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I. INTRODUCTION AND MOTIVATION 
Dynamic invariant inference was introduced less than adecade ago,pioneered by the Daikon tool 

[8,9,29],  andhas garnered significant attention in the software 

engineeringcommunity.Withthehelpofatestsuitethatexercisesthe functionality of an application, an 

invariant inferencesystem observes program properties that hold at pre-selectedprogram points (typically 

method entries and exits).Theoutcome of the system is a collection of such 

properties,postulatedasobjectstateinvariants,methodpreconditions,or method postconditions (collectively 

called ―invariants‖ inthe following).The properties have no formal assurance that they are correct, but they 

do match the observed programexecutions and they are produced only when there is 

somestatisticalconfidencethattheiroccurrenceisnotaccidental.A crucial aspect of the dynamic invariant 

inference process isthattheinvariantsproduceddonotreflectonlythebehaviorof the program, but also the 

assumptions and expectationsof the test suite.   This makes the approach doubly 

usefulforsoftwareengineeringpurposes,byintroducingtheusagecontextofanapplication. 

So far, dynamic invariant inference systems have had apre-

setcollectionofinvarianttemplates,whichgetinstanti-ated for program variables to produce the 

candidate invari-antsunderexamination.Theusercanexpandthecollectionby adding more templates, but 

the number of possible in-stantiationsforallcombinationsofprogramvariablesgrowsprohibitively 

fast.Therefore, dynamic invariant inferencesystems typically perform best by concentrating on a 

smallset of simple candidate invariants.Even so, for a tool 

likeDaikonorDIDUCE[18]toproduceinvariantsthatmatchthe understanding of a human programmer, 

an extensivetestsuitethatthoroughlyexercisestheapplicationisneces-sary. Furthermore, it is likely that 

the inference process willalso produce several invariants that are either irrelevant 

orfalse(i.e.,holdaccidentally). 

In this paper we propose a dynamic symbolic executiontechnique to drastically improve the quality of 

ABSTRACT 

Dynamicallydiscoveringlikelyprograminvariantsfromcon-crete test executions has 

emerged as a highly promisingsoftware engineering technique.Dynamic invariant infer -

ence has the advantage of succinctly summarizing both ―ex-pected‖ program inputs and the 

subset of program behaviorsthat is normal under those inputs. In this paper, we intro-

duceatechniquethatcandrasticallyincreasetherelevanceof inferred invariants, or reduce 

the size of the test suiterequired to obtain good invariants. Instead of falsifying in-

variants produced by pre-set patterns, we determine likelyprogram invariants by 

combining the concrete execution ofactual test cases with a simultaneous symbolic 

execution ofthe same tests.The symbolic execution produces abstractconditions over 

program variables that the concrete testssatisfy during their execution.In this way, we 

obtain thebenefitsofdynamicinferencetoolslikeDaikon:theinferredinvariants correspond 

to the observed program 

behaviors.Atthesametime,however,ourinferredinvariantsaremuchmore suited to the 

program at hand than Daikon’s hard-coded invariant patterns. The symbolic invariants 

are liter-ally derived from the program text itself, with 

appropriatevaluesubstitutionsasdictatedbysymbolicexecution.  

We implemented our technique in the DySy tool , 

whichutilizesapowerfulsymbolicexecutionandsimplificationen-gine.The results confirm 

the benefits of our approach.InDaikon’s prime example benchmark, we infer the 

majorityof the interesting Daikon invariants, while eliminating in-

variantsthatahumanuserislikelytoconsiderirrelevant. 
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• \ 

inferred in-variants (i.e., the percentage of relevant invariants) or theease of obtaining them (i.e., the 

number of test cases re-quiredto disqualify irrelevant invariants).
1
In dynamic sym-

bolicexecution,weexecutetestcases,justlikeatraditionaldynamic invariant inference tool, but 

simultaneously 

alsoperformasymbolicexecutionoftheprogram.Thesymbolicexecutionresultsintheprogram’sbranchcond

itionsbeinginttestme(intx,inty){ intprod=x*y; 

if(prod<0) 

thrownewArgumentException(); if(x<y){ //swapthem 

inttmp=x;x=y; 

y=tmp; 

} 

intsqry=y*y; 

returnprod*prod-sqry*sqry; 

} 

 

Figure 1: An example method whose invariants wewanttoinfer. 

 

collected in an expression, called the path condition in thesymbolic execution literature. The path 

condition is alwaysexpressed in terms of the program inputs.It gets 

refinedwhilethetestexecutiontakesplace,andsymbolicvaluesofthe program variables are being updated. 

