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ABSTRACT

Tingley’s problem asks whether every surjective isometry between the unit spheres of two Banach
spaces admits an extension to a real linear surjective isometry be- tween the whole spaces. In this
paper, we give an affirmative answer to Tingley’s problem when both spaces are preduals of von
Neumann algebras, the spaces of self-adjoint operators in von Neumann algebras or the spaces of
self-adjoint normal functionals on von Neumann algebras. We also show that every surjective
isometry between the unit spheres of unital Cx -algebras restricts to a bijection between their
unitary groups. In addition, we show that every surjective isometry between the normal state
spaces or the normal quasi-state spaces of two von Neumann algebras extends to a linear surjective
isometry.
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I.  INTRODUCTION

In 1951, the study of isometries between operator algebras began in [10]. In that paper, Kadison proved
that every complex linear surjective isometry between two unital C*-algebras can be decomposed as the
composition of a Jordan *-isomorphism and the multiplication by a unitary. Since then, linear isometries
between operator algebras have been considered in various settings by many researchers. For example, see [7]
and [20]. which contain results and references concerning generalizations of Kadison’s theorem to thoroughly
diff erent directions.

On the other hand, the Mazur—Ulam theorem states that every surjective 1sometry between two real
normed spaces 1s affine. This result attracted many mathematicians, and 1sometries without assuming affi nity
were considered i many cases. The symbol S(X) denotes the unit sphere (1.e. the subset of the elements
with norm 1) of a Banach space X. while the notationByx means the closed unit ball of X. What we focus
on in this paper 1s the following problem. which is closely related to the Mazur—Ulam theorem.

Problem 1.1. Let X and Y be two Banach spaces and T : 5(X) — S(Y) be a surjective 1sometry. Does T
admit an extension to a real linear surjective isometry T : X — ¥?

The first contribution to this problem dates back to 1987, and 1t 1s due to Tingley [24]. so this problem
1s nowadays called Tingley's problem (or the surjective 1sometric extension problem). More than 30 years
have passed smce the birth of this problem, but the answer in general situations 1s yet far from having
been achieved. Indeed, it 1s said that Tingley’s problem 1s unsolved even in the case X = Y and X 1s two
dimensional. However, until now, no counterexamples for Tingley's problem have been found. Moreover, in
many cases (including the cases of most of classical real Banach spaces and some special Banach spaces),
affirmative answers have been given for Tingley’s problem. The survey [3] contains good expositions and
references on Tingley’s problem.
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Tingley’s problem in the setting of operator algebras was first considered by Tanaka [22]. and he later
solved Tingley’s problem affi rmatively when X and Y are finite von Neumann algebras [23]. Recently.
Fernandez-Polo and Peralta generalized this result to the cases of general von Neumann algebras [8]. On
the other side. Fernandez-Polo. Garcés, Peralta and Villanueva solved Tingley’s problem positively when X
and Y are the spaces of trace class operators on complex Hilbert spaces [6]. See Introduction of [8] for the
latest developments in this field. It 1s commeon to use the following strategy to solve Tingley’s problem for
operator algebras. First we detect some substructures of the unit spheres such as unitary groups and minimal
or maximal partial 1sometries. In this step, the facial structure of unit balls plays a crucial role. Second we
construct the only one candidate for the real linear extension which i1s determined by such substructures.
And finally we show that this linear mapping 1s the extension we wanted.

In this paper, applying some versions of this strategy, we give several new results concerning Tingley’s
problem in the setting of operator algebras.

In Section 2, we summarize some known results about the facial structure of operator algebras and
(pre)duals (due to Akemann and Pedersen [1]) and its application to Tingley’s problem. which are used in
the later sections.

In Section 3, we show that every surjective isometry between the unit spheres of two unital C *-algebras
restricts to a bijection between their unitary groups. In the proof, we detect the unitary group from extreme
points in the unit ball. Using the surjective 1sometry between unitary groups and the result due to Hator1
and Molnar [9]. we construct the only one candidate for the real linear 1sometric extension. Although the
author does not know whether this linear mapping actually extends the original mapping, we show that
Tingley’s problem for unital C*-algebras is equivalent to Problem 6.1

In Section 4, we give a positive answer to Tingley’s problem when X and Y are preduals, M. and N.
of von Neumann algebras M and N, respectively. In the proof, we use the structure of maximal faces,

and calculate Hausdorff distances between them to construct a surjective i1sometry between the unitary
groups of M and N . By the theorem of Hatori and Molnar, this mapping extends to a real linear surjective
1sometry from M onto N . This linear mapping canonically determines a real linear surjective 1sometry from
N. onto M., whose mverse mapping 1s shown to be the extension we wanted.

In Section 5, we show that Tingley’s problem has an affi rmative answer when X and Y are the spaces
M., and N, of self-adjomnt operators in von Neumann algebras M and N , respectively. In this case, some
techniques used in sections before cannot be applied. Instead, we use the structure of projection lattices
and orthogonality combined with a theorem of Dye [4]. We also solve Tingley’s problem positively when

X and Y are the spaces M., and N, of self-adjoint elements in preduals of von Neumann algebras M
and N | respectively. Additionally, applying some discussions in this paper, we show that every surjective

isometry T S(Mx)N Myx = S(Nw) M Nws (resp. T - Bpyo DM = Byo Bl) between the normal
state spaces (resp. between the normal quasi-state spaces) of two von Neumann algebras M and N admits
a linear surjective isometric extension from M., onto N,,.

In Section 6. along the line of this paper, we list problems which seem to be open and new, with some

comments.
2. Facial structure of operator algebras and its use in Tingley’s problem

Recall that a nonempty convex subset F of a conveX set C in a Banach space is called a face in C if
F has the following property: if x, y€ C and Ax+(1— AW €E F for some 0 <A < 1. thenx,y € F . It
can be easily proved by Hahn—Banach theorem that for a Banach space X. a subseff oB, is a maximal
norm-closed proper face inB , if and only if F is a maximal convex subset of S(X) (see [23, Lemma 3.2]).
In order to attack Tingley’s problem, nowadays the following geometric property is known: every surjective
isometry between the unit spheres of two Banach spaces preserves maximal convex sets of the spheres
([2. Lemma 5.1(i0]. [21. Lemma 3.5]).
On the other hand, the facial structure of the unit ball of operator algebras and (pre)duals were thoroughly
studied by Akemann and Pedersen [1]. Let X be a real or complex Banach space and F © X. G © X* be
subsets. We define

F :=={f E€EBx= | fix)=1 for any x € F},
G- = {x € Bx | fix) =1 for anv f € G}.

Theorem 2.1 (Akemann and Pedersen [1, Theorem 5.3]). Let X be one of the following Banach spaces:
a C*—a!gﬁbrﬂ, the space of self-adjoint operators in a C*—ﬂlgﬁbra, the predual of a von Newmann algebra,
or the space of self-adjoint elements in the predual of a von Neumann algebra. (Consider X as a complex
Banach space in the first or the third case, and real in the other cases.) Then the mapping F »> F  is an
order-reversing bifection from the class of norm-closed faces in By onto the class of weak*-closed faces in

Byo. The inverse mapping is given by G »— G-
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Using this theorem as in the proof of Corollary 3.4 in [23] (or by Corollary 2.5 of [6], which can also be
applied in the situations of real Banach spaces), we obtain the following proposition. For the convenience
of the readers, we add a proof.

