
ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 07|| July – 2017 || 

International Journal of Computational Engineering Research (IJCER) 

  

www.ijceronline.com                                               Open Access Journal                                                 Page 98 

Towards A Modularity-Based Technical Debt Prioritization 

Approach 
 

1
srinivas Mishra, 

2
sai Krupa Nayak 

Gandhi Institute of Excellent Technocrats, Bhubaneswar, India 

Sanjay Memorial Institute of Technology, Berhampur, Odisha, India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 
Since Ward Cunningham coined the term technical debt (TD) in 1992, its usefulness to manage 

software projects more proactively and communicate to non-technical stake- holders has been widely 

appreciated [3, 13]. The metaphor refers to shortcuts taken during development which speed up 

development time in the short-run but hamper produc- tivity and software quality in the long-run [12]. 

Typical rea- sonsforintentionallyincurredTDincludebusinessneeds, 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted 

without fee provided that copies are not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. To copy otherwise,to 

republish,topostonserversortoredistributetolists,requirespriorspecific permission and/or afee.tight deadlines, 

strict budgets, or customer requirements [13]. However, TD may also be incurred unintentionally, e.g., 

by a development team lacking the skills to implement a better solution [3], by acquisition of another 

company, or evenduetoindifferencetowardstechnicaldebt[12].Several notions are associated with the 

TD metaphor, most impor- tantly principal and interest. Principal refers to the total  cost involved in 

repaying (i.e. fixing) a particular debt. In contrast,  interest denotes the cost incurred over  time due  to 

the debt through decreased software quality and produc- tivity [12]. Typically, principal and interest 

are measured  for each TD item and then accumulated for a broader pic- ture. A TD item is a 

particular debt such as a missing test case, an interface without proper documentation, or a code 

duplication. 

Explicitly managing TD has several benefits: it is an effective way to manage software projects 

proactively [9], streamline refactoring activities [19], and monitor develop- ment progress [9]. 

Proactive management is supported by monitoring trends and acting upon them. For  example, when a 

development team fails to write sufficient software tests, thereby incurring test debt, this problem can 

be identi- fied and addressed early [9, 10]. Streamlined refactoring de- cisions are supported by TD 

prioritization methods which facilitate identifying high-impact debt [19]. Lastly, active tracking of TD 

over time allows to evaluate if TD is handled successfullyorincurreduncontrollably,sothatcorrectiveac- 

ABSTRACT 

Technical debt (TD) refers to aspects in software develop- ment that can have short-term 

benefits (e.g., faster time-to- market) but may be detrimental in the future (e.g., due to 

decreased software modifiability). TD management (TDM) deals with activities to 

control TD, deciding which debt to repay and which to defer, and monitor the effect of 

the in- curred TD on business goals and productivity. Effective TDM requires 

prioritization of TD items in order to re-   pay the debt with the strongest negative effects 

on business priorities and software quality first. This paper gives an overview of existing 

approaches for TD prioritization and aims to analyze commonalities and differences in 

order to extract prioritization rules and metrics. We focus on archi- tecture, design and 

code debt that negatively impacts modu- larity and propose a prioritization approach for 

modularity- relatedTD. 

 

Categories and Subject Descriptors 

D.2 [Software]: Software Engineering; D.2.9 [Software Engineering]:Management—

costestimation,timeestima- tion,productivity 

 

Keywords 

technical debt, technical debt prioritization, design debt, modularity  

 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 99 

tion can be taken if needed[9]. 

Li et al. identified 8 TDM activities, one of which is TD prioritization. TD prioritization means 

ranking identified TD items according to a set of predefined rules, e.g., using  a cost-benefit approach 

[12]. For example, in an object- oriented project, one TD item may be a class violating the 

SingleResponsibilityPrinciple.Anotheronemaybelacking documentation for an interface. The first one 

may take more timetofixbutprobablyalsoprovideabiggerpositiveimpact on the software quality – this 

depends on the organization’s or the project’s priorities[12].  

Activities related to TDM which typically take place be- fore prioritization are TD identification to 

identify inten- tional and unintentional debt, and TD measurement to es- timate cost and benefit of TD 

items in one form or another. Further activities include TD monitoring to track changes in cost and 

benefit for TD items, TD repayment to eventually pay off selected TD items, and TD communication 

to raise awareness for TD among stakeholders [12]. 