At the end of ex-ecution of all tests, the overall path condition correspondsto the precondition of the 

program entity under examina-tion. Symbolic values of externally observed variables pro-vide the 

dynamically inferred postconditions, and symbolicconditions that are preconditions and 

postconditions for allmethodsofaclassbecometheclassstateinvariants. 

For a demonstration of our technique, consider the 

methodofFigure1.(Theexampleisartificialbutisdesignedtoil-

lustrateseveralpointsthatwemakethroughoutthepaper.)Appropriateunittestsforthemethodwillprobablye

xerciseboththecase―x<y‖anditscomplement,butareunlikelytoexercisethecodeproducinganexception,ast

hisdirectlysignifiesillegalarguments.Considertheoutcomeofexecut-

ingthecodeforinputvaluesxsmallerthany(e.g.,x==2,y==5),whilealsoperformingtheexecutioninasym-

bolic domain with symbolic values x and y (we overload 

thevariablenamestoalsodenotetherespectivesymbolicvaluesdesignatingtheoriginalinputs).Thefirstsymboli

ccondi-

tionthatweobserveis―x*y>=0‖:Thebranchofthefirstifisnottaken,andlocalvariableprodhasthevaluex*yint

hesymbolicdomain.Thesymbolicexecutionalsoaccumu-latesthecondition ―x<y‖ 

fromthesecondifstatement.Attheendofexecutionthesymbolicvalueofthereturnedexpressionis―y*x*y*x

-x*x*x*x‖.Notethatthisexpres-sionintegratestheswappingoftheoriginalxandyvalues.If we repeat this 

process for more test inputs (also exercis-ingtheothervalidpathofthemethod)andcollecttogether  

thesymbolicconditions,thenourapproachyields:  

• Apreconditionx*y>=0forthemethod. 

Apostconditionresult==(((x<y)->y*x*y*x 

-x*x*x*x)else->(x*y*x*y-y*y*y*y)). 

(Our example syntax is a variation of JML [23]:we intro-duce an if-else-like construct for 

conciseness.Our tool’soutput syntax is different but equivalent.)   This 

capturesthemethod’sbehaviorquiteaccurately,whileensuringthatthe only symbolic conditions 

considered are those consis-tentwithactualexecutionsofthetestsuite.Thustheapproach is symbolic, but 

at the same time dynamic:thesymbolicexecutionisguidedbyactualprogrambehavioron test inputs.Note 

that the inferred invariants are notpostulated externally, but instead discovered directly fromthe 

program’s symbolic execution.This approach directlyaddresses many of the shortcomings of prior 

dynamic in-variant inference tools (with Daikon used as the foremostreference point). For this 

example, Daikon-inferred precon-ditionsandpostconditionsareexclusivelyoftheform―var 

>= 0‖ or ―var== 0‖, and are often encoding arbitrary ar-tifacts of the test suite, unless a very thorough 

test planexercises many possible combinations with respect to 

zero(e.g.,x,ybothnegative,bothpositive,one/bothzero,etc.).  

Overall,ourworkmakesthefollowingcontributions: 

 

We introduce the idea of using dynamic symbolic ex-

ecutionforinvariantinference.Webelievethatourapproachrepresentsthefutureofdynamicinvariantinference 

tools, as it replaces a blind search for possi-ble invariants with a well-founded derivation of 

• 



DySy: Dynamic Symbolic Execution for Invariant Inference 

www.ijceronline.com                                               Open Access Journal                                                 Page 109 

suchinvariantsfromtheprogram’sconditionsandside-effects. 

We implemented our approach in the invariant infer-ence tool DySy, built on top of the Pex 

framework forinstrumentation and symbolic execution of .NET pro-grams.We discuss the heuristics 

used by DySy in orderto simplify symbolic conditions (e.g., our 

abstractionheuristicsfordealingwithloops).DySyrepresentswellthe benefits of the proposed technique. 

For instance,DySy’ssymbolicapproachcaninferinvariants,suchaspurity (absence of side-effects), that 

are too deep fortraditional dynamic tools.In contrast, prior dynamic invariant inference tools (which only 

observe after-the-fact effects) typically can establish purity only in 

verylimitedsettings,astheywouldneedtoobservetheen-tirereachableheap. 

We evaluate DySy in direct comparison with Daikon,in order to showcase the tradeoffs of the approach. 

FortheStackArbenchmark(hand-translatedintoC#),which has been thoroughly investigated in the 

Daikonliterature [10], DySy infers 24 of the 27 interesting in-variants (as independently inferred by a 

human user),while eliminating Daikon’s multiple irrelevant or acci-dentalinvariants. 

