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I. INTRODUCTION 
During the past many years, number of researchers has worked on non-Newtonian fluids. Wang [1] analyzed 

non- Newtonian fluids for mixed convection heat transfer from a vertical plate. Xu and Jan Liao [2] studied the 

laminar boundary layer flow and heat and mass transfer analysis of non-Newtonian fluids past a stretching flat 

sheet. Xu et al. [3] have presented the series solutions of unsteady boundary layer flows of non-Newtonian 

fluids near a forward stagnation point. In another study, Megahed [4] investigated the boundary layer flow and 

heat transfer of a non-Newtonian power – law fluid over a non-linearly stretching vertical surface with heat fluid 

and thermal radiation. Abel et al. [5] studied the boundary layer flow and heat transfer in a power law fluid 

through a stretching sheet with variable thermal conductivity and non-uniform effects. Bilal Ashraf et al. [6] 

discussed the mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal 

radiation effect. Wei and Al-Ashhab [7] have studied the boundary layer flow of power law non-Newtonian 

fluids with a novel boundary condition. The heat transfer mechanism and the constitutive models for energy 

boundary layer in power law fluids have been discussed by Zheng and Zhang [8]. An analytical solution for 

boundary layer flow and heat transfer of non-Newtonian fluids in a porous media on an isothermal semi-infinite 

plate has been studied by Wang and Tu [9]. Hady [10] has analyzed the influence of laminar mixed convection 

flow of non-Newtonian fluids along a horizontal plate for uniform wall temperature. Effects of boundary 

induced stream wise pressure gradients on laminar forced convection flow of heat transfer to non-Newtonian 

fluids from a horizontal plate have been examined by Gorla [11]. Mostafa [12] presented the slip effect on non-

Newtonian power law fluid past a continuously moving surface with suction using shooting method. 

An important branch of the non-Newtonian fluid models is the hyperbolic tangent fluid model. The hyperbolic 

tangent fluid is used extensively for different laboratory experiments. Friedman et al. [13] have used the 

hyperbolic tangent fluid model for large-scale magneto-rheological fluid damper coils. Nadeem and Akram [14] 

jointly published a paper on peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. 

In another paper Nadeem and Akram [15] have presented the effects of partial slip on the peristaltic transport of 

a hyperbolic tangent fluid model in an asymmetric channel.  Natural convection boundary layer flow of a 

hyperbolic tangent fluid flowing past a vertical exponential circular cylinder with heat transfer analysis has been 

studied by Naseer et al. [16].  
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All the above investigations are restricted to MHD flow and mass transfer problems. Analysis of heat and mass 

transfer of a viscoelastic, electrically conducting fluid past a continuous stretching sheet was investigated by 

Kelly et al. [17]. Vajravelu et al. [18] investigated the effects of velocity slip, temperature and concentration 

jump conditions on MHD peristaltic transport of a Carreau fluid in a non-uniform channel. Jayachandra babu 

and Sandeep [19] both are investigated the effects of cross diffusion and MHD on non Newtonian fluid flow 

over a slandering stretching sheet. Effect of MHD and heat transfer effects on a boundary layer flow of power 

law non-Newtonian nonofluid over a vertical stretching sheet is studied by Ferdows and Hamad [20]. 

Satyanarayana and Harish Babu [21] studied the effects of chemical reaction, thermal radiation and MHD on 

heat and mass transfer of a Jeffrey fluid over s stretching sheet. They concluded that effect of magnetic fields 

significantly decelerate the velocity of the flow field to an appropriate amount through boundary layer.  Kasim 

and Mohammad [22] studied the effects of thermal stratification, heat source, MHD, Hall current and chemical 

reaction on heat and mass transfer over an unsteady stretching surface. Rushi Kumar [23] investigated the 

effects of magnetohydrodynamic and velocity slips on a flow, heat and mass transfer over a stretching sheet. 