TD prioritization is an essential part of the TDM process 

 

because it can be implemented in a way that it reflectsnot only technical, but also business 

priorities, and these ulti- matelytakeprecedenceinpractice[3].Severalframeworks 

forTDprioritizationhavebeenintroducedbyresearchers[9, 

6];however,Lietal.recentlyidentifiedseveralopenchal- 

lengesconcerningTDprioritization.Theseincludelacking 

toolsupport,waystoprioritizeTDtomaximizebenefit,and 

whichfactorstotakeintoaccountforprioritization.[12].  

Several approaches for TD prioritization have been intro- 

duced,mostofwhichrelyonsourcecodeand/ordesignmet- ric measurements to prioritize TD [19, 9, 6]. 

All approaches use some way to measure the severity of a particular TD item (e.g., its interest) and the 

effort involved in fixing it (i.e. its principal). These values can then be used to pri- oritize the TD 

items. We will explain some approaches in more detaillater. 

The modularity-based approach presented in this paper is mainly concerned with design debt reflected 

in source code. In this regard, it is complementary to the SQALE method. To our knowledge, there 

has been no previous research on TD related to modularity in particular. We address this gap and 

present a framework to prioritize this type of debt.  

Thepaperisstructuredasfollows.Insection2,weprovide the necessary background and analyze previous 

approaches to identify commonalities, differences, and limitations. Sec- tion 3 presents the modularity 

metrics identified in this pa- per and provides a brief rationale for each.  In section 4,   we demonstrate 

a TD prioritization approach based on the introduced metrics. Section 5 concludes this researc h by 

mentioninglimitationsofourapproachandfuturework. 

 

1. BACKGROUND 

Forthepurposesofthispaper,wewillfocusonarchitec- tural, design, and code debt. These correspond 

to three of the ten major types of TD identified by Li et al. in their recent mapping study [12]. We 

also note that we consider intentionalandunintentionaldebtequallysincebothcould be equally 

detrimental to softwaremodularity. 

TDM relies heavily on TD prioritization to streamline  maintenance activities.  Yet,  of the 29 tools 

evaluated by   Li et al., only the SQALE plugin for SonarQube and the Sonar TD plugin supported TD 

prioritization [12]. We will expand upon this area by addressing modularity as a sub- topic and hope to 

encourage similar research in other niche topics which can serve as a basis for a more comprehensive 

framework in thefuture. 

 

Existing TD PrioritizationApproaches 

Previous research has developed several TD prioritization 

approacheswhichexhibitmanycommonalitiesbutalsosome foundationaldifferences.  

 Finance-basedApproach 

Guo and Seaman proposed a portfolio approach for TD prioritization [6]. This approach offers a new 

perspective on TDM by reusing established portfolio management strate- gies from the finance 

domain. Here, TD is considered an investment and TD items are considered assets of a portfo- lio. 

Portfolio management aims to reduce risk andmaximize return on investment (with TD being the 

investment). This maps nicely to the issue of TD prioritization. For this ap- proach, important 

characteristics of each TD item (such as principal,interestamount,intereststandarddeviation,and 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 100 

correlations between TD items) must be estimated and doc- umented. After that, a portfolio 

management model such as the Modern Portfolio Theory model is used to extract the best assets (i.e., 

TD items). The result is a subset of the assets which reduces risk and maximizes return. Thus, TD 

itemswhicharenotpartofthisportfolioshouldbefixedfirst [6]. Guo and Seaman note that there are several 

incompati- bilities between financial assets and TD items which needto be considered: In finance, 

assets are divisible, and their cost and interest are known in advance – both of which are not the case 

with TD. The approach suggests using quantita- tive methods for the estimations if possible, and 

qualitative methods otherwise. Also, the performance of this approach in practice was not tested[6].  

 

Design Quality PrioritizationApproach 

Anotherprioritizationapproachwhichfocusesondesign debt in particular was presented by 

Zazworkaet al. [19]. Morespecifically,theirpaperfocusesongodclasses. They presentacost -

benefitapproachtodecidewhichgodclassto refactor first, based on three metrics: a) weighted 

method count;b)tightclasscohesion;andc)accesstoforeigndata. For each metric, an acceptable 

threshold is defined. Zaz- workaetal.notethatonecanassumethecostofrefactoring to increase with 

the distance of the class from the thresh- old. For instance, a class with 500 methods will typically 

takemoreefforttorefactorthanonewith50methods.This 

argumentismadeforeachofthethreemetrics.Changehis- tory data are used to estimate change 

likelihood as wellas defectlikelihoodforeachclass.Thedistanceofaclassfrom 

thethresholdsthendefinesthecostwhereasthechangeand 

defectlikelihoodsdefinethebenefitofrefactoringthegod class.Acost -

benefitmatrixcanbeusedinordertogivean effectiveoverviewonwhichgodclassestoprioritize[19].  