 

The rest of this paper begins with a brief discussion ofwhat our work is not (Section 2), and continues  

with somebackgroundondynamicinvariantinferenceandsymbolicex-ecution (Section 3) before detailing 

the technical aspects ofourapproachandtool(Section4)andpresentingourevalu-ation (Section 5). 

Related work (Section 6) and our conclu-sions(Section7)follow. 

 

II. POSITIONING 
Ourapproachisacombinationofsymbolicexecutionwithdynamic testing.As such, it has commonalities 

with mul-tiple other approaches in the research literature. To avoidearly misunderstandings, we next 

outline a few techniquesthatmayatfirstseemsimilartoourapproachbutaredeeplydifferent. 

 

Our dynamic symbolic execution is not equivalent tolifting conditions from the program text (e.g., 

condi-tionsinifstatementsorinwhileloops)andpostulating them as likely invariants.(Several prior 

analy-sis tools do this—e.g., Liblit’s statistical bug 

isolationapproach[25]andDaikon’sCreateSpinfosupporting utility.)For instance, notice how the 

precondition ofour example in the Introduction (x*y > = 0) does notappear anywhere in the program 

text.Instead, pro-gramconditionsarechangedduringthecourseofsym-bolic execution:local variable 

bindings are replacedwith their symbolic values, and assignments updatethe symbolic values held by 

variables, thus affectingthepathcondition. 

Our approach is not invariant inference through statictechniques (e.g., using abstract interpretation 

[26], orsymbolic execution [32]). Inferring invariants throughstatic analysis is certainly a related and 

valuable tech-nique,butitismissingthedynamicaspectofourwork,as it takes into account only the 

program text and notthe behavior of its test suite. Specifically, our dynamicsymbolic execution uses 

the test suite as a way to dis-cover properties that users of the code are aware of.This is highly 

valuable in practice, as invariant infer-ence tools are often used to ―read the 

programmer’smind‖anddiscovertheinterestingparameterspaceofamethod(e.g.,fortesting[5]). 

Ourapproachis  notconcolic  execution  (as  in  toolslikeDart[17],Cute[30],orParasoft’s  original ―dy-

namicsymbolicexecution‖ patent[21]).  Although  

wedoaconcreteexecutionoftestcasesinparallelwithasymbolicone,wedonotusethesymbolicexecutionto 

produce more values in order to influence the pathtaken by concrete executions.Our technique 

followsprecisely the concrete program paths that the originaltestsuiteinduces. 

 

III. BACKGROUND 
We next present some background on dynamic invariantinference and on symbolic execution, 

emphasizing the fea-tures of both that are particularly pertinent to our laterdiscussion.  

DynamicInvariantInference:Daikon 

Dynamicinvariantinferenceisexemplifiedby(andoftenevenidentifiedwith)theDaikontool[8,9,27,29] —

thefirstandmostmaturerepresentativeoftheapproach,withthewidest use in further applications (e.g., [2, 

6, 7, 11, 22, 36]).Daikontracksa program’svariables during 

executionandgeneralizestheobservedbehaviortoinvariants—

preconditions,postconditions,andclassinvariants.Daikoninstrumentstheprogram,executesit(forexample,

onanexistingtestsuiteorduringproductionuse),andanalyzestheproducedexecut iontraces.Ateachmethode

ntryandexit,Daikoninstantiatessomethreedozeninvarianttem-

plates,includingunary,binary,andternaryrelationsoverscalars,andrelationsoverarrays.Examplerelationsi

n-cludecomparison’sofavariablewithaconstantvalue(x  

=a, or x>  0), linear relationships (y  ==  a*x  +  b), order-ing (x <= y), membership and sortedness, 

• 

• 

• 

• 

• 
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etc.Users canextend the invariant templates with application-specific ordomain-specific 

properties.The number of candidate in-variants grows combinatorially, however. For each 

invarianttemplate, Daikon tries several combinations of method pa-

rameters,methodresults,andobjectstate. Forexample,  

itmightproposethatsome methodmneverreturnsnull, or that its first argument is always larger than its 

second.Daikonsubsequentlydisqualifiesinvariantsthatarerefutedbyanexecutiontrace—

forexample,itmightprocessasitu-ationwheremreturnednullanditwillthereforeignorethe above 

invariant.So Daikon summarizes the behavior ob-served in the execution traces as invariants and 

generalizesit by proposing that the invariants might hold in all otherexecutions as well. Daikon can 

annotate the testee’s sourcecodewiththeinferredinvariantsasJMLannotations[23].  