Soret and dufour effects on MHD convective radiative heat and mass transfer of nanofluids over a vertical non-

linear stretching/shrinking sheet is investigated by Pal et al. [24].Similarity solution of the boundary layer 

equations describing heat and flow in a non-Newtonian power law fluid by a continuously moving surface with 

a parallel free stream subject to MHD have been examined numerically by Kumari and Nath [25]. Akbar et al. 

[26] investigated the boundary layer flow of magnetohydrodynamic tangent hyperbolic fluid past a stretching 

sheet with the help of fourth-fifth order Runge-Kutta Fehlberg method. They came to the conclusion that 

Weissenberg number significantly decreases the velocity profile. Salahuddin et al. [27] studied the tangent 

hyperbolic fluid with exponentially varying viscosity in the presence of transverse magnetic field.  

Dispersion mechanisms in porous media have shown to be more pronounced when compared to those in pure 

fluids. This may be attributed to the additional effect caused by the complex tortuous passages of porous media 

and to the fact that they depend on the average velocity of the fluid within the pores. On the other hand, thermal 

and solutal-dispersion effects are more important when the inertial effects are prevalent. Several studies on 

hydrodynamic dispersion in porous media have been reported by Bear [28]. Analogously to hydrodynamic 

dispersion, thermal dispersion has also been postulated to depend on the structures of the given porous media 

and the average velocity (over a representative elementary volume) of the saturating fluid. A linear dispersion 

model introduced by Georgiadis and Catton [29] was assumed for the case of free convection in a horizontal 

layer heated from below. An analysis of thermal-dispersion effects on natural convection along a heated, vertical 

plate in porous media was presented by Hong and Tien [30]. Double dispersion and chemical reaction effects on 

non-Darcy free convection heat and mass transfer is studied by El-Amin et al. [31]. 

The above cited articles in the literature explicates the flow and the heat and mass transfer characteristics of 

different working fluids in stretching sheet It can be noticed that consideration tangent hyperbolic fluid as 

working fluid has greater interest in practical applications in science and engineering. As a trial attempt, the 

authors intend to provide the knowledge of the effects of the steady, two dimensional flow of heat and mass 

transfer of magnetic tangent hyperbolic fluid over a stretching sheet in the presence of thermal dispersion.  

 

Mathematical Formulation 

Consider the problem of two-dimensional flow of steady incompressible and electrically conducting tangent 

hyperbolic fluid over a wall coinciding with plane 0y , the flow is being confined to .0y  the flow is 

generated due to the linear stretching.  

The constitutive equation of tangent hyperbolic fluid is [26]: 

   
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                (1) 

In which,  is the extra stress tensor, 


 is the infinite shear rate viscosity, 
0

 is the zero shear rate viscosity, 

  is the time dependent material constrant, n is the power law index i.e flow behavior index and   is defined 

as 
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hyperbolic fluid that describing shear thinning effects so 1  . Then equation (1) takes the form 

          )1(111
000

 n
nn

       (3) 



Boundary Layer Flow Of MHD Tangent Hyperbolic Fluid Past A Vertical Plate In The Presence Of .. 

www.ijceronline.com                                                    Open Access Journal                                               Page 30 

The external force f may be written as follows: 

BJf            (4) 

where  BVEJ 
0

 is the current density and ),0(
0

BB  is the transverse uniform magnetic field 

applied to the fluid layer. The symbols σ0 and E are the electric conductivity and the electric field, respectively. 

The external electric field is assumed to be zero and under the condition that magnetic Reynolds number is 

small the induced magnetic field is negligible compared with the applied field. Accordingly, the Hall effect is 

neglected.  

The boundary layer temperature and concentration are T  and C  respectively. The ambient fluid temperature 

and concentration are


T  and 


C respectively. At the surface, both the fluid and the sheet are kept at a constant 

temperature 
w

T  where 


 TT
w

is for a heated stretching surface and 


 TT
w

corresponds to a cooled surface. 

