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I. INTRODUCTION 
The Homotopy perturbation method (HPM) was proposed by He [1,2] in 1998. This method has been used by 

many mathematicians and scientist to solve various linear/ nonlinear differential equations. In this method the 

solution is considered as the summation of an infinite series which usually converges rapidly to the exact 

solution. This simple method has been applied to solve linear and nonlinear heat equations [3,4], fluid 

mechanics [5], non-linear Schrodinger equations [6], some boundary value problems [7-10] and physical 

sciences  problems [11-13]. Since He’s Homotopy perturbation method (HPM) is a new technique, attempts 

have been conducted to apply this method for solving Blasius equation [5, 14]. In this paper, a new approach 

Homotopy perturbation method [10] is applied which has not been used in previous works. The analytical result 

are compared with simulation result and satisfactory agreement is noted. 

 

Nomenclature 
Symbols Name 

eD  
Effective Diffusivity of Substrate 

D
eD  

Effective Diffusivity of Dextrin 

s
eD  

Effective Diffusivity of Soluble Starch 

mK  
Michael’s Constant 

D
mK  

Michael’s Constant For Dextrin 

s
mK  

Michael’s Constant For Soluble Starch 

r  Radius 

R  Radius of Support 

r  Dimensionless Radius 

s  Substrate Concentration 

0s  
Initial Substrate Concentration 

s  Dimensionless Substrate Concentration 

mV  
Maximum Reaction Rate 
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D
mV  

Maximum Reaction Rate of Dextrin 

s
mV  

Maximum Reaction Rate of Soluble Starch 

 xW  
Weight Function 

SBR Stirred Batch Reactor 

RDBR Recycling Differential Batch Reactor 

Greek Symbols 

  Thiele modulus 

  Dimensionless Michael’s constant 

 

 

Mathematical Formulation of The Problem 

Enzymes are used on porous supports in order to contain the enzyme, and allow continued catalytic 

activity [15]. When enzymes are immobilized on the internal surface of a porous spherical support, the 

substrate diffuses thorough the pathway among the pores, and reacts with the immobilized enzyme [15]. 

Assume that enzymes are uniformly distributed in a spherical porous matrix. The mass balanced equation for 

steady-state diffusion of substrate in porous spherical matrix under Michaelis-Menden kinetics is given as 

follows: 
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The dimensionless steady state diffusion equation in  spherical coordinate can be reduces to the following form: 
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Where the dimensionless parameter are 
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Figure 1. Schematic of the problem (substrate concentration profile in immobilized enzyme in a spherical 

porous matrix) [15]. 

 

where, s is the dimensionless substrate concentration, 0s  is the bulk substrate concentration, r  is the 

dimensionless radius, mK  is the Michael's constant, mV  is maximum reaction rate, and eD  is effectiveness 

diffusion coefficient. The appropriate boundary conditions are: 
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1s:1r             (4) 

0
rd

sd
:0r            (5) 

Recently Ali Izadi et al. [15] solved the above  problem using least square method [16]. In this paper a new 

approach of  Homotopy perturbation method is used to solve the nonlinear equation (2). 

 

II. BASIC IDEA OF HOMOTOPY PERTURBATION METHOD 
To illustrate the basic ideas of this method, we consider the following non-linear functional equation: 

     r,0rfUA          (6) 

 

With the following boundary condition: 

,,0, 
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Where A is a general functional operator, B a boundary operator,  rf is a known analytical function and 

is the boundary of the domain . The operator A can be decomposed into two operators L and N , where L is 

linear, and N is nonlinear operator. Eqn. (6) can be, therefore, written as follows: 

      .0 rfUNUL          (8) 

Using the Homotopy technique, we construct a Homotopy     ,1,0:, RprU  which satisfies: 

                ,,1,0,01, 0  rprfUApULULppUH
   

(9) 

or 

             ,0, 00  rfUNpUpLULULpUH      (10) 

 

where  1,0p is an embedding parameter, 0u  is an initial approximation for the solution of Eqn. (6),which 

satisfies the boundary conditions. Obviously, from Eqns. (9) and (10) we will have: 

      ,00, 0  ULULUH          (11) 

      .01,  rfUAUH          (12) 

 

The changing values of p from zero to unity are just that of  prU , from  ru0 to  ru .In topology, this is 

called Homotopy. According to HPM, we can first use the embedding parameter pas a small parameter, and 

assume that the solution of Eqns. (9) and (10) as a power series in p: 

...2

2

10  UppUUV          (13) 

Setting p = 1, results in the approximation to the solution of Eqn. (13) 

...210
1

lim 


UUUVU
p

        (14) 

 

The combination of the perturbation method and the Homotopy method is called the Homotopy perturbation 

method (HPM), which has eliminated limitations of the traditional perturbation techniques. The series Eqn. (14) 

is convergent for more cases.  

 

3.1. Analytical Expression Substrate Concentration Using Nhpm 

 The dimensionless nonlinear Eqn. (2) defines the boundary value problem. New Homotopy 

perturbation method used to give the approximate solutions of the nonlinear Eqn. (2). 

The analytical expression substrate concentration using NHPM is, 
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III. NUMERICAL SIMULATION 
The NHPM provides an analytical solution in terms of an infinite power series. However, there is a 

practical need to evaluate this solution and to obtain numerical values from the infinite power series. In order to 

investigate the accuracy of the NHPM solution with a finite number of terms, the differential equation is solved. 