 

Metrics-basedApproach 

The SQALE method is a metrics-based approach which addresses eight so-called characteristics 

which are divided into sub-characteristics and eventually source code require- ments. The used 

characteristics are ordered by the time  they become important in the file lifecycle. They are, in order, 

testability, reliability, changeability, efficiency, secu- rity, maintainability, portability, and reusability 

[9]. Re- quirements represent the definition of ―right code‖, e.g., no commented out code, no 

interfaces without documentation, or no public class attributes. Note that the modularity char - 

acteristic is related to changeability, maintainability and reusability. In fact, Li et al. categorized 

modularity as a sub-attribute of maintainability, adhering to ISO 25010 [12]. However, the SQALE 

approach does not explicitly address modularity and is restricted to only code-related debt [9,  10]. In 

order to estimate the amount of TD, SQALE re- quires a remediation function for each requirement. 

This represents the estimated time needed to fix a TD item (the principal), e.g., 30 minutes to add 

documentation to an in- terface. Similarly, each TD item must be associated with a non-remediation 

function – the estimated cost for not repay- ing the debt [10]. These are simply accumulated 

torepresent the TD for modules, subsystems or the whole system. The 

SQALEmethodalsocontainswaystovisualizethisTD,such as the Rating Grid, the SQALE Pyramid, and 

the Debt Map [9,10]. 

 

Analysis of ExistingApproaches 

Wewillnowevaluatecommonalities,differences,andlim- itations of the aforementioned 

prioritizationapproaches. 

 

Commonalities 

Alltheapproachesexhibitsomedefinitionofcostand benefit which is used for prioritization. In the 

SQALE ap- proach, the remediation and non-remediation functions cor- respond to principal and 

interest, respectively. Thus they both represent costs. However, the non-remediation func- tions also 

represent the benefit achieved when repaying the debt. In the design debt prioritiz ation approach 

introduced by Zazworkaet al., the distance of a class from the threshold can beseen as a cost (the 

principal for fixing the item) while change and defect likelihood act as a measure of benefit. In the 

portfolio approach, interest cost is explicitly defined as estimated interest amount and interest standard 

deviation   as part of the TD items.  Principal is also an explicit part    of each TD item (equivalent to 

the remediation function in SQALE) [6]. Benefit is not documented explicitly but can be derived from 

the interestmeasures. 

Another commonality between the SQALE  method  and  the design debt prioritization method is that both 

rely on metricsasabasisformeasuringandprioritizingTD. 

InSQALE,therequirementsdefinedbytheorganizationrely 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 101 

on metrics in order to evaluate adherence to these require- ments. For example, a requirement 

like―method should have nomorethan100LOC‖wouldrelyonametricsuchas―lines 

ofcodeinmethod‖.SonarQubeismadetoprovidesuchmet- rics which allows the SQALE method to be 

implemented effectively in SonarQube. Similarly, the god class prioriti - zation is explicitly based on 

the metrics weighted method count, tight class cohesion, and access to foreign data to identify and 

measure the severity of each god class. Defect likelihood and change likelihood are two more metrics 

used toestimatetherelevanceandseverityofthedebt. 

Additionally, the SQALE method and the god class prior- itization approach both include visual 

representationsto aidthedecisionprocess.Theportfolioapproachcould be extended accordingly; 

however, the approach has yet to be refined and tested in practice. Especially in the SQALE method, 

visualizations play an important role. Various visu- alizationshave been introduced, including the 

Rating Grid, the SQALE Pyramid, and the Debt Map [9, 10]. Accord- ingly, the SonarQube plugin 

implements suchvisualizations. One can assume that these support both understanding and decision-

making. 

 

Differences 

The unique feature of the portfolio approach is that it reuses existing knowledge from the finance 

domain.  This  is potentially an important advantage because portfolio ap- proaches from finance are 

well-understood and established. Other approaches usually rely on previous research in fields such as 

software design, software quality measurement, and coding best practices. For instance, the design 

debt priori- tization approach relies heavily on previous research on god classes which is a well -

known issue in software design and softwareevolution. 