The continuity, momentum, energy and species equations for the tangent hyperbolic fluid after applying the 

boundary layer approximations can be expressed as: 
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Boundary conditions are 
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We are interested in similarity solution of the above boundary value problem; therefore, we introduce the 

following similarity transformations 
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Making use of transformations (11), Equations (5)-(10) take the form 

0)()1(
2

 fMffnWeffffn      (12) 

0Pr)1(   ffDsfDs         (13) 

0  Scf           (14) 

The transformed   boundary conditions  

                                          

         y                                            

                                                   

                                                 

                       


CT ,  

                                            TorC                              

                       
ww

CT ,                                            x 

     O                       )( xu
w

 

                                              B0 

  

 

Figure A: Schematic diagram of the problem 
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1)0(,1)0(,1)0(,0)0(  ff        (15)                         

0)(,0)(,0)(  f        (16) 

The non-dimensional constants in Equations (12)-(14) are the Weissenberg numberWe , the Prandtl number Pr , 

Hartmann number M , thermal dispersion parameter Ds and the Schmidt number Sc . They are, respectively, 

defined as: 
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These parameters, respectively, characterize the surface drag, wall heat and mass transfer rates. The shearing 

stress at the surface of the wall 
w

  is given by: 
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where  is the coefficient of viscosity. The skin friction coefficient is defined as: 
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and using Equation (17) in (18) we obtain: 
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The heat transfer rate at the surface flux at the wall is given by: 
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where k  is the thermal conductivity of the nanofluid. The Nusselt number is defined as: 
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Using Equation (21) in (22) the dimensionless wall heat transfer rate is obtained as below: 
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The mass flux at the surface of the wall is given by: 
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and the Sherwood is defined as: 
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Using Equation (24) in (25) the dimensionless wall mass transfer rate is obtained as: 
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In Equations (20), (23) and (26), 
x

Re represents the local Reynolds number defined by  
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Solution of the Problem: 

In order to solve the equations (12)-(14) subject to the boundary conditions (15) and (16) the Spectral 

Relaxation Method (SRM) suggested by Motsa and Makukula [32] and Kameswaran et al. [33] is used. The 

method uses the Gauss- Seidel approach to decouple the system of equations. In the framework of SRM method 
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the iteration scheme is obtained as 0)0(,
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The boundary conditions for the above iteration scheme are 
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In order to solve the decoupled equations (27) - (30), we use the Chebyshev spectral collocation method. The 

computational domain [0, L] is transformed to the interval [-1, 1] using 2/)1(   L on which the spectral 

method is implemented. Here L  is used to invoke the boundary conditions at  . The basic idea behind the 

spectral collocation method is the introduction of a differentiation matrix 𝒟 which is used to approximate the 

derivatives of the unknown variables at the collocation points as the matrix vector product of the form 
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where 1N  is the number of collocation points (grid points), D = 2𝒟/L, and 
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derivatives are obtained as powers of D, that is, 
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where p  is the order of the derivative. Applying the spectral method to equations (27)- (30), we obtain 
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In equations (39)-(42), I is an identity matrix and diag[ ] is a diagonal matrix, all of size 

)1()1(  NN where N  is the number of grid points, ,, pf and  are the values of the functions 

,, pf and , respectively, when evaluated at the grid points and the subscript r  denotes the iteration number. 

The initial guesses to start the SRM scheme for equations (27)-(32) are chosen as 
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which are randomly chosen functions that satisfy the boundary conditions. The iteration is repeated until 

convergence is achieved. The convergence of the SRM scheme is defined in terms of the infinity norm as 

 
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Accuracy of the scheme is established by increasing the number of collocation points N until the solutions are 

consistent and further increases do not change the value of the solutions. 

 

Validation of Results: 

The accuracy and robustness of the method have been checked by comparing the SRM results and bvp4c results 

for various values of power law index parameter n , Weissenberg numberWe , Hartmann number M, Prandtl 

number Pr, thermal dispersion parameter Ds and Schmidt number Sc which are given in tabular form in Tables 

1 to 4. It is clearly seen that both results are in good agreement. It is relevant to mention here that bvp4c is an in-
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built ODE solver in Matlab. In order to further establish the accuracy of our numerical computations, we have 

also compared the values of magnitude of the skin friction coefficient 
fx

C  obtained by Akber et al. [26], 

respectively with the respective values calculated by the SRM technique. This comparison is presented in Tables 

4 and it has been observed that our results are in full agreement with the results obtained by Akber et al. [26]. 