SymbolicExecution 

Symbolicexecution[20]isatechniqueforusingapro-gram’scodetoderiveageneralrepresentationofitsbe-havior, 

by simulating execution with some values being un-known.Specifically,symbolicexecutionreplacesthe  

con-creteinputsofaprogramunit(typically,amethod)withsymbolicvalues,andsimulatestheexecutionof  the  

pro-gramsothatall  variables  hold  symbolic  expressions  overtheinput symbols,insteadofvalues. For  

symbolicexecu-tion to ―simulate‖ regular, concrete execution, its semanticsmustcorrectlygeneralizethat  of  

concrete  execution. Thekey property is commutativity:performing symbolic execu-tion and instantiating 

its output state with concrete valuesmust yield the same result as instantiating the initial sym -

bolicstatewiththesameconcretevaluesandperformingconcreteexecution. 

A concept of symbolic execution that is particularly im-portant for our work is that of a path 

condition, defined as―theaccumulatorofpropertieswhichtheinputsmustsatisfyin order for an execution 

to follow the particular associatedpath‖ [20].Thus, a path condition can be seen as a precon-

ditionforaprogrampath,whichisexactlythewayweuseitinourwork.  

Generally,thegreatestchallengeofsymbolicexecutionisto reason about symbolic program properties. 

For instance,in traditional symbolic execution, when accumulating pred-icates in the path condition, it 

is important to recognizewhenthepathconditionbecomesunsatisfiablebytheaddi-

tionofanextrapredicate—i.e.,whentheexistingpathcon-dition contradicts a program branch.To do so, a 

symbolicreasoningengine(typicallyanautomatictheoremprover)isemployed.Inourapproach,wedonotnee

dtorecognizein-feasible program paths, as the concrete execution guaranteesthat the paths we are 

examining are feasible. Nevertheless,weneedsimilarautomaticreasoningpowerinordertosim -plify path 

conditions and symbolic expressions and presentthemtotheuserasprograminvariants.  

 

IV. DYNAMICSYMBOLIC EXECUTION FOR INVARIANT INFERENCE 
Wenextdiscussthegeneralelementsofourapproach,as well as the technical specifics of our DySy tool, 

and theabstractionheuristicsweemployforhandlingloops. 

OverviewandInsights 

As outlined earlier, our dynamic symbolic execution per-forms a symbolic execution of the program 

simultaneouslywith its concrete execution. For a method under examina-tion, all class instance and 

static variables, the method’sparameters, and the method’s result are treated as sym -

bolicvariables.Thepathconditionofthesymbolicexecutionisdeterminedpurelybythepathstakenintheconcr

eteexecution—no exploration of other paths using symbolic val-ues is performed. When executing a single 

test case, the pathcondition at the end of the symbolic execution representsthe symbolic condition for 

the path the program followed.Thus, the path condition corresponds exactly to a precon-ditionfor that 

particular test case execution. Similarly, thesymbolic values of the method’s result and of the 

objectinstance variables form the method’spostcondition for thespecific test case. Repeating the process 

for all test cases, weget a collection of preconditions and postconditions, whichall need to hold for the 

method.Combining the precon-ditions and postconditions for all test runs, we obtain thetotal 

precondition and postcondition of the 

method.Theconditionsaresimplifiedthroughsymbolicreasoningbeforebeing presented to the 

user.Individual conditions (i.e., with-outlogicaldisjunction—seelater)thatconcernonlyinstancevariables 

(i.e., no parameters) and that hold on entry andexitofallmethodsarereportedasclassinvariants.  

This general scheme elides several important 

elements.Thefirstinterestingpointconcernshowconditionsarecom-

bined.ConsiderthefollowingsimplemethodfromtheStackArbenchmark,describedinSection5.  

publicObjecttop(){ if(Empty) 

returnnull; 

returntheArray[topOfStack]; 

} 

Imagine that we execute this method for two test cases:firstonanemptystackandthen  on  a  non -empty  
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one.Thefirstexecutionproducesapathcondition―Empty== 

true‖.(EmptyisaC#―property‖,thereforetakingits 

valueresultsincallingamethod,whichchecksthevalueoftopOfStack.Nevertheless,thismethodispureso 

oursystem  usesEmptyasalogicalvariableincondi- tions instead of expanding it,  as we discuss later in 

Sec-tion4.2.)Thepathconditionbecomesthepreconditionof the method for this test case.Similarly, the 

postcon-ditionis―result==null‖,againonlyforthisparticu- lar execution. The test case of a non-empty 

stack pro-ducesaprecondition―Empty==false&&topOfStack>= 

0&&topOfStack<theArray.Length‖.Thecorresponding 

postconditionis―result==theArray[topOfStack]‖. 