Proposition 2.2 (A version of [23, Corollary 3.4] or [6, Corollary 2.5]). Let A and B be C*-algebras, M and
N be von Neumann algebras and the pair (X, ¥ ) be one of the following pairs: (A, B), (Ass, Bsa), (M, N=)
0F (Myso, Nusa). Suppose T2 5(X) — S(Y') is a surjective isometry, Then for a subset F © 5(X), F is a norm-
closed proper face in By if and only if T(F) is in By. In particular, x € S(X) is an extreme point inBy if
and only if T(x) is in By,

Proof. Let F be a norm-closed proper face nB . By the preceding theorem and the Krein—Milman theorem,
we have

F=F)y= {F= -
feF feext(F)
Since F is a face, it follows that ext(F) C ext(By). Again by the preceding theorem. for every f €

ext(Bw ). {f} is a maximal norm-closed proper face in S(X). By the fact that T gives a bijection between
the classes of maximal norm-closed proper faces in unit balls. it follows that the set

TE)=T i = T ()

Feext(F) fEext(F)

We add a little more to these results.

Proposition 2.3 (See also [24, Section 4]). Let X and Y be Banach spaces and suppose that T - S(X) — S(¥)
is a surjective isometry.

(a) Let F < 5(X) be a maximal convex set. Then T(-F) = -T(F).
(b) Suppose (X,Y) is a pair as in the preceding proposition and let F C By be a norm-closed proper face.
Then T(—F)=-T(F).

Proof. (@) It suffices to show that —F ={x € S(X) | llx —yll =2 foranyy € F}. Let y, y= € F.
Then (ys + y2)/2 € F. In particular, | —y; — yall = lly, + yall = 2. Thus we obtain —F < {x € S(X) |
lix — yll =2 for any y € F}. Let x € S(X) and suppose llx — yll = 2 for all y € F. Then the open convex sets
S; ={B, €X |dist(By, F) < 1} = F +int By and S, == {F. € X | IZ: — xll < 1} = x +int By do not have a
common element. By the Hahn—Banach theorem, we obtain a functional f € S(X*) and a real number c € R
such that Re f(B,) > c for every B, € § and Re f(B.) < ¢ for every B, € $. Since Re f(x), Ref(y) € -1, 1]
for everyy € F and Re f(mtR) = ( -1, 1), we have ¢ = 0, Re f(x) =— 1, Re f(y) = 1 and thus f(x) =—-1
and f (y) = 1. It follows that f ~2(1)N B, < Bis a norm-closed face which contains F. By the maximality
of Fwe have f~1(1) =B . Thik x f~i B x =€ fFA(B) »x =. NB -F

(b) follows by (@) and the fact that every norm-closed face is the intersection of some maximal convex
sets 1 S(X) (see the proof of the preceding proposition). O

In fact, Akemann and Pedersen concretely described the facial structure of operator algebras and (pre)du-
als in order to prove Theorem 2.1.

Let A be a (not necessarily unital) C*-algebra. The partial order in the set of partial isometries in A is
given by the following: u majorizes (or extends) v if u = v +(1 —ww*)u(l — v*v). A projection p in the bidual
A#** (considered as the enveloping von Neumann algebra) 1s said to be open 1f there exists an increasing net
of positive elements in A converging to p in the g-strong topology of A**. A projection f£ A** 1s said to be
closed if 1 —p 1s open. A closed projection p m A** 1s compact if p=a for some norm-one positive element
a A. A partial 1sometry v A*#&elongs locally fo A if v¥v 1s a compact projection and there exists a norm-
one element x in A such that xv* = vwv*. See [1] for more information.
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Theorem 2.4 (Akemann and Pedersen [1]). Let A be a C*-algebra and M be a von Neumann algebra.

(a) For each norm-closed face F of By, there exists a unique partial isometry v belonging locally fo A such
that F = {x € B, | xv* = vww*}.

(b) For each norm-closed face F of B, there exists a unique pair of compact projections p, q such that
pg=0and F={x€B,_ | x(p—-q)=p+q}

fc) For each weak®-closed proper face G of Baa, there exists a unique nonzero partial isometry v belonging
locally to A such that G = {v}.

(d) For each weak®-closed proper face G of Bag_, there exists a unique pair of compact projections p, q such
that p+q #0, pg=0and G= {p — qh.

(e) For each o-weakly closed face G of By (resp. B, ), there exists a unique partial isometry (resp.self-
adjoint partial isometry) v in M such that

G ={x EBu | xv* = vv¥} =v + (1 —vww*)Byu (1 - v*v)

(resp. G={xEBp.. | xv= VQ} =v+(1l- vﬂjBM,,(l - VQ)).

(f) ) For each norm-closed proper face F of By (vesp. By, ), there exists a unique nonzero partial
isometry (resp. self-adjoint partial isometry) v in M such that F = {v}.

See also [5] for a variant of this result in the setting of TBW *-triples.
3. On Tingley’s problem between unital C=-algebras

For a unital C*-algebra A, the symbol@E(A) will denote the group of unitaries in A, andP (A) stands for
the set of projections in A. These substructures contain a lot of information about A. What we focus on in
this section 1s the group @A).

In the proof of [23, Theorem 4.12], Tanaka showed that if T : S(M ) — S(N ) 1s a surjective 1sometry
between the umit spheres of two finite von Neumann algebras, then T restricts to a biecfion between
their unitary groups, 1.e. T (B(M )) = EN ). Recently, this result was extended to the case of general von
Neumann algebras by Fernandez-Polo and Peralta [8, Theorem 3.2]. We further extend these results to the
case of arbitrary unital C*-algebras using somewhat a diff erent method. We would like to use the
notation
BX) = ext( B) for the set of extreme points ofBy where X 15 a Banach space.

Recall that. if A is a unital C*-algebra, then

B(A) = {x € 5(A) | (1 —xx*)A(1 — x*x) = {0}}

15 the set of maximal partial 1sometries m A and n particular B(A) — KA) (see for example [13. Theo-
rem 7.3.1]).

Lemma 3.1. Let A'be a unital C*-algebra and x o g{A). Then x is in g(A) if and only if the set 5 = ¥ e

@(A) | Ix+yll= 27 has an isolated point as a metric space.

The idea of this lemma comes from the easiest case A=C: forx EE(A)=BA)={BEC| |B| = 1}.
wesee A, = {ix, —ix}.

Proof. First realize A as a unital C*-subalgebra of some B(H) (the algebra of bounded linear operators on
a complex Hilbert space H).
Suppose x 15 in @(A). For y € A,. we have 2 = llx 2 ylIZ= I11 +y*y + (x*y + y*x)ll. Decompose H in the
form H = y*yH €D (1 — y*y)H. Using this decomposition, we express
5 yEH - ywH
1

=80 a 0 a @& .
-y yH -y JVH
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By the same decomposition, we can express

P 7* 'J*
L+yyx(xty+yx)= ~° (Elm+ %) i

Since 2 € 2E (B(y*yH)). by the norm cendition we obtain B, +Bf = 0 and B> = 0. Since x € E(A), 1t follows
that x*y € EA(A). Combining this with the equation

.. B 0 _ -m 0
XY= 0 0 = 0 0’

we have x*y € E(A) and the spectrum o(x*y) of x*y 1s a subset of {i, —i}. It follows that A, = ix(1 -
2P(A)) = i(1 — 2P(A))x, which has 1solated points +ix.