 

II. RESULTS AND DISCUSSION 
We have studied steady heat and mass transfer in a tangent hyperbolic fluid past a stretching sheet. Nanofluid 

has been considered for the present investigation. The tangent hyperbolic fluid is a four constant fluid model 

capable of describing shear thinning effects. The apparent viscosity for the proposed varies gradually between 

zero shear rate and shear rate tends to infinity. The nonlinear coupled ordinary differential equations (12)-(14) 

subject to the boundary conditions (15)-(16) have been solved numerically using spectral relaxation method. We 

determine through numerical experimentation that 15


  with the grid points 100N , give sufficient 

accuracy for the spectral relaxation method. To determine the convergence, accuracy and general validity of the 

SRM method, the results were compared with the Matlab bvp4c results for selected values of the governing 

physical parameters. 

Figs. 1-11 illustrate the behavior of emerging parameters such of power law index parameter n , Weissenberg 

numberWe , Hartmann number M, Prandtl number Pr, thermal dispersion parameter Ds and Schmidt 

number Sc  on velocity profile  f  , temperature profile    and concentration profile )( . Figs 1-3 depict 

the variation of unsteadiness parameter S  on velocity profile '( )f  , temperature profile   and mass 

friction function   . Figures 1-3 depict the behavior of power law index n  on velocity, temperature and 

concentration profiles. It is observed that velocity profiles decrease with an increase in n . But boundary layer 

thickness increases. From the graphs 2 & 3, it is noticed that temperature and concentration profiles increases 

with an increase in n and also thermal and concentration boundary layer thickness increases. The dimensionless 

velocity '( )f  , temperature    and concentration )(  profiles for different values of Weissenberg number 

We  are plotted in figures 4-6, respectively. Weissenberg number is the ratio of the relaxation time of the fluid 

and a specific process time. In simple steady shear, the Weissenberg number is defined as the shear rate times 

and the relaxation time. It increases the thickness of the fluid, so velocity profiles decrease with an increase 

inWe . Also boundary layer thickness decreases for increasing values of We  (see fig.4). From the graphs 5 & 6, 

it is clearly observed that temperature and concentration of the fluid increase with a rise inWe . But boundary 

layer thickness for temperature and concentration increases with an increase inWe . Figure 7 and 8 shows the 

influence of Hartmann number M on velocity, temperature and concentration profiles. Hartmann number is the 

ratio of electromagnetic force to the viscous force. Consequently, Hartmann numbers resist the fluid flow. It is 

seen from figure 7 that velocity profile decreases with the increasing values of M and the boundary layer 

thickness increases. It is also analyzed that M is perpendicular to the stretching sheet so for higher values of M it 

decelerates the velocity and raise the boundary layer thickness. From figures 8 and 9, that temperature and 

concentration profiles increases with an increase in M and corresponding boundary layers also increases. Figures 

10 and 11 are graphed for the effects of increasing values of the Prandtl number Pr on temperature and 

concentration profiles. Physically, the Prandtl number is a dimensionless number which is the ratio of 

momentum diffusivity (Kinematic viscosity) to thermal diffusivity. Increasing the values of the Prandtl number 

means that momentum diffusivity dominates thermal diffusivity. Thus, the temperature and concentration 

decreases with an increase in Prandtl number values. Figure 12 shows that the effects of thermal dispersion on 

temperature profile. From the sketch, an increase in the thermal dispersion effect increases the thermal boundary 

layer thickness i.e. thermal dispersion enhances the transport of heat along the normal direction to the wall as 

compared with the case where dispersion is neglected (i.e. Ds = 0). In general, this for may be useful in showing 

that, the use of fluid medium with better heat dispersion properties may be result in better heat transfer 

characteristics that may be required in many industrial applications (like those concerned with packed bed 

reactors, nuclear waste disposal, etc.). Figure 13 shows the behavior of concentration profile for Schmidt 

number Sc . It is observed that concentration profiles decreases for higher values of Sc. Consequently, boundary 

layer thickness decreases indefinitely with an increase in Sc.  