Combiningpreconditionsisdonebytakingthedisjunction(logical-or) of the individual test cases’ 

preconditions.Inthisexample,thecombinedpreconditionbecomes: 

Empty==true|| 

(Empty==false&&topOfStack>=0&&topOfStack<theArray.Length) 

Similarly,postconditions are combined by taking theirconjunction but appropriately predicated with 

the corre-sponding precondition.Following common convention, wereport the conjunction of 

postconditions as two separatepostconditions. In our example, the inferred postconditionsbecome: 

Empty==true==>(\result==null) 

and 

(Empty==false&&topOfStack>=0&&topOfStack<theArray.Length) 

==>(\result==theArray[topOfStack]) 

Combininginvariantsbydisjunction,conjunction,andim-plication brings out an interesting feature of 

our approach.Consider method preconditions.The crux of every dy-namic invariant inference system 

is its abstraction technique.Givenamethodvoidm(inti)andtestinputvaluesfrom1 

to1000,themostprecisepreconditionthataninvariantsys-temcaninferisbydisjunction—i.e.,―i==1||i==2|| 

... || i == 1000‖. Generally, the system can be preciseby inferring one disjunct for every test case 

executed, andcombining them to form the complete precondition. Never-theless, this precision means 

that dynamic observations donot generalize to other test inputs that  have not been al-

readyencountered.Thevalueofaninvariantinferencetoolis exactly in this generalization. Thus, 

traditional dynamicinvariantinferencetools(suchasDaikonorDIDUCE)oftenavoid combining 

observations precisely using disjunction andinstead try to generalize and abstract. For instance, a rea-

sonable abstract precondition for the above inputs is ―i >0‖. Once conditions have been abstracted 

sufficiently, theycan be combined precisely across test cases using disjunc-tion. The tool is overall 

responsible for heuristically decid-ingwhentousedisjunctionandwhentoabstractawayfromconcrete 

observations. The typical result is that dynamic in-variant inference tools use disjunction (i.e., 

multiple cases)sparingly,insteadpreferringtogeneralize,whichoftenleadsto over-generalization.Instead, 

our approach employs nosuch heuristics.Our observations are already generalized,since they 

correspond to branch conditions in the programtext, appropriately modified in the course of symbolic 

exe-cution.Thus, they can freely be combined precisely usingdisjunction. Even if there is a large 

number of test inputs,thenumberofdisjunctsinouroutputisboundedbythepro-gram paths in the method 

under examination. (Of course,the number of program paths can be infinite in the case ofloops, and  

we have to apply special abstraction techniques,discussedlaterinthepaper.) 

Another interesting feature of the dynamic symbolic ex-ecution technique is that some relatively 

―deep‖ invariantscan be easily established. For the above example, our DySytoo l easily infers the 

postconditionpure, indicating that themethodhasnoeffectsvisibletoitsclients.Incontrast,tradi-

tionaldynamicinvariantinferencetoolstreatthemethodasa black box, and can only establish shallow 

properties withobservations at its boundaries. For instance, Daikon infersseveral shallow purity 

properties for the above example, suchas―theArray==old(theArray)‖.Itcannot,however,es- 

tablishthefullpurityofthemethodrelativetoallreachableheapdata(e.g.,withrespecttotheelementsheldinsid

ethearray,andalltheelementsreferencedbythem,etc.).  

Finally, the dynamic symbolic execution approach to in-variant inference is heavily dependent on a 

symbolic rea-soningengine(e.g.,atheoremprover)forproducingoutputthat is close to the expectations of 

a human user. Withoutsymbolic simplification of conditions, invariants end up tooverbose, with 

multiple tautologies.For a simple example,consideramethodallIntswiththefollowingstructure: 

voidallInts(inti){ if(i<0) 

{...}//dosomething 

elseif(i==0){...}//dosomethingelse i++; 

if(i>1){...}//dosomethingelse 

} 

If the program’s regression test suite exercises all paths,then it is natural to expect a precondition of 
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true ratherthantheunreduced―((i<0)&&!(i+1>1)) 

||(!(i<0)&&(i==0)&&!(i+1>1)) 

||(!(i<0)&&!(i==0)&&(i+1>1))‖.Thus,sym- bolicreasoningisnecessaryto establish this 

tautology.It is worth noting that existing dynamic invariant infer-ence tools can also benefit from 

symbolic reasoning in or-der to simplify their reported invariants.For instance,Daikon produces 

several extraneous invariants for the ear-liertoproutineofStackAr:apostcondition―topOfStack 

==old(topOfStack)‖isreported,butotherpostconditionsincludebothclauses―result==theArray[topOfSt

ack]‖ and―result==theArray[old(topOfStack)]‖. 