Next suppose x £ B(A) and y € A,. We show y 1s not 1solated i1 A,. We may assume xx* = 1. Suppose
(1-xx*)y=0.ForceT ={8BeC||B|=1}. set y; = (xx* + (1 — xx*))y (€ E(A)). Then we have

llx = y;.ll = llx £ (xx* +c(1l —xx* Nyl = l{xx* +T1 —xx*Nx xyll = lIx xyll = 2.

Hence y, € A,. Since y, — y(c — 1), y is not isolated in A,. Similarly, y is not isolated in A, if
(1 —x*x)y* = 0. In what follows, we assume (1 —xx*)y =0 = (1 - x*x)y*. Then we obtamn xx* = yy* and
XEX = yry.

Smnce y € E(A), we have (1 — yy*)A(1 — y*y) = 0. Taking the closure in the sot of B(H), we also have
(1 — ygg,)Amr(l - y*y) = 0. By the theory of von Neumann algebras, there exists a cenftral projection

pinA such that y: = yp 1s an 1sometry on pH and y- = y(1 - p) 15 a cowsometry (1.e. the adjoint
operator of an isometry) on (1 — p)H. Set x5 = xp and x> = x{l — pf Then it follows that xix; = yiy,.

Xx1X3 = yayi and Xox3 = yoya. XoX= = yaya. If xaxi 7= yayi of X3x2  yay.. then we have 2 =Ilx=yll =
max,= - Ix, £ y.ll = 2. a contradiction. It follows that xx* = yy* and x*x = y*y. The same discussion

as in the first half of this proof shows that there exists a projection g in A with g = xx* such that
y=1i(l-2g)x =i(xx* - 2q)x.

Suppose that g is 1solated in P(xx*Axx*). Let a € (xx*Axx*),. Since the mapping R 3t  elt9ge~it €
P(xx*Axx*) is norm-continuous, we obtain e“ge—" = g. By the Russo-Dye ‘rheorgm (see for example
Exercise 10.5.4 of [13]) it follows that g is central in xx*Axx*. In this case, we have y, = yxx* + (y cos# +
sin@)(1 —xx*) € E(A) for & € R, and simple calculations show that

1 " 1

E 4

V. (xtyg)= v ((x + y)xx*+ (xx(ycos@+sm))1 —xx ))

2 z

are partial 1sometries. In particular. y; € A, Since y; —y (& — 0), y is not 1solated in A,
If g1s not 1solated in POoctAxx®), take g, € POox*Axx*), n € N = {1, 2,...} such that g /= g, —
g(n — o0). Then we have y  i(xx* — 2g,)x = y,, EA, and y, —y(n —o0). O

Now we can prove the main theorem of this section.

Theorem 3.2. Let A and B be unital C*-algebras and T : S(A) — S5(B) be a surjective isometry. Then
T(BE(A)) = B(B).

Proof. We know by Proposition 2.2 that T (B(A)) = B(B) and by (b) of Proposition 2.3 that T (—x) = -T (x)
for every x € B(A). It follows that T (A,) = Ar (9 for every x € B(A). Therefore the preceding lemma
mpliesT(E(A)) = E(B). O

Recall the following theorem due to Hatori and Molnar [9]:

Theorem 3.3 (Hatori and Molndr [9, Theorem 1]). Let A and B be unital C*-algebras and T: B(A) — B(B)
be a surjective isometry. Then there exists a real linear surjective isometry T - A — B which satisfies
T (") =T (e for every @ € Ag. In fact, there exists a Jordan *-isomorphism J = A = B and a central
projection p € B such that '.':(x) = T(1)(pS(x) + (1 — p)t(O)*) for all x € A.
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Proof. First we show @®(u) = v for an arbitrary unitary u € E(A). Consider the functional calculus in A**,

and set Vi = UX{Re zzo}(lU), V2 = UX{Re m=o}U) € A** which are partial 1sometries belonging locally to A.
Take continuous functions f, g : T — {E € T | Re@ = 0} which satisfy the following two properties: f(E) =

B=g(E) forevery B €T with Re @ = 0, and Im f (E) > Im g(B) for every @ € T with Re B < 0. It follows
that v, is the maximum partial isometry in the collection of every partial isometry vo € A** which satisfies
F(uwvi = vovy and g(u)vi = vovy. Thus the minimum norm-closed face in B,y which contains both £ (u)
and g(u) is the face {x € S(A) | xv} = v,v¥}. Since £(u), g(u) € e”*==_ it follows that ®({x € S(A) | xv} =
vavih = {x € S(A) | xvi = vavi} Similarly, ®({x € S(A) | xvi = wvovi}) = {x € S(A) | xvi = vavi}
Since {x € S(A) |xvi =vivi} N {x €S(A) |xvi = vovi }= {u}, we obtain ®(u) =u.

Next we show ©(a) = a for an arbitrary positive invertible element @ € S(A) NA-1 NA. Set ¢ =
min(o(a)) (> 0) and

S={uedA) | lu-al=1-c}={uv€E TA) | lu-D(a)l=1-c}.

We see Re A = ¢/2 for every A € o(u), u € S. Assume there exists a A € o(u) such that Re A < ¢/2.
Realizing A C B(H). we obtain unit vectors &, € H, n € N such that llu§, — Al = 0 (n — o). Then it

follows that lim,_{ ué, &) = A and (af, &) = c for every n € N. We have llu — all =z 1, a
contradiction.

We consider the surjective isometry v u* on S. By the observation above, 1t follows that

[
los —ull =11 - w2l =11 + w1 -wlz 1+ 5 11—yl

for every u € S. Since 1¥ =1 €S, 1 +¢/2 > 1 and S is bounded, it follows by [25. Theorem 1.2] that
t(1) =1 for every surjective isometry 7 : S — 5.

Simnce 11 - ®(a)ll =111 —all =1 -¢ < 1, the polar decomposition ®(a) = v|®(a)| satisfies v € B(A). For
u €S, we have

The Russo—Dye theorem shows that such a linear isometry 15 unique. In order to solve Tingley’s problem

between unital C*-algebras, it suffices to show that @ = T —* T : S(A)— S(A) (in the sense of the
preceding theorems) is equal to the identity mapping on S(A). Before we end this section we give an

additional partial result. The notation A-* means the set of invertible elements for a unital C*-algebra A.

Proposition 3.4. Let A be a unital C*-algebra and @ : S(A) — S(A) be a surjective isometry such that
@(ej") —_— for every a € A, Then @(x) = x for every x € S5(A) N AL,
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Proof. First we show @(u) = v for an arbitrary unitary v € B(A). Consider the functional calculus in A**
and set vi = UX{Re zzo}l), Va = UXiRe n=o}(U) E A**_which are partial 1sometries belonging locally to A.
Take continuous functions f, g : T — {& € T | Re@ = 0} which satisfy the following two properties: f(E) =
B=g(E) forevery B € T with Re@ = 0, and Im f (B) > Im g(F) for every B € T with Re B < 0. It follows
that v, 15 the maximum partial 1sometry in the collection of every partial isometry vo € A*#* which satisfies
fluwi = vevd and g{u)vy = vovi. Thus the minimum norm-closed face in B, which contains both f(u)
and g(u) is the face {x € S(A) | xvi = v,vi}. Since f(u), g(u) € e”*==_ it follows that ®({x € S(A) | xvi =
vavi}) = {x € 5(A) | xvi = vyvj}. Similarly, ®({x € S(A) | xvi = vavi}) = {x € 5(A) | xvi = vavi}.
Since {x € S(A) | xvi =v.vi} N {x ES(A) |xvi = vavi }= {u}. we obtain ®(u) = u.