Table 1 contains the boundary derivatives for velocity profile at the surface of the stretching sheet that 

corresponds to shin friction coefficient 
fx

C  calculated for different values of the power law index n , 

Weissenberg numberWe  and Hartmann number M.  From the data in table 1, it is noticed that increase in both 

power law index n  and Weissenberg numberWe decreases the magnitude of skin friction coefficient
fx

C , but 
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skin friction coefficient significantly increases with an increase in M. Table 2 is included to check the behavior 

of derivative for temperature profile that also predict the local Nusselt number
x

Nu  tabulated for different 

values of power law index n , Weissenberg numberWe , Hartmann number M, thermal dispersion parameter Ds 

and Prandtl number Pr. From the entries in table 2, it is observed that with increases in Prandtl number Pr, local 

Nusselt number
x

N u  increases, whereas local Nusselt number
x

Nu values decrease for increase in power law 

index n , Weissenberg numberWe , Hartmann number M and thermal dispersion parameter Ds . Table 3 

contains the derivative for concentration profile that also gives the behavior of local Sherwood number
x

Sh  for 

different values of power law index n , Weissenberg numberWe , Hartmann number M, Prandtl number Pr  and 

Schmidt number Sc . From the data in table 3, it is observed that with the increase in power law index n , 

Weissenberg numberWe , and Hartmann number Nt , local Sherwood number
x

S h  decreases, while increase in 

Prandtl number Pr, Schmidt number Sc , decrease the local Sherwood number
x

Sh . 

 

III. CONCLUSIONS 
In this study we have presented the heat and mass transfer in magnetohydrodynamic tangent hyperbolic fluid 

flow over stretching sheet in the presence of thermal dispersion. The main results of present analysis are listed 

below 

 Weissenberg number and power law index increase the thickness of the fluid, so velocity profile decreases 

with an increase inWe  and n . 

 Weissenberg number and power law index increase the thickness for the thermal and concentration 

boundary layers, so the temperature and concentration profiles increases with an increase inWe  and n . 

 The thermal dispersion parameter has a strong influence over the temperature profiles. 

 Effect of Hartmann number M  for local Nusselt number and Sherwood numbers are similar. Since M  

causes to reduce the local Nusselt number and Sherwood numbers. 

 The effect of Pr gives the same behavior for both local Nusselt number and Sherwood numbers. Since Pr 

causes to enhances the local Nusselt number and Sherwood numbers. 
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Figure 1: Graph of SRM solutions for velocity profile )(f   for different values of n  
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Figure 2: Graph of SRM solutions for temperature profile )(  for different values of n  
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Figure 3: Graph of SRM solutions for concentration profile )( for different values of n  
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Figure 4: Graph of SRM solutions for velocity profile )(f   for different values of We  
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Figure 5: Graph of SRM solutions for temperature profile )(  for different values of We  
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Figure 6: Graph of SRM solutions for concentration profile )( for different values of We  
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Figure 7: Graph of SRM solutions for velocity profile )(f   for different values of M  
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Figure 8: Graph of SRM solutions for temperature profile )( for different values of M  
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Figure 9: Graph of SRM solutions for concentration profile )(  for different values of M  
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Figure 10: Graph of SRM solutions for temperature profile )( for different values of Pr  
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Figure 11: Graph of SRM solutions for concentration profile )(  for different values of Pr  
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Figure 12: Graph of SRM solutions for temperature profile )( for different values of Ds  
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Figure 13: Graph of SRM solutions for concentration profile )( for different values of Sc
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Table 1 Numerical values for magnitude of
fxx