The SQALE method is unique in that it has already been widely adopted in the industry through its 

implementation in SonarQube. To  our knowledge,  no other tool for TDM  

isusedasmuchinpractice.Infact,thereisnoresearchon 

 

the real-world implementation of the portfolio approach. 

Thepresentedcomparisonalsohighlightsthefactthat, 

whilemostapproachesmakeuseofpredefinedmetrics,other approaches such as the portfolio approach are 

also conceiv- able. These may pose a good opportunity for research since previous research has 

focused on metrics-based methods. The approach presented in this paper will rely on metrics   aswell.  

 

Limitations 

The design debt prioritization approach introduced by Za- zworkaet al. is obviously limited to god 

classes in the form presented in the paper [19]. However, the principles may be reused for similar 

design flaws. For example, a similar ap- proach for improper inheritance structures may use metrics 

suchas―numberofchildclasses‖,―depthofinheritancetree‖, or ―composition not preferred over 

inheritance‖. Another limitation of the approach as presented in the paper is the fact that it relies on 

historical data to estimate change and defect likelihood. Thus, the quality of the estimate depends on 

the amount of available history, making it less applicable for newerprojects. 

With their portfolio approach, Guo and Seaman provide  a new perspective on TDM. However, the 

implementation  of this method in practice, its assumptions, conditions, and applicability remain to be 

evaluated when applied in the  context of TD. They also mention some general guidelines based on 

finance which need further evaluation. For ex- ample, Guo and Seaman propose to prefer many small 

TD items over one big TD item – this diversification promises to decrease risk [6]. Similarly, one 

should prefer TD items with low positive correlations. Guo and Seaman proposed further studies for 

empirical evidence[6]. 

The SQALE method is limited to code-related debt which is only one of the ten types of TD [12]. 

However, other types of TD such as design debt or test debt are typically associated with the code 

debt. Thus, fixing code debt can also mitigate other types of debt. Also, we identified that  the SQALE 

method lacks an explicit measurement of mod- ularity. The characteristics, sub-characteristics, and 

require- ments of the method provide an opportunity to tweak and/or extend it. Thus, the method 

could by extended by either adding modularity as a characteristic or as a sub-charac-  teristic of 

maintainability, as in ISO 25010 [12]. The results of this paper can be used to add modularity 

requirements andareinsofarcomplementarytotheSQALEapproach.  

 

2. MODULARITYMETRICS 

The modularity of a software system refers to the capabil- 

ityofitsmodulesandsubsystemstofunctionasautonomous modules and provide their services outside the 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 102 

original sys- tem [1]. The major benefit of such modularity is the option to substitute system 

components if a superior implementa- tion becomes available. Since this option is available  but  not 

obligatory, and potentially improves system design, it provides a positive net value[17]. 

 

Existing ModularityMetrics 

Inordertomeasureandevaluatemodularity,variousre- searchers have gathered a catalog of 

modularity metrics. In 2007, Sant et al. presented 11 architectural metrics to measure modularity 

[15]. They are based on the princi- plesthatasingleconcernshouldtypicallyberealizedby 

a single component, that shared data and state between components should be minimized, and that the 

complex-  ity of components should be reasonable. Additionally, Li and Henry gathered 

maintainability metrics, some of which can be applied for modularity concerns [11]. These include 

depth of inheritance tree (DIT), lack of cohesion of methods (LCOM), and number of child classes 

(NOC). A rationale for each is givenlater. 

Another way to discover modularity requirements is by looking at research on modularity violations. 

Wong et al. presented the CLIO tool which detects such violations by comparing which components 

should change together and which did change together according to version control his- tory [18]. 

This indicates the concept that architectural and 

designmetricsshouldbemappedtomeasurablecodemetrics if possible in order to evaluate consistency 

with the archi- tecture anddesign. 

Metrics for modularity can be mapped to source code re- quirements, equivalent to those introduced in 

the SQALE method. By identifying and prioritizing such metrics, we will present a prioritization 

approach for modularity-related TD which can be integrated into the SQALE method if de- sired. 