Next we show &(a) = a for an arbitrary positive invertible element @ € S(A) NA-1 NA. Set ¢ =
min(o(a)) (> 0) and

S={ueld@ | lw-al=1-c}={ueBA) | llu-Ba)l=1-c]}.

We see Re A = ¢/2 for every A € o(u), v € S. Assume there exists a A € o(u) such that Re A < ¢/2.
Realizing A € B(H), we obtain unit vectors §, € H. n € N such that llu§, — A€ Il = 0 (n — o). Then 1t

follows that lim,—.{ ué, &) = A and (aé, &) = c for every n € N. We have llu —all =z 1, a
contradiction.
We consider the surjective 1sometryu  u*® on S. By the observation above, 1t follows that

lus —wll =11 —w2ll=I1+uw)(1-wllz 1+ <

5 I -l

for every u € S. Since 1¥ =1 €8S, 1 +¢/2 > 1 and S is bounded, it follows by [25. Theorem 1.2] that
t(1) =1 for every surjective isometry T : S — §.

Since 11 - @(a)ll =11 —all =1 - c < 1. the polar decomposition $(a) = v|L(a)| satisfies v € E(A). For
u €8, we have

llvurv — D(a)ll = llurv — | D(a)|l = lvFu — |2(a)|ll = llu - D(a)ll =1 -c.

We see Re A = ¢/2 for every A € o(u), u € S. Assume there exists a A € o(u) such that Re A < ¢/2.
Realizing A € B(H), we obtain unit vectors &, € H, n € N such that llu§, — A, Il = 0 (n — oo0). Then 1t

follows that lim,—.(ué, &) = A and (af, &) = c for every n € N. We have llu — all 2z 1. a
contradiction.
We consider the surjective 1sometry u  u*® on S. By the observation above, 1t follows that

[
lu* —ull=I1 —w2ll =11 +w(l-—willz 1+ 7 N1 -ull

2

for every u € S. Since 1¥ =1 €S, 1+¢/2 > 1 and S 1s bounded, it follows by [25, Theorem 1.2] that
t(1) =1 for every surjective 1sometry 7 : § — §.

Since 11 - @(a)ll =11 —all =1 -c < 1, the polar decomposition ®(a) = v|®(a)| satisfies v € B(A). For
u €S, we have

llvurv — @(a)ll = llu*v - |2(@)]ll = Iv*u - |[2@)|ll = lu - 2@l =1 -c.

Thus the mapping u vu*v 1s a surjective 1sometry on S. Therefore, by the commented result in [25], 1t
follows that 1 = v1*v = v2. Combining this with the equation l* —|®(a)|ll= Il —&(a)ll = 1 — c. we obtain
v=1.1e. ®(g) is positive.

Take the continuous function fo : [c, 1] = {8 €T |Im B = 0} which is uniquely determined by the
condition [t — fo(t)] =1 + ¢, t € [¢, 1]. Put w = fo{a@). Then (g — w)/(1 + ) 15 a unitary. Assume ®(a) ¢ a.
Then there exist A > 0 and unit vectors n, € H, n € N such that I{(®(a) — a)n, — An,ll = 0 (n = o). We
have
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llvurv — @(a)ll = lu®v - |2(a)|ll = Iv*u - |[2(@)|ll = llu - 2(a)l=1-c

Thus the mapping v vu*v 1s a surjechive 1sometry on S. Therefore, by the commented result in [25], 1t
follows that 1 = v1*v = v2. Combining this with the equation v —|®(a)|ll= 1 —&(a)ll = 1 — c. we obtain
v=1.1e. ®(a) is positive.

Take the continuous function fo - [c, 1] = {# €T |Im B = 0} which 1s uniquely determimed by the
condition |t — fo(t)| = 1 + ¢, t € [¢, 1]. Put w = fy(a). Then (a — w)/(1 + ¢) 15 a unitary. Assume $(a) ¢ a.
Then there exist A > 0 and unit vectors g, € H. n € N such that I{®(a) — a)n, — Al = 0 (n = o). We
have

{ (@(@) - win, (a-wn,) =((®@) -am, @-whn,) +(1+d .

Y —
We know that lim,— {®(a) —a— A, (@ —w)n,»=0. Since Re(t — fo(t)) = ¢2+2c for every t €[c 1],
we also know that s

ReA{n ,(a-win L)?Kj/ln{n ,((a—w)+ (a - Yy 2A c2+2c>0
n n - n

n

for every n € N. We have

(1+0)?=Illd(a)-wllla—wll = Iim Re( (&(a) - win, (@ — win,)

f— oo

= I ReA( n, (@-win,) +(1+0)° > (1+0)°
n— oo

a contradiction. Therefore we obtain ®(a@) < @ and similarly a = ®(a).

Lastly we show @(x) = x for an arbitrary x € S(A) N A—t. The polar decomposition x = uo|x| satisfies
Uo € E(A) and [x]| € S(A) N A-t N A-. Consider the surjective 1sometry ¥ : S(A) — S(A) which i1s defined
by ‘F(y) = ugt®(uoy). y € S(A). Then the first part of this proof shows ¥(u) = u for every u € B(A). The
second part of this proof shows [x| = ¥(|x|) = u; *®(us|x|). hence B(x) = ®(uo|x|) = uo|x| =x. O

4. Tingley’s problem between preduals of von Neumann algebras

In this section, we present an affirmative answer to Tingley’s problem when the two spaces are pred-
vals of von Neumann algebras. Our theorem extends the result of Fernandez-Polo, Garcés, Peralta and
Villanueva [6], in which Tingley’s problem for the spaces of trace class operators on complex Hilbert spaces
15 solved affi rmatively.

Let M be a von Neumann algebra. By (f) of Theorem 2.4 we know that for every norm-closed proper
face F C By, there exists a unique nonzero partial 1sometry v € M such that F = {v}-.

Recall that for a metric space (X, d) and nonempty subsets X, X> © X, the Hausdorff distance between
X, and X, 15 defined by

dy(Xy X2) = max{ sup j.nfn dix, y), sup 1inf d(x, y)}.

xEX, VEX pEX XEXT

Endow the space of nonzero partial isometries in M with the distance 8,(v, w) = dy( v i W §. Ht is
easy to show that &, actually satisfies the axioms of distance.)
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Lemma 4.1. Let M € B(H) be a von Neumann algebra.

(a) Let wi, wo € M be nonzero partial isometries with wiw: = wawz or wawi = wawi. Then llwa — wall =
Su(wy, wa).
(b) llu —vll = 64(u, v) for every u € A(M) and every v € B(M).