CRe at the surface for different values of MWen &,  

with .5.0,3Pr  DsSc . 

 
n  

 

We
 

 

M fxx
CRe  

SRM bvp4c 

0.1 

0.2 

0.3 

0.4 

0.5 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.5 

1.0 

1.5 

2.0 

0.1 

0.1 

0.1 

0.1 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

1.15892610 

1.08871946 

1.01304949 

0.93028371 

0.83768770 

1.14675023 

1.13077992 

1.11383010 

1.09568709 

1.33774497 

1.49517344 

1.63740820 

1.76813004 

1.15892610 

1.08871946 

1.01304949 

0.93028371 

0.83768770 

1.14675023 

1.13077992 

1.11383010 

1.09568709 

1.33774497 

1.49517344 

1.63740820 

1.76813004 

  

Table 2 Numerical values for )0(  at the surface for Pr&,,, DsMWen  for Sc =3. 

 
n  

 

We  

 

M  

 

Ds  

 

Pr  

)0(   

SRM bvp4c 

0.1 

0.2 

0.3 

0.4 

0.5 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.5 

1.0 

1.5 

2.0 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1.0 

1.5 

2.0 

2.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.6 

0.7 

0.9 

1.0 

0.5 

0.5 

0.5 

0.5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

5 

6 

7 

0.34830914 

0.30469477 

0.25143371 

0.18377463 

0.09225247 

0.33725987 

0.32193450 

0.30445542 

0.28404527 

0.24781975 

0.16275842 

0.08840660 

0.02199313 

0.26010269 

0.18384194 

0.05926624 

0.00800780 

0.50654478 

0.64876889 

0.77905057 

0.89997906 

0.34830914 

0.30469477 

0.25143371 

0.18377463 

0.09225247 

0.33725987 

0.32193450 

0.30445542 

0.28404527 

0.24781975 

0.16275842 

0.08840660 

0.02199313 

0.26010269 

0.18384194 

0.05926624 

0.00800780 

0.50654478 

0.64876889 

0.77905057 

0.89997906 

 

Table 3 Numerical values for )0(  at the surface for ScMWen Pr&,,, . 

 
n  

 

We  

 

M  

 

Pr  

 

Sc  
)0(   

SRM bvp4c 

0.1 

0.2 

0.3 

0.4 

0.5 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.5 

1.0 

1.5 

2.0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

2.11379991 

2.09506064 

2.07181181 

2.04183423 

2.00093393 

2.10941226 

2.10342617 

2.09676513 

2.08925300 

2.11379991 

2.09506064 

2.07181181 

2.04183423 

2.00093393 

2.10941226 

2.10342617 

2.09676513 

2.08925300 
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0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

1.0 

1.5 

2.0 

2.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

3 

3 

3 

3 

4 

5 

6 

7 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

5 

6 

7 

2.06974599 

2.03088851 

1.99576760 

1.96351627 

2.48458453 

2.81118869 

3.10641603 

3.37787318 

2.48458453 

2.81118869 

3.10641603 

3.37787318 

2.06974599 

2.03088851 

1.99576760 

1.96351627 

2.48458453 

2.81118869 

3.10641603 

3.37787318 

2.48458453 

2.81118869 

3.10641603 

3.37787318 

 

Table 4 Comparison of Skin-friction coefficient 
fxx

CRe  with the available results in literature for different 

values of Wen & when 0Pr  MDsSc . 

 

 

 
n  

fxx
CRe  

0.0We  3.0We  5.0We  

Present study Akbar et al. 

[26] 

Present study Akbar et al. 

[26] 

Present study Akbar et al. 

[26] 

0.0 

0.1 

0.2 

1.00000000 

0.94868330 

0.89442719 

1.00000 

0.94868 

0.89442 

1.00000000 

0.94247918 

0.88022646 

1.00000 

0.94248 

0.88023 

1.00000000 

0.93825864 

0.87026055 

1.00000 

0.93826 

0.87026 
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