We next discuss our specific implementation of dynamicsymbolic execution for invariant detection in 

the DySy tool.DySy benefits from the mature symbolic execution and rea-

soningcapabilitiesofthePexframework. 

 DySy,Pex,andSymbolicReasoning 

Pex [33] is a dynamic analysis and test generation frame-work for .NET, developed by the 

Foundations of SoftwareEngineering group at Microsoft Research. Pex monitors theexecution of a 

program through code instrumentation. Theinstrumented code drives a ―shadow interpreter‖ in parallel 

with the actual program execution. For every regular .NETinstruction,there is a callback to Pex,which 

causes the―shadow interpreter‖ to execute the operation symbolically.The Pex interpreter is almost 

complete for the .NET instruc-tion set. It is only missing the logic to perform control-

flowdecisions,sinceitispassivelymonitoringtheactualprogramexecution,whichperformsthedecisionactiv

ely. 

Pex’s main functionality is similar to the Dart tool 

[17]:Pextestsprogramsexhaustivelyinafeedbackloop,inwhichan automatic constraint solver finds new 

test inputs thatrepresent execution paths that Pex did not monitor yet.While we do not use this test 

input generation feature inDySy, we do use Pex’s capability to construct and 

reasonaboutsymbolicprogramstates. 

 

Background:PexSymbolicStates,Terms 

A symbolic program state is a predicate over logical vari-

ablestogetherwithanassignmentoftermsoverlogicalvari-ables to locations, just as a concrete program 

state is anassignment of values to locations. The locations of a statemay be stati c fields, instance 

fields, method arguments, lo-cals,andpositionsontheoperandstack. 

Pex’s term constructors include primitive constants (inte-

gers,floats,objectreferences),andfunctionsoverintegersandfloatsrepresentingparticularmachineinstructio

ns,e.g.,additionandmultiplication.Othertermconstructorsimple-

mentcommondatatypessuchastuplesandmaps.Pexusestuplestorepresent.NETvaluetypes(―structs‖),and

mapstorepresentinstancefieldsandarrays,similartotheheapencodingofESC/Java[13]:Aninstancefieldofa

nobjectisrepresentedbyasinglemapwhichassociatesobjectref-

erenceswithfieldvalues.Constraintsoverthe.NETtypesystemandvirtualmethoddispatchlookupscanbeencod

edaswell.Predicatesarerepresentedbyboolean-

valuedterms.Peximplementsvarioustechniquestoreducetheoverheadof the symbolic state representation. 

Before building a newterm,Pexalwaysappliesasetofreductionrulesthatcom-

puteanormalform.Asimpleexampleofareductionrule 

is constant folding, e.g., 1 + 1 is reduced to 2.All 

logicalconnectivesaretransformedintoaBDDrepresentationwithif-then-else terms [3]. All terms are 

hash-consed, i.e., onlyone instance is ever allocated in memory for all structurallyequivalentterms.  

Recall the method top given in an earlier example. 

WhenweexecutethemethodandEmpty==false,thentheresult 

ofthemethodcall,theArray[topOfStack],willhavethe followingtermrepresentation. 

select(select(int[]_Map, 

select(theArray_Map,this)), select(topOfStack_Map,this)) 

 

whereselect(m,i)representstheselectionofthevalue storedatindexiinthemapm.theArray_Mapand 

topOfStack_Maparemapsindexedoverobjectrefer- ences,soselect(theArray_Map,this)correspondsto 

this.theArrayinthesourcelanguage.int[]_Mapisamap of array references to another map that contains 

the ele-mentsofthearray,indexedoverintegers. 

Astateupdate,e.g., 

this.topOfStack=this.topOfStack+1; 

which method push may perform, is represented using an up-

datefunctionupdate(m,i,v),whichrepresentsthemap mafteriswasupdatedatindexiwithnewvaluev. 
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topOfStack_Map’=update(topOfStack_Map,this, 

add(select(topOfStack_Map,this),1)) 

 

The interpreter records all conditions that cause the pro-

gramtobranch.Inadditiontotheexplicitconditionalbranches performed by the program, Pex’s interpreter 

alsomodels all implicit checks performed by the runtime whichmay induce exceptional behavior—e.g., 

following a referenceistreatedasanimplicitbranchbasedonwhethertherefer-

enceisnull(exceptionalpath)ornot(normalpath). 