Proof (@) Suppose wiw, = wiw.. Let ¢ € {w,}. Then defining ¢(x) = Pp(w,wix) (x € M), we have
P € {wx} and

I — il = Np((wawd — wawi) DIl = lwywd — wawill = llwy — wall.
Therefore we obtamn  sup mf g — Pl < llwy — well. Similarly we can see  sup inf_ ligp— Pl =
p={wik d={wd we{wa} =i}
lwy — well, and therefore §,(wy, wa) = llwy — wsll. A similar discussion can be applied in the case wyw; =
wawi. too.
(b) Suppose first that u, v € B(M). The inequality §4(u, v) < llu — vl follows from (@). We may assume
u = 1. In that case, we have llu — vll = lI1 — vl = sup,=.0 |1 - A|l. Take As € a(v) which attains this

supremum. Since Ao € o(v). there exist § € H with £, Il = 1, n € N such that v, - A€l = 0 (n — o0).
Define ¢, = we,uvi, = { - &, vEy) (€ {v}). Then for every ¢ € {1} we have

I — @oll 2 [P(1) — pal1)] = |1 = { & VE) | = |1 = Ao] = 1L — VIl (n — oo).

Therefore we obtam &4(1, v) = lI1 — vll. The proof when u, v € B(M) 1s completed.

Let us assume next v & B(M). We may assume v = 1 and vw* /= 1. In that case, 1t follows that
lu —vll =11 —vll = 2. Take a unit ve%or & € (1 - vw*)H. Smce v*v(l —vw*) = 1 —vv*, the system
{V'E =y is orthonormal. Define n, = " (-1)8'€ and qu'n:: n—‘wy ., (€ {v}) tor n € N. Then for

k=1 non

every ¢ € {1} we have

I —¢||z|¢;(1)—:p(1)|=-—”‘1 —1-=20=1 5 (h o0

n . n
It follows that &4(1, v) = 2. The mequality 64(1, v) < 2 1s trivial. O

Note that using the same discussion as i (b), we also gamn llw, — wall = dy(wy, w2) for every pair of
nonzero partial isometries wa, w= € M with wiw: = wiw= and wawi = wawi.

The author does not know whether I —wll = &4(v, w) holds for every pair v, w €E(M ), but the following
lemma which 1s similar to Lemma 3.1 holds.

Lemma 4.2. Let M be a von Neu\rfamm. algebra and x be in B(M). Then x is in B(M) if and only if the set
ﬁx ={y EBM) | by(x, £y) = 2} has an isolated point with respect to the metric §,.

Proof. The proof 1s parallel to that of Lemma 3.1.

Suppose x 15 i1 B(M ). The preceding lemma shows that d4(x, y) = lx — yll for every y € B(M ). By
the same discussion as in the proof of Lemma 3.1, we obtain F\, = i(2P(M ) — 1)x (< B(M )), which have
1solated points #ix.

Next suppose x & BA(M) and y € A,. We again use the argument as m the proof of the Lemma 3.1.
Note that the operators Voo y;.;, yn have the same initial spaces as y. Hence it 15 not diffi cult to see that the

A
preceding lemma shows y is not isolated in A, with respect to the metric 5. O

We state the main theorem of this section:

Theorem 4.3. Let M and N be von Neumann algebras and T : S(Mx) — S(N«) be a surjective isometry.
Then there exists a unique real linear surjective isometry T - Ms — Na which extends T.
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We start proving.

Since T gives a bijection between the classes of maximal convex sets in unit spheres, a bijection T, :
(M) — B(N) 15 deternuned by T({v}) = {Tu(v)}, v € B(M) (see Proposition 2.2). We also have ':7\'1(Av)
A =5, forémy v (M). By the preceding lemma and (a) of Proposition 2.3, T, restricts to a bijection
between unitary groups. Moreover, by (b) of Lemma 4.1, this 1s a surjective 1sometry between unitary groups.
By the theorem of Hator1 and Molnar. there exists a unique real linear surjective isometry Ti-M >N
such that Ti(u) = 'F:.(u) for all u € e™= = B(M). Note that T: and Ta - are g-weakly continuous since
they can be expressed by Jordan *-isomorphisms.

Now we can construct a real linear surjective isometry T, : N* — M* which is canonically determined
by T, as the following:

(T2)(x) = (Re @)(T100) — i(Re @)(Tu(ix)), ¢ EN*x EM.
-~ . -1
By the o-weak continuity of 77 and Ty . T restricts to a real linear surjective 1sometry from N, onto M..
We would like to show that .71 : M, — N, 1s the extension we wanted. In order to show this, it suffices
to show that the surjective isometry @ = T, ¢ T : S(My) — S(M..) is equal to the identity mapping on
S(M+). We know that @({u}) = {u} for every u € B(M).

Let v € M be a nonzero partial 1sometry which has a unitary extension u. Then {v} = {u} N {2v - u},
and since u and 2v—u are unitaries we have @{ ) =¥}

Let v & be a nonzero partial isometry which does not admit a unitary extension. Then there exist
nonzero sub-partial 1sometries vy, v € M of v which have unitary extensions and satisfy v = vy+v,. (Indeed,
we can take v, and v, as follows. Decompose the projection v*v to the sum of a finite projection p, and a
properly infinite projection p». Since v does not admuit a unitary extension, we have p, /= 0. Decompose p»

into the sum of mutually Murray—von Neumann equivalent projections pa: and paa. Then vi = v(p: + pai)
and v= = vpz» satisfy the condition. See for example [13, Chapter 6] for information about the comparison

theory of projections.) Since {v} 1s the minimum norm-closed face in By, which contains both {vi} and
{va}, we obtain ®&{ ¢ ) =¥}.

Therefore, i order to show that € 15 an identity mapping. it suffices to show $(¢) = ¢ for every normal
state ¢p on M (1.e. for every ¢ € {1} = S(M=) N M), Restricting our attention to ((supp ¢)M (supp ¢))=

which can be identified canonically with a subspace of M., we may also assume ¢ 1s faithful (1.e. ¢p(a) =0
for an arbifrary nonzero positive element g in M). We need some more preparations.

Lemma 4.4. Lef M be a von Neumann algebra, ¢ € My be a self-adjoint element and p € P(M). Then

gl = (Pp) - P(p-))* +4lg(p - pI=.

Proof. Take a partial 1sometry v € M such that vw* < p. v¥v < p+ and ¢(v) = llp(p - p+)ll. Then for every
¢ € R we have pcos@ - p+ cos &+ (v + v*) sin? € By,,. Take the supremum of

Ppcosd — pLeosd+ (v+v¥)sind) = (gp(p) — @(p+)) cosd + 2lgp(p - p)ll sin &
with respect to # ER. O

Lemma 4.5. Let M be a von Neumann algebra, ¢ be a normal state on M and p be in EM). Suppose
0 <(p) < 1. Put A :=¢p(p). Then the following two conditions are equivalent:

(a) There exist Y1 € {p} and Y= € {p*+} such that ¢ — il =2(1 - A) and lgp — Pl = 2A.
(by @d(p-p+)=0=adp+-p.
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Proof. (b) = (a) Put s =A-1d(p - p) and Y= = (1 - A)p(p+ - p).
(a) = (b) If (b) 15 not true, then llg(p - p+)ll > 0. Therefore, by the preceding lemma. we have

Iy —llz (1 -@p)) +@pt))® +4liglp - pHlIZ > (1 - ¢(p)) + p(p+),
g —all = (@plp)+ (1 - P(p-)))? + Hig(p - pI2 > @(p)+ (1 - P(p+)

for every ¢, € {p} and every ¢» € {p+}. It follows that llgp — P,ll + llgp — Il > 2. so (@) 15 not true. O
We return to the proof of Theorem 4.3. Our task 15 to show ®(¢) = ¢ for every normal faithful state

¢pon M. Set o = D(¢p) (E ®({1}) = {1}). Assume ¢ /= ¢o. Consider the Jordan decomposition of
¢ — o (/= 0). We obtain a nonzero projection p € P(M) such that ¢p(p) < ¢o(p) and

@ - p) = @olp - p), @0 - p+) = dolp - p), @(p* - p+) = Polp- - pL).
Put A = ¢(p). Then 0 <A < 1. Set
So ={Y €{1} | ¥(p)=A ¢(p-p+) =0=eh(p+ - p)}-
By the preceding lemma, S, 1s equal to
{we {1}y | g — sl = 2(1 - A), I — ¢p=ll = 24 for some P € {p}, P2 € {p-}}.