 

A Catalog of ModularityMetrics 

The modularity debt prioritization approach introduced in this paper, like many others, is based 

on metrics. We present a catalog of metrics in Table 1. Typically, archi- tectural metrics imply 

design metrics which in turn imply code metrics. Note that the derivation of metrics ends on 

thedesignleveliftheyaremeasurableonthatlevelalready; 

however,mostofourmetricsmapdirectlytosourcecodere- 

quirements.Inordertodiscoverthemodularitymetrics,we relied on previous research on 

architectural bestpractices, modularityissues,andpreviouslypresentedmetrics.Most predominantly, 

we derived design metrics fromarchitectural practicesandthenderivedcorrespondingsourcecodemet- 

rics. In most cases, this yielded well-known metrics from previousresearch. 

Note that there are two trends here. First, the derived 

metricsoftencorrespondtogooddesignorcodingpractices. Second, architectural metrics tend to 

imply severaldesign metrics which in turn tend to imply several code metrics. 

Thismakesthemethodologyveryfruitfultoderivearange of source codemetrics. 

 

Rationale 

Table 1 shows all metrics identified in this paper and how they are derived from each other. We will 

give a brief ratio- nale for each to explain in which ways they support modu- larity. References to 

other work are given where applicable. 

 Low Coupling BetweenModules 

Low coupling between modules is a major architectural requirement for modularity and 

reusability [1]. Based on this principle, we derived several design requirementsand metrics. First, 

components should communicate via well- defined interfaces. Thus, on code level, 

developersshould always refer to the most general type possible [2] in order 

toabstractfromtheconcretesubtypeandimplementation. Next, associations and, more strongly, 

compositionsintro- ducedependenciesbetweencomponentsandshouldthere- 

forebeminimized.Oncodelevel,thiscanbemeasuredby 

the number of imported types. Also, the message passing coupling can be measured by the number of 

method calls on other classes [11]. Next, the use of intermediaries decouples components by adding a 

layer of abstraction for commu- nication. Such patterns include Facade, Mediator, Proxy, Strategy, 

Factory, Publish-Subscribe, and Blackboard [1]. Note that these are architectural and design-level 

patterns, yet could be measured semi-reliably on source code level  byrelying on naming conventions 

or stereotypes. A strong formofcouplingisinheritance[11]whichimpliestwodesign- level metrics, the 

number of parent classes (i.e., the depth  in the inheritance tree in single inheritance languages), and 

the number of child classes (NOC). Arguably, inheritance couples components stronger than 

association[2]. 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 103 

 Proper Distribution ofFunctionality 

Second, proper distribution of functionality is a well-known challenge for software architects [1]. Design-

level require- ments derived from this include tight class cohesion (TCC) 

[14] and proper reuse of functionality. Tight class cohesion can be measured on code level by clusters 

of methods that share no common data at all (LCOM) [11]; the overall num- ber of lines of code 

(LOC) may also be indicative of the  cohesion since very large classes tend to handle variouscon- 

cerns [19].  The proper reuse of functionality is reflected   by the lines of duplicated code, 

corresponding to the don’t- repeat-yourself principle of object-orienteddesign. 

 Information-HidingInterfaces 

Third, we chose the use of information-hiding interfaces 

[17] as a separate architectural requirement since it yields 

severaldesignandcodingguidelines.Onemetricisthenum- ber of interfaces in comparison to the number 

of classes to estimate how widely information hiding is employed. This is related to ―communication 

via interfaces‖ above. Another important metric is the number of public class attributes [4, 19] 

(excluding explicit class constants) since these violate encapsulation. More generally, we propose to 

measure the percentages of private, protected, and public attributes in a class (the naming convention 

is based on Java and similar languages). This allows to estimate the strength of encap- sulation in 

more detail. For instance, private attributes can reduce inheritance coupling because even subtypes 

cannot access privateattributes. 

 

3. MODULARITY-BASEDTDPRIORITIZA- TIONAPPROACH 

Overview 

Based on the presented catalog of modularity metrics, dif- ferent prioritization strategies may be 

defined. In the fol- lowing, we present a cost-benefit approach which balances principal against 

interest amount and probability – similar to remediation and non-remediation functions respectively. 

We note that various other prioritization strategies may be defined based on these samemetrics. 