Basedonthealreadyaccumulatedpathcondition,termsarefurthersimplified.Forexample,ifthepathconditi

onalreadyestablishedthatx>0,thenx<0reducestofalse. 

Pex has a term pretty printer which can translate 

backreducedandsimplifiedtermsintoreadableC#syntax. 

 DySyAlgorithm 

DySy symbolically monitors the concrete execution of agiven test suite.   For the duration of each 

method call,DySy registers a separate interpreter with Pex’s monitor-ing framework.Thus, as soon as 

there are nested methodcalls, multiple interpreters will be listening to the callbacksof the instrumented 

code. DySy builds a set of 

quadruples(method,pathCondition,result,finalState)asitmonitorstheprogram.Each quadruple 

characterizes an execution pathofamethod. 

 

Step1:Pathconditionandfinalstatediscovery. 

When the program initiates a call to a method M(in-cludingtheMainmethodofthetestsuite),DySycreatesa 

newinterpreterinstancealongwithanewsymbolicstatein-stance. DySy initializes the locations of the 

symbolic state,including the method’s arguments, with logical variables.The interpreter will evolve 

the symbolic state according toallsubsequentlyexecutedinstructions,includingtransitionsinto and out of 

other method calls. When the call to M 

thatspawnedthisinterpreterinstancereturns,DySyrecordsthequadruple(M,pathCondition,result,finalStat

e),andaban-dons the interpreter.The result is the term that M 

returns.Duringnestedmethodcalls,thestate’slocationsalwaysholdtermsbuiltovertheoriginallogicalvariable

sofM,andtheresultofthecallisalsoatermovertheoriginallogicalvariables.Whentheprogramperformsnostat

eupdatesduringa(nested)call,exceptupdatestothelocalvariablesofnewlycreatedstackframesandupdatesto

instancefieldsofnewlycreatedobjects,DySyconsidersthecallpure.DySyreplacestheresultofapurecallwith

atermrepresentingthecall—e.g.,inourearlierexampleitreplacestheexplicit  

resulttopOfStack>=0withthemethodname Empty. 

Also, DySy abstracts all, directly or indirectly, recursivecalls to M in this way, regardless of whether 

they are purecalls or not.This is a heuristic treatment, which results inrecursive invariants. (This 

avoids unbounded paths throughrecursivemethods.Theotherinterestingcaseisunboundedpaths through 

loops, which we discuss separately in Sec-tion4.3.)Forexample,thefactorialfunction 

intfac(inti){ if(i<=1) 

return1;else 

returni*fac(i-1); 

} 

iseventuallycharacterizedbyDySyasamethodwithnoprecondition,andthepostcondition  

\result==((i<=1)->1)else->i*fac(i-1)tion of path-specific postconditions.A path-specific post-

condition is an implication with a path condition on the 

lefthandsideandaconjunctionofequalities,whereeachequal-

ityrelatesalocationtothetermassignedtothatlocationinthefinalstate.(E.g.,recallpostcondition―Empty==tru

e 

==>(\result==null)‖inourearlierexample.) 

 

AbstractionforLoops 

Handling loops is a fundamental challenge for symbolicexecution in general.In our specific context, 

we discussedearlierhowloopsresultinamethodhavinganinfinitenum-

berofpossiblepaths.Sinceoursymbolicexecutionisguidedby a concrete execution, every path we observe 

has a finitelength,  but grows quickly and without bounds. In prac-tice,this means that straightforward 

symbolic executionproduces enormous path conditions that are overly specificand defeat the purpose 

of using program conditions as po-tential invariants. We next discuss the heuristics that 

DySyusesforabstractioninthecaseofloops. 
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Let us examine the problem with the example of a 

simplelinearsearchmethod,forwhichwewanttoderiveinvariants. 

publicintlinSearch(intele,int[]arr){ if(arr==null) 

thrownewArgumentException(); 

for(inti=0;i<arr.Length;i++){ if(ele==arr[i]) 

returni; 

} 

return-1; 

} 

Pex does not know the effects of code that it does notmonitor.For example, calls to ―native‖ methods 

are notmonitored. Here, the user can choose between a conservativeandanoptimistictreatment. 

 

Step2:Classinvariantderivation. 