Thus the equations ®({p}) = {p}. ®({p+}) = {p+} mmply ®(So) = So. In particular, we have mnfy=s, -
Pl =1nfyes, lIpo — ll. However, Lemma 4.4 implies

;g; lp — Yl =l — (B(p - p)+ dlp= - p)Il = 2ligp(p - p-)lI

and

inf |iho — )] = inf
P=Se Y=Sa

= 4(golp) — P(p))* + 4lip(p - pHIII=.

((dolp) — ¢(p)) - (@olpt) — Y(p))* + 4lp(p - pDIZ

We have a contradiction. The proof of Theorem 4.3 1s completed. O

Corollary 4.6. Let A and B be C*-algebras and T : S(A*)— S(B*) be a surjective isometry. (We do not
assume A or B is unital.) Then there exists a unigue real linear surjective isometry T : A* B* which
extends T.

Proof. We know that A* and B* can be considered as the preduals of the enveloping von Neumann algebras
A#* and B**_ respectively. Thus we can apply Theorem 4.3. O

5. Tingley's problem between the spaces of self-adjoint elements

To solve Tingley's problem between the spaces of self-adjoint elements i (preduals of) von Neumann
algebras, it seems to be diffi cult to make use of the set of self-adjoint umitaries because the theorem of
Hator1 and Molnar (Theorem 3.3) cannot be applied in this case. What we wuse in this section i1s the
structure of projection lattices of von Neumann algebras, but note that in general a surjective isometry

between projection lattices cannot be extended to a linear surjective isometry. For example, every bijection
from P(/=) onto itself 15 automatically 1sometric.

However, combining the metric condition with a condition about orthogonality, we see that a mapping
between projection lattices can be extended linearly. We rely on the following theorem due to Dye [4]. Let
M, N be von Neumann algebras. A bijection T: P(M ) — P(N ) (or P(M ) \ {0} — P(N ) \ {0}) 15 called an

orthoisomorphism 1if for any projections p, g € P(M) (or P(M) \ {0}), pg =0 == T(p)T(q) = 0.

Theorem 5.1 (Dye [4, Corollary of Theorem 1]). Let M and N be von Neumann algebras and T - P(M) —
P(N ) be an orthoisomorphism. Suppose M does not have a type Iz summand. Then there exists a unique
linear surjective isometry T : My, — N, which extends @.
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The condition M does not have a I, summand 1s mevitable in general cases. In order to drop this
condition, we add another condition.

Proposition 5.2. Let M and N be von Neumann algebras and T : P(M ) — P(N ) be an orthotsomorphism.
Suppose lip - gll = 1®(p) — B(Ql for every pair of maximal abelian projections p, q in the type I summand
of M. Then there exists a unique linear surjective isometry T - My, — N, which extends T.

Proof. It suffi ces to show this proposition when M and N are of type I.. Since T restricts to a bijection
between the classes of central projections, it follows that M is *-isomorphic to N. We decompose M as
M = Max(A) using an abelian von Neumann algebra A. Then the element T 0 0 15 a maximal abelian

projection in N (= M=(A)). Taking an appropriate *-isomorphism from N onto Ma{A), we may assume

M=N=Mz(A).T lo0o _ lo® and every nonzero central projection in Ma(A) 1s fixed under T.
We also have
0 0 1 0 °© 1 0°_ 00
o1 77T oo =T 90 T o1
Thus T restricts to a bijection from
— — 0 0 1
=V =-p— = -
pEPMAY, P~ o | 0 1 > w1 MEEW
" 2
onto itself. There exist uy, w; € B(A) such that
1 1 1 11wy 1 1 i 11w
511 T3 w1 T 5 i1 =5 w1
Since
lus — will .
s 11 w 11 u - _~1 11 L LT L
= _ . = _
2 w1 2 u; 1 5 1 1 — o, 1 _ v,
5
and -
lus+wufl "1 1 w1 1 w77 "L 11 1 1 i1
_ - B C ~ . _
2 2 w1 7 w1 11 ~ =i 1
v 2 v 2 =,
it follows that (v, = u;)/ 2 € B(A). We define a linear surjective 1sometry T : Ma(A)., — Ma2(A)., by
- as a= +asf  _ a1 asUy + sl
T a- — asi ay T gauf + azuiE 104 3 ;@402 03 04 € Asg

1
Let ¢ € T. Consider the distance from 5o 1 to
111 1 -1 _ 111 °
2 11 7 2 -1 1 2 1 1 ’
1 1 and 1 1 —j _ 1 1 i -
2 =i 1 2 1 2> =i 1
Then we easily obtain
1 1 ¢ 1 1 usRec+uy;Ime _ 7 11
T 5 ¢ 1 = 2 wfRec+ujflmc 1 2 ¢ 1
A similar consideration shows that
1 uiRec+u;Imc
—1 1 c _ o .
T 1+ Icl= € lcl= = 1+ |¢] wiRec+ujlmec |c]®
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for an arbitrary ¢ € C. Since T is an orthoisomorphism, we obtain

=_1 g cq =_ 1 g cqg

1t el 1+ |co] G lelan
= (o7 A [ .
T n =T

2

n=1
n non

for arbitrary numbers c,, ..., ¢y € C and projections {g}#=1 c P(A) vith q, +++- + g, =1 € A. The set

e cq - NeN, c,...,.c €C,
=1 1+ ||'-7r'.||2 Cn'&n |Cn12ﬁ'n .Gyt gy € P(A)rl g, +-M +gy=1€EA

n

1s norm-dense in the class of maximal abelian projections in P(M (A4)). so wefhave £ on this class. Let

go 0 a1
0 go - 0 g

thogonal projections in A and pe 1s a maximal abelian projection in Ma(A). Since T 1s an orthoisomorphism.
we obtain T(p)=T(p). O

p € Mz(A). Then p can be decomposed as p = Po. where go and g, are mutually or-

We also make use of the following proposition, whose proof can be found in the paper of Akemann and
Pedersen [1].

Proposition 5.3 (See [1, Lemma 2.7]). Let A be a C*—ﬂlg::bm. p be a compact projection, q be an open
projection with p < q. Then there exist a decreasing net (x,) and an increasing net (y,) in A, such that

p =X, ¥, =q with the property x, converges to p and y, converges to q o-strongly 1n A**.
Using this, we obtain the following proposition.