In order to derive concrete TD items from the metrics,   we must define a threshold based on our 

definition of ―right code‖. For example, we may specify the threshold for the depth of a class in the 

inheritance tree to be lower than five. Then, in order to prioritize the TD items, we assign princi- pal, 

estimated interest amount (EIA), and estimatedinterest  

 

Architecture level Design level Code level 

Low coupling between 

modules 

Communication via 

interfaces [2] 

Number of type references 

replaceable by more general type 

[2] 

 

Number of 

associations to other 

classes (FAN OUT 

[4]) 

Number of imported types [19] 

Number of method calls on other  

classes[11] 

Numberofassociations

from other classes to 

this class (FAN IN)[7] 

 

Number of imports of this class in 

other classes 

Number of classes calling methods 

from this class 

Number of 

intermediaries 

Number of usages of Facade, 

Media- tor, Proxy, Strategy, 

Factory, Publish- Subscribe, 

Blackboard and similar pat- terns 

[1] 

Number of parent 

classes / Inheritance 

depth (DIT) [11] 

 

Number of child 

classes (NOC) [11] 

 

 

Proper distribution of 

func- tionality 

Tight class cohesion 

(TCC) [19, 4] 

Number of clusters of methods 

without a shared variable (LCOM) 

[11] 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 104 

Source lines of codes in class (LOC) 

[11, 4] 

Weighted method count (WMC) 

[11, 19] 

Proper reuse of 

functionality [19] 

Lines of duplicated code (SEC) [8] 

Components have 

information-hiding 

interfaces 

Percentage of 

interfaces vs. classes 

Number of classes 

Number of interfaces 

Number of public 

class attributes 

(excluding con- 

stants) [4, 19] 

Number of private attributes 

Number of protected attributes 

Number of public attributes 

(NOPA) [4] 

 

Table 1: A catalog of modularity requirements and metrics. 

 

probability (EIP). This is not a trivial task because the esti- mations depend on organizational and 

technical factors [4], including developer skills, interdependencies between TD items, and projected 

future changes. Therefore, the estima- tions must be performed by each organization and project 

individually. Principal, EIA, and EIP have all been used in previous research [6, 16]. The principal 

defines the cost for fixing the TD item and thus corresponds to a remediation function in the SQALE 

approach. Similarly, interest amount and probability define the cost for not fixing the TD items and 

thus correspond a non-remediation function. The ratio- nale behind the probability is that modules 

which will likely never be changed in the future should have accordingly low priority [5 ]. 

 

Cost-BenefitFormula 

Once we have assigned principal, EIA, and EIP, we can use these to prioritize the TD items. For  the 

purposes of  this paper,  we  will assign to each TD item I the priority    P (I) calculatedas 

EIA · EIP 

whichrepresentsacost-benefitapproach–dividingbenefit by  cost.  Thus,  the TD items I with the 

highest priority  P (I) should be repaidfirst. 

 

Procedure 

To use this approach, several steps and guidelines should be followed. A prerequisite is the ability to  

measure code- related debt. Ideally, design debt can be measured as well. The procedure is as follows:  

1. AssignathresholdtoeachmetrictoderiveTDitems. 

2. Estimateprincipal,EIA,andEIPforeachTDitem. 

3. Calculate P (I) for eachitem. 

For step 1, Fontana et al. provide some guidance in a re-  cent study [4]. However, thresholds must be 

defined and evaluated by the organization based on what works in their context. For step 2, you should 

take into account your devel- opment team’s skills, organizational constraints, and histor- ical data to 

improve the estimations [16, 19]. Asmentioned 

P (I) = 

. 

Principal 

above,thisisacomplextaskduetomanyinfluencingfac- 

tors.Sincethequalityoftheapproachdependsdirectlyon 



Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 105 

Thisisaverysimplewaytoassignausefulpriorityscore

 thequalityoftheestimations,werecommendmonitoring 

 

TD Item Metric Threshold Principal EIA EIP P(I) Rank 

3 public attributes in 

SampleClass 

NOPA 0 5h 3h 20% 0.12 2 

4 clusters in Another-Class LCOM 2 20h 10h 50% 0.25 1 

Depth of SampleClassis 7 DIT 5 25h 5h 25% 0.05 3 

 

Table 2: List of sample TD items with threshold, principal, and interest. 

 

and adjusting the estimations.  To  identify the TD items  and measure their related metrics, you may 

use an analysis tool such asSonarQube. 

 

Applying theApproach 

To illustrate the presented approach and make it more tangible, we present a brief example. We 

assume we have derived the TD items listed in Table 2.  

The example is set up in a way that AnotherClassis changed much more frequently than SomeClass, 

thus the higher EIP. We can see that the debt related to Another- 

ClassshouldberepaidfirstbecauseP(I)ishigherthanthat of any other TD item. This originates from the 

fact that AnotherClassis changed often and thus has high interest. The next TD item to fix would be 

the first one because its principalislowcomparedtothatofthethirditem. 

