1\}, \{1,2\}\}$ . In this topological space the subset B={1,3} is  $B_{g^{**}}$ -closed but not sg-closed set.

**Remark 4.5:** The following example shows that the concept of gp-closed and  $B_{g^{**}}$ -closed sets are independent. **Example 4.6:** Let X={1,2,3} with the topology  $\tau_1 = \{\emptyset, X, \{1\}\}$ . In this topological space the subset A={1,3} is gp-closed but not  $B_{g^{**}}$ -closed set. For the topology  $\tau_2 = \{\emptyset, X, \{1,3\}\}$ . In this topological space the subset B={1} is  $B_{g^{**}}$ -closed but not gp-closed set.

**Remark 4.7:** The following example shows that the concept of g-closed and  $B_{g^{**}}$ -closed sets are independent. **Example 4.8:** Let X={1,2,3} with the topology  $\tau_1 = \{\emptyset, X, \{1,3\}\}$ . In this topological space the subset A={1} is  $B_{g^{**}}$ -closed but not g-closed set. For the topology  $\tau_2 = \{\emptyset, X, \{1,3\}\}$ . In this topological space the subset B={1,2} is g-closed but not  $B_{g^{**}}$ -closed set

### REFERENCES

- Ahmad Al-Omari and Mohd. Salmi Md. Noorani, On Generalized b-closed sets. Bull. Malays. Math. Sci. Soc(2) 32(1) (2009), 19-30
- [2]. Andrijevic, Semi-pre open sets mat. Vesnik 38 (1) 1986, 24-32.
- [3]. D.Andrijevic, b-open sets, Mat.Vesink, 48 (1996), 59-64.
- [4]. S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J.Pure Applied Maths 21 (8) (1990) 717-719.
- [5]. P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets on topology, Indian J.Maths 29 (3) (1987) 375-382.
- [6]. J.Dontchev, On generalizing semipreopenset, Mem. Fac. Sci. Kochi Ser. A, Math., 16(1995), 35-48.
- [7]. Y.Gnanambal, On generalized Preregular closed sets in topological spaces, Indian J.Pure. Appl.Math., 28(3) (1997), 351-360.
- [8]. N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [9]. Levine.N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36 41.
- [10]. H.Maki,R.Devi and K.Balachandran,Associated topologies of generalized α-closed sets and α-generalized closed sets Mem.Fac.Sci.Ko
- [11]. H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.
- [12]. H.Maki, J.Umehara and T.Noiri, Every topological space in pre-T1/2, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 33-42
- [13]. Mashhour.A.S, Abd.EI-Monsef.M.E. and EI-Deeb.S.N., On Pre-continuous and weak pre-continuous mapping, Proc.Math., Phys.Soc.Egypt, 53 (1982), 47 - 53.
- [14]. S.Muthuvel and R,Parimelazhagan, (2012)b\*-Closed Sets in Topological Spaces, Math.J. 6, ,47,2317-2323.
- [15]. Njastad.O, On some classes of nearly open sets, Paci\_c J.Math., , 15(1965), 961-970.
- [16]. Omari.A.A and Noorani .M.S.M, On Generalized b-closed sets, Bull.Malays. Math. Sci.Soc(2) 32 (2009), 19 30
- [17]. A.Poongothai and R.Parimelazhagan (2012), Sb\*-closed sets in topological spaces, Int. Journal of Math.AnalysisVol.6, 2012, no.47,2325-2333
- [18]. Sundaram, P. and Shiek John, M., (2000) On w-closed sets in Topology, Acta ciencia Indica, 4,389-392.
- [19]. Pauline Mary Helen M,g\*\*-closed sets in Topological spaces, International Journal of Mathematical Archive- 3(5),2012,2005-2019.
- [20]. Veerakumar.M.K.R.S, Between closed sets and g-closed sets Mem.Fac.Sci.Kochi.Univ.Ser.A, Math,21 (2000), 1-19.

A.Punitha Tharani" Bg\*\*-Closed Sets In Topological Space" International Journal of Computational Engineering Research (IJCER), vol. 08, no. 11, 2018, pp 57-60

\_\_\_\_\_