Proposition 5.4. Let M be a von Neumann algebra and F  B,,,, be a norm-closed proper face. Then F is

o-weakly closed if and only if there exists a unique element xp € F such that llxe —yll < 1 for every y € F.

Proof. Suppose F is o-weakly closed. Then by (e) of Theorem 2.4 there exists a unique pair of projections
p,q € P(M) such that pg =0 and

F=p-qg+(1-p-qBum.(1-p-q)=p-q+Bla-—p-gmiz—p—g))..-

Then x == p — q 1s the only element which satisfies given conditions.
Suppose F 1s not o-weakly closed. By (b) of Theorem 2.4, there exists a unique pair of compact projections
p, q such that pg =0 and

F={yeEM,|yvip-q)=p+qt={yEM,|2p-1=y=<1-21q}

Since F is not o-weakly closed, at least one of p and g 1s not an element of P(M). Let x be in F. Then
0/=x—(p—q) E(l—p—gIM;(1—p—q). However, by the preceding lemma, there exist nets (ay), (bo) € F

such that a, \ 2p — 1 and b, ) 1 — 2q o-strongly in M** Hence we have x —ag, —» x—-2p+1 =
x-p-gn+(1l-p—-—g)and x-—b,—=x—-1+2g=(x—-(p—q))— (1 - p—q) (o-strongly), thus
Im lIx — a,ll > 1 or lim llx — bl > 1. Therefore. there exists no element x which satisfies the given

conditions. O

Therefore, we can detect o-weakly closed faces in B,,,, from the class of norm-closed faces only by the
metric structure of them.
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Recall that Mankiewicz's generalization of the Mazur—Ulam theorem states that every surjective isometry
between open connected nonempty subsets of real Banach spaces extends to an affine surjective isometry
between the whole spaces [15]. Now we can prove the following theorem:

Theorem 5.5. Let M, N be von Netmann algebras and T - 5(Msz) — S(Nso) be a surjective isometry, Then
there exr,:,fc a unique linear surjective isometry T - M., — N, which extends T.

Proof. Propositions 2.2 and 5.4 imply that for a o-weakly closed proper face F;C By, F> = T(F 4 1s
a o-weakly closed proper face m R and T(x ) = x . Therefore T restricts to a bijection between the

F F s
' : artial We also h T
== classes of gon%gréssoﬁ?nafgmt ¢ aisoha w (- Z ( ) for every nonzero self-

adjoint
partial isometry v @V by (b) of Proposition 2.3.

We know that T restricts to a byection fromBEM.,) (= 2§ 1 p (M& Pwhich 1s the collection of self-
adjoint unitaries in M ) onto (NE). Since u @) 15 central if and only if v 1s 1solated in  (ME,) (see
the last two paragraphs of the proof of Lemma 3.1), it follows that T(1) 1s cenfral in N.

Define T; : $(M.s) = S(Np) by Tax) == T(1)7'T(x). x € 5(M.;). What we have to do is to show
that the mapping T, admits a linear extension. We first show that T, restricts to an orthoisomorphism from
P(M)\{0} onto P(N)\{0}. We already know that T, restricts to an order-preserving bijection from P(M )\

{0} onto P(N )\{0}. Hence if suffices to show Ty(p+) = Ty(p)* for an arbitrary projection p € P(M N\{0, 1}.
Letp € P(M ) \ {0, 1}. Then T; restricts to a bijection from p + p+By,, p+ onto Ti(p) + Tu(p)*Bu.. Ta(p)*.

Identify p +pB . pt with pB e pt B mp ko and Tu(p) +T(p)B w. Tu(p)*t witlB ¢ (I NT (p) <)== -
It follows by Mankiewicz’s theorem that

L@ =T SWp-pH+1) = 1(Tip-pH)+ Tu(1) = 5(Tulp ~pH)+ 1)

Similarly we obtain Ti(pt) = (Tu(p+ — p) + 1)/2. Since Ty(p — p+) = -Ti(p+ — p). we obtain Ti(p) +
Tipt)=1ie Tu(pt)=Tup)*

Thus Proposition 5.2 implies that there exists a linear surjective 150111etr3 Ti © M.y = N such that
Tip) = Tl(p) for every p € P(M ) \ {0}. Let p € P(M ) \ {0}. Then both T; and T, restrict to surjective

isometries from p+p+By.,p+ onto T(p)+T(p) By, T(p)*. Moreover, they coincide on {pe € P(M)\{0} |
P < po}, Which is total in B(y:pp-),, identified with p+p-Bu., p+. Hence Mankiewicz's theorem implies that

Ti(x) = Tu(x) for every x p—+pt m,p+. Similarly we have Ti(x) En(x) for every B p+p+ .p-
By the functional calculus, we kjﬁaw that the set

p+p-By.pt U —p+p-Buy.p*
pEP(M)\{o}

1s norm-dense in S(M,,). Thus we obtain T:(x) = Ty(x) for every x € S(M,,). O

Remark 5.6. In [18, Theorem 5.8], using the Bunce—Wright-Mackey—Gleason theorem instead of Dye’s
theorem, Peralta gave another way to show the preceding theorem.

In order to think about the space of self-adjoint elements in the preduals of von Neumann algebras, we
again use the Hausdorff distance as in Section 4.

Lemma 5.7. Let M be a von Neumann algebra of type I.. Then for arbitrary maximal abelian projections
p, g € M we have 2lp — gll = 64(p, g).
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M. Mori / J. Math. Anal. Appl. s (vses) see—ses 15

Proof. As in the proof of Proposition 5.2, we can decompose M as M = Ma(A) using an abelian von

Neumann algebra A. We may assume p = 100 9 P(M2(A)).
Let g1, gz € P(M2(A)). If lig: — gll 1s suffi ciently small, for every ¢ € {qa}, 1t 1s not diffi cult to see that
¢(q2-g5) -

_$(az-0a) _ —Bda e

||(b(02 . Q'z}” ||¢(QE - QE)”

Thus the mapping P(M2(A)) 3 q »— 6u(p, g) 15 continuous in the norm metric.
Hence we may also assume that g can be decomposed to the following form: there exist N €N, gy, ..., gy €
P(A) and cy, ..., cy € C such that

and "qb - 15 small.

{g-} \

= =
N =1 = 1 a n i (1)
an EA, q 2 . |C |2 € M2 A~
n=1 n=1 1+ |Cn| nqn n qn
In this case, we easily have
1 0 1 1 C -
llp-gll= max ", = max Cp
p-a o s Alel
1=n=N I+ |2 @ el 1=n=N 1+ |eq|?
and
B 1 0 11 Cn 3 2l
6 (- @) = l.l';Iilr??;i;Né‘H 0 0 "1+|c|2 & lal® e 1+ |Cn|2.

In particular. we obtain 2llp —gll = éu(p,q). O
Let us recall the following well-known fact.

Lemma 5.8. Let M be a von Neumann algebra and ¢,  be normal states on M. Then we have g —pll =2
tf and only if supp g L supp .

Proof. Suppose llgp — Yll = 2. There exists a self-adjoint partial isometry v € M such that ¢(v) — (v) = 2.
We decompose as v = p — g, where p, ¢ € P(M ) are mutually orthogonal projections. Since ¢ and ¢ are
states, by the equation ¢(v) — (v) = 2. we have ¢p(p) = 1 and ¢p(g) = 1. thus supp ¢ <= p L g = supp ¢.
The other implication 1s clear. O

Now we are ready to prove the following theorem.