To show the efficiency of the present method our analytical solution in compared with numerical solution in 

Figs.2 and 3, and table 1-4 satisfactory agreement is noted. The SCILAB program is also given in appendix (B). 

 

IV. RESULTS AND DISCUSSION 
Equations (10) represent the new the analytical expression of the concentration of substrate. The Thiele 

modulus ϕ can be varied by changing either the particle radius or the amount of concentration of substrate. This 

parameter describes the relative importance of diffusion and reaction in the particle radius. When ϕ is small, the 

kinetics are the dominant resistance; the overall uptake of substrate in the enzyme matrix is kinetically 

controlled. Under these conditions, the substrate concentration profile across the membrane is essentially 

uniform. In contrast, when the Thiele modulus ϕ is large, diffusion limitations are the principal determining 

factor. Figs. 2-3 shows the dimensionless steady-state substrate concentration for the different values of 
calculated using Eq. (14). From these figures, we can see that the value of the concentration increases when   

increases.  

 

V. CONCLUSIONS 
In this paper we have studied a well-known Michaelis-Menten equation. We have applied new 

Homotopy perturbation method to solve this nonlinear differential equation. Simple and closed form analytical 

expression of concentration of substrate is obtained. Analytical results are compared with numerical result and 

satisfactory agreement is noted. 

 

 
Figure 2. Plot of dimensionless substrate concentration  rs

 
versus dimensionless radius r  for various values 

of the parameter, 
 
and   using eqn. (2). 

 

 
 

Figure 3. Plot of dimensionless substrate concentration  rs versus dimensionless radius r  for various values 

of the parameter,  and  . Solid lines represent eqn. (2) and dotted line represents numerical solution. 
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Table 1. Comparison of analytical results with numerical results for substrate concentration  rs
 

 
 

Table 2. Comparison of analytical results with numerical results for substrate concentration  rs
 

 
 

Table 3. Comparison of analytical results with numerical results for substrate concentration  rs
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Table 4. Comparison of analytical results with numerical results for substrate concentration  rs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix A : Analytical Solution On Nonlinear Eqn. (2) Using New Homotopy Perturbation Method 

(Nhpm) 
The nonlinear Eqn. (2) can be written as 
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where 
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         (A1) 

Now the boundary conditions becomes 

1r ,  1S           (A2) 

0r ,  0
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          (A3) 

We construct the Homotopy for the Eqn. (A1) as follows: 
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where p  is the embedding parameter and  1,0p  

The approximate solution of (A1) is 

.......spspss 2
2

10           (A5) 

The initial approximation are as follows  

0)0(s;1)1(s r,00   
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Substituting Eqns. (A5) in (A4), we have 
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3.0 , 1  4.0 , 1  

r  

Numer

ical 

simula
tion 

Analytical 
Eqn. (14) 

Error( %
) 

Numerical 
simulation 

Analytical 
Eqn. (14) Error( % ) 

0 0.9925 0.9925 0.00 0.9867 0.9867 0.00 

0.1 0.9926 0.9926 0.00 0.9869 0.9869 0.00 

0.2 0.9928 0.9928 0.00 0.9873 0.9873 0.00 

0.3 0.9932 0.9932 0.00 0.9879 0.9879 0.00 

0.4 0.9937 0.9937 0.00 0.9889 0.9889 0.00 

0.5 0.9944 0.9944 0.00 0.9901 0.9901 0.00 

0.6 0.9953 0.9953 0.00 0.9916 0.9916 0.00 

0.7 0.9963 0.9963 0.00 0.9934 0.9934 0.00 

0.8 0.9974 0.9974 0.00 0.9954 0.9954 0.00 

0.9 0.9987 0.9987 0.00 0.9977 0.9977 0.00 

1 1 1 0.00 1 1 0.00 

  

Average error (%)     0.00 Average error (%)     0.00 
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Comparing the coefficients of like powers of p in Eqn. (A7), we get 
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Solving the Eqn. (A8) and using the boundary condition (A5), we can obtain the following results: 
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According to the HPM, we can conclude that 
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After putting Eqns. (A10) and (A11) into Eqn. (A12), we can obtain the Eqn. (15) in the text. 

 

Appendix B: Matlab/Scilab Program Is To Find The Numerical Solution Of The Eqn. (2) 

function pdex1 

m = 2; 

x = linspace(0,1); 

t = linspace(0,100000); 

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 

% Extract the first solution component as u. 

u = sol(:,:,1); 

% A solution profile can also be illuminating. 

figure 

plot(x,u(end,:)) 

title('Solution at t = 2') 

xlabel('Distance x') 

ylabel('u(x,2)') 

% -------------------------------------------------------------- 

function [c,f,s] = pdex1pde(x,t,u,DuDx) 

c = pi^2; 

f = DuDx; 

phi=1; 

alpha=.2; 

s = -(9*phi^2*u)/(1+alpha*u); 

% ------------------------------------------------------------- 

function u0 = pdex1ic(x) 

u0 = 0; 

% -------------------------------------------------------------- 

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 

pl = 0; 

ql = 1; 

pr = ur-1; 

qr = 0; 
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