 

CONCLUSION & FUTUREWORK 
In this paper, we have introduced  a  modularity-based  TD prioritization approach based on several 

metrics we ex- tracted or derived from previousresearch. 

In its current state,  the presented approach lacks a way   to systematically estimate and assign values 

such as princi- pal, estimated interest amount (EIA), and estimated interest probability (EIP) which is 

not a trivial issue in TDM. Like other current approaches, we rely on user input for these estimations 

[9, 6]. Tools to guide the estimation of such val- ues remain future work. Such tools should also 

consider the severity of violations, e.g., by measuring the distance from 

thedefinedthresholds[19]orotheruser-definedmetrics.We also note that we do not consider the 

presented metricsfixed and expect future work to extend or refine the catalog. In addition, future 

research focusing on niches other than mod- ularitymay provide further insights which can pave the 

way to a comprehensive TDM approach. Also, other priority cal- culationsmay be defined based on 

the provided metrics and resulting TD items. The implementation of the presented approach in 

practice remains to be evaluated to generate  empiricaldata. 

 

REFERENCES 
[1] L. Bass. Software architecture in practice.PearsonEducation India, 2007. 

[2] J.Bloch.EffectiveJava.JavaSeries.Pearson Education,2008. 

[3] F. Buschmann. To pay or not to pay technicaldebt.Software, IEEE, 28(6):29–31, 2011. 

[4] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda. Towards a prioritization of code debt: A code smell intensity index. 
In Managing Technical Debt (MTD), 2015 IEEE 7th International Workshop on, pages 16–24. IEEE,2015. 

[5] G.Technicaldebt:Strategies&tacticsforavoiding& removing it. http://blogs.ripple-
rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx. Accessed: 2015-12-

01. 

[6] Y. Guo and C. Seaman. A portfolio approach to technical debt management. In Proceedings of the 2nd Workshop on 
Managing Technical Debt, pages 31–34. ACM,2011. 

[7] S. Henry and D. Kafura. Software structure metrics based on information flow. Software Engineering, IEEE Transactions on, 
SE-7(5):510–518, Sept1981. 

[8] M. Lanza and R. Marinescu. Object-oriented metrics in practice: using software metrics to characterize, evaluate, and 
improve the design of object-oriented systems. Springer Science & Business Media,2007. 

[9] J.-L. Letouzey. The sqale method for evaluating technical debt. In Proceedings of the Third International Workshop on 

Managing Technical Debt, pages 31–36. IEEE Press,2012. 

[10] J.-L. Letouzey and M. Ilkiewicz. Managing technical debt with the sqale method. IEEE Software, 29(6):44–51,2012. 

[11] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal of systems and software, 23(2):111–
122,1993. 

[12] Z. Li, P. Avgeriou, and P.  Liang. A systematic mapping study on technical debt and its management. Journal of Systems 
and Software, 101:193–220,2015. 

[13] E.Lim,N.Taksande,andC.Seaman.Abalancing act: what software practitioners have to say about technical 
debt.Software, IEEE, 29(6):22–27,2012. 

[14] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In Software Maintenance, 2004. 

http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebt
http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebt


Towards A Modularity-Based Technical Debt Prioritization Approach 

www.ijceronline.com                                               Open Access Journal                                                 Page 106 

Proceedings. 20th IEEE International Conference on, pages 350–359. IEEE, 2004. 

[15] C. Sant Anna, E. Figueiredo, A. Garcia, and C. J. Lucena. On the modularity of software architectures: A concern -

driven measurement framework. In SoftwareArchitecture,pages207–224.Springer,2007. 

[16] C. Seaman and Y. Guo. Measuring and monitoring technical debt. Advances in Computers, 82:25–46, 2011. 

[17] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure and value of modularity in software design. 
SIGSOFT Softw. Eng. Notes, 26(5):99–108, Sept.2001. 

[18] S. Wong, Y. Cai, M. Kim, and M. Dalton. Detecting software modularity violations. In Proceedings of the 33rd 
International Conference on Software Engineering, pages 411–420. ACM,2011. 

[19] N. Zazworka, C. Seaman, and F. Shull. Prioritizing design debt investment opportunities. In Proceedings of the 2nd 
Workshop on Managing Technical Debt, pages 39–42. ACM,2011. 

 

 

 