Theorem 5.9. Let M, N be von Newmann algebras ﬂ]}rd T 5(Mss) = S(N.so) be a surjective isometry.
Then there exists a unique linear surjective isometry T - Muss — Nus which extends T,

Proof. We know T ({1}) is a maximal convex set in S(Nu.,), so it can be written as uf, Where u N i€a self-
adjoimnt unitary. Consider the space (M, endowed with the metric §y. By Lemma 4.1, this metric 1s equal
to the norm metric. Thus the same discussion as in the second paragraph in the proof of Theorem 5.5

shows that u 15 central.

It suffices to show that the surjective 1sometry T, defined by Ti(¢) = (T@)( -u). ¢ € S(M..,) admits
a linear 1sometric extension. We can define 7> : P(M ) \ {0} — P(N )\ {0} by Tu({p}) = {T=(p)}.p €
P(M)\ {0}

By the preceding lemma, it is easy to see that for p, g € EM) \ {0} . pg=0==dist({p} . {¢ V=21t
follows that T» 15 an orthoisomorphism.
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Since every orthoisomorphism restricts to a bijection between the classes of maximal abelian projections
of the type I. summands, the preceding lemma implies that llp —gll = IT=(p) — T=(g) lfor arbitrary maximal
abelian projections p, g i the I. summand of M . Therefore by Proposition 5.2, there exists a linear surjective
1sometry Ta - M., — N, such that Ta(p) = Ta(p) for every p € P(M ) \{0}. Then we can show that (T= )~*

15 the lmear surjective 1sometry we wanted, using an argument similar to the proof of Theorem 4.3. O

Like Corollary 4.6, we have the following corollary.

Corollary 5.10. Let A and B be C'-algebras and T : S(Az,) — S(BE) be a surjective isometry. (We do
not asstme A or B is unital.) Then there exists a unique linear surjective isometry T : Ai, — Bl, which
extends T.

A similar discussion can be applied to prove the next theorem.

Theorem 5.11. Let M and N be von Neumann algebras.

(a) Suppose T: 5(Mx) N Mas — 5(Nx) N N+ 15 a surjective isometry between nermal state spaces. Then
there exists a unique linear surjective isometry T - M o = Nxo which extends T,

(b) Suppose the dimension of N is larger than one and T - Byy N Mus — By N Ne= 15 surjc;:’r{pe 1s0metry
between normal quasi-state spaces. Then there exists a unique linear surjective isometry T Mug —
Nuse which extends T,

Proof. (a) For p € P(M) \ {0}, we easily see that

{p} = {@ € S(M.) N M.... | I — Il = 2 for any ¢ € {p-}}.

It follows that

T{p})={p € SIN.IN N.x | Igp - T(YDll =2 for any ¢ € {p+}}
={¢ ES(N.) N Nyus | supp L supp T(¢) for any ¢ € {p+}}.

Thus there exists an orthoisomorphism T, : BM) \P } — P(N )\d Jhich satisfies T (D = {u(p) > for
every pEM®1 ) ‘0 } Then Lemma 5.7 and Proposition 5.2 show that T: admits a unique linear surjective
1sometric extension Ti : M, —N.,. Use discussions in Section 4 to show that this linear mapping 1s what
we wanted.
(b) First we see T(0) = 0. By [14, Lemma 3.6], we have T(0) = 0 unless N i1s equal to C &5 C or Mx(C).

It 15 easy to show T(0)=01f N =Ce& C or N = M=(C). Thus T restricts to a byection from S(M:=) N M-+
onto S(N,) NN+ Hence (@) shows that there exists a unique linear surjective isometry T M., — N, such
that T(¢) = T(¢) for all ¢ € S(M.)NM.... It suffi ces to show that © == 7= T - Bas o MM+ — Bpm N Mar
is equal to the identity mapping. Let ¢p € B NM - Since @ is a surjective 1sometry and @(¢y) = ¢ for

eVery ( € S(M.) N M- the set Mo *+
Se={PESMINM.s | =Y}
={¢ ES(M:) N Mx= | I —pll =1 - lighll}

15 equal to
Se(s) = {¥ € S(M) N Mo | (@) < ¢}

Note that (b) answers the question in [14. Remark 3.11] positively in the case p = 1. See also [12,
Theorem (4.5)], in which Kadison proved (a) with an additional assumption of affi nity, and [16, Theorem 4],
in which the case M =N = B(H) for (a) is solved.

6. Problems

The results in this paper may be extended to Tingley’s problem between various types of Banach spaces
concerning operator algebras. In this section, we give some problems which seem to have new perspectives
for the study of Tingley’s problem in the setting of operator algebras.

In Section 3, we showed that Tingley’s problem between unital C*-algebras has a positive answer if and
only if the following problem has a positive answer.
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Problem 6.1. Let A be a unital C*-algebra and @ : S(A) — S(A) be a surjective isometry. Suppose that
PD(x) = x for every x € S(A) N A~L Is @ equal to the identity mapping on 5(A)?

In Section 5, we used the projection lattice of a von Neumann algebra. Such a discussion is generally
impossible in the cases of general unital C*-algebras. So we propose the following problem.

Problem 6.2 (Tingley’s problem for the spaces of self-adjoint operators in unital C *—alg&bmsj. Let A, B be

unital C*-algebras and T : S(As,) — S5(Bs) be a surjective 1sometry. Does T admit an extension to a linear
surjective 1sometry T © Ao — Bi?

Since T(1) 15 1solated 112(B.,), we obtain that T(1) is a central self-adjoint unitary in B. By the theorem
due to Kadison in the paper in 1952 [11, Theorem 2], if such aT exists, then the mapping T(l)“f(-) i3
the restriction of a Jordan *-isomorphism from A onto B.

As another direction, we present the problem below.

Problem 6.3 (Tingley's problem for noncommutative I_p—spacss). Iletl <p<oop=2 M N be von
Neumann algebras and T : S(L°(M )) S(L°(N )) be a surjective isometry between the unit spheres of
(Haagerup) noncommutative ["-spaces (with respect to fixed normal semifinite faithful weights). Does T
admit an extension to a real linear surjective i'sc-n:us-tr:\:r T (M) — LP(N)?

See [19] for information about noncommutative [”-spaces. We mention that the noncommutative ("-space
L°(M) can be considered as the complex interpolation space between [*(M) = M, and L=(M) =M.

Noncommutative [7-spaces are strictly convex, so it is completely impossible to apply the facial method
which is wholly used in this paper. However, as the first step to challenge this problem, one may make use
of the following property.

Proposition 6.4 (Equality condition of the noncommutative Clarkson inequality, see [20, Theorem 2.3] for
references). Let 1 < p <eoo, p=2, M, N be von Newmann algebras and & n € L*(M). Then

IE + RllP + IE — nll? = 2(IENI° + IllP) == En* =0 = E*1).

Therefore, in the setting of Problem 6.3, for & nE S(L°(M)), én* = 0 = &*n if and only 1if T(EOT(M* =
0 =T (*T (n). See [20] for a result about complex linear surjective isometry between noncommutative -
spaces.

Note added in proof

After the submission of this paper, the author and Ozawa announced several results on Timngley’s problem
in [17] which contain an affi rmative solution of Problem 6.1.
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