At the end of symbolic execution and before outputtingmethod preconditions and postconditions, 

DySy first com-putes class invariants, which are used to simplify the meth-ods’ invariants.DySy 

defines the set of ―class invariant can-didates‖ of a class C as the set of conjuncts c of all recordedpath 

conditions of all methods of C, where c only refers 

tothethisargumentbutnootherargument.(Forfuturework, 

onecouldexistentiallyquantifytheotherargumentsymbolsto gain more class invariant candidates.) For 

each path con-dition and final state of a method of C, DySy then checkswhich candidates are implied 

by all path conditions in thefinal states of all methods of C.(In fact, in its current im-plementation, 

DySy does not perform a precise 

implicationcheckusinganautomatictheoremprover.Instead,itsimplyexecutes the test suite again, and 

checks the candidates inthe concrete final state of each call to a method of C.) 

Theimpliedcandidatesarethe―classinvariant‖ofC. 

 

Step3:Pre-andpostconditioncomputation. 

Finally, DySy further simplifies the method’s path con-ditions, assuming the derived class 

invariant.As a conse-quence of this simplification, some of the quadruples mightcollapsetogether.  

Thepreconditionofamethodisthedisjunctionofitspathconditions.Thepostconditionofamethodistheconjun

ct Considerrunningtestsforthismethodwithasingleinput  

array{5,4,3,12,6}andthenumbers0to9ascandi- date element values. Performing symbolic execution 

alongthepathofconcreteexecutionforeleequalto0willyield a long and too-specific path condition, even 

after full sim-plification:―arr!=null&&arr.Length==5&&ele!= 

arr[0]&&ele!=arr[1]&&ele!=arr[2] 

&&ele!=arr[3]&&ele!=arr[4]‖.Thepreconditionis not only unwieldy, but also fairly bad for our 

purposeof inferring invariants because it does not contain generalobservations that may also appear in 

preconditions derivedfor other test cases: Even after all tests are run, the com-bined preconditions 

and postconditions will end up havingfewcommonalities(e.g.,―arr!=null&&arr.Length== 

5‖)and5separatecases.(Fourcasescorrespondtothefournumbers from 0 to 9 that appear in the array, and 

one casecorresponds to the path for numbers that are not found inthe array.) This is exactly the 

―precise but useless‖ invariant thatdynamicinvariantinferenceaimstoavoid,asdiscussedin Section 4.1. 

The problem is that our technique is basedon using program conditions to partition the abstract 

spaceofpossibilitiesintoafewgeneralbutinterestingcategories.Thesecoarsepartitionscanthenbecombinedt

ogetherwithdisjunctions (i.e., case-analysis).When the partitions be-come too fine, there is no 

abstraction benefit and the in-variantsdescribeexactlythebehaviorofthetestinputsandlittlemore. 

Thegeneralapproachtodealingwithsuchover-specificityin program analysis is to force abstraction by 

forgetting someof the information in the too-precise program paths.Wecan do this by collapsing 

conditions together (e.g., one con-ditionper-program-point)orbyturningprogramvariablesinto 

unknowns (i.e., symbolic values) if they get 

assignedmoretimesthanagiventhreshold.Theidealsolutionwouldbe to produce a concise strongest loop 

invariant condition.This is generally infeasible, although the rich research resultson automatic techniques 

for deriving loop invariants (e.g., 

[4,14,28])areapplicabletotheproblem.DySycurrentlyusesasimpleheuristicthatdoesnotinvolveanattemptf

orinvari-ant inference, only local collapsing of conditions.We firstrecognize loop variables by treating 

specially the commoncode pattern of for loops that introduce explicit variables.Loop variables are 

then treated as symbolic values, and aloop’sexitconditiondoesnotbecomepartofthepathcon -dition if the 

loop body is entered at all. Furthermore, sym-bolic conditions inside the body of the loop are 

collapsedper-program-point with only the latest value remembered:If a certain if statement in a loop 
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body evaluates to true inoneiterationandtofalseinanother,thelatestconditionre-places the earlier one in 

the path condition. This effectivelytreats a loop as if it were an ifstatement with the symbolic 

conditionsintheloopbodycollapsedper-program-point. 

Toillustratetheapproach,ourlinSearchexampleuses aforloopwithloopvariablei,declaredexplicitlyinthe 

for loop’s initialization expression.This signals to DySythat variable i will likely be assigned 

multiple values, andwill participate in conditions. DySy then treats i as a sym-bolic value and does 

not keep track of its state updates.By itself, this would be insufficient: executing the loop andthen 

exiting would produce contradictory symbolic condi-tions.Inourexample,wewouldhave―i<arr.Length‖ 

(forthepartofthepathexecutingtheloopbody)and―!(i  

<arr.Length)‖(when thesamepathlaterexitstheloop body).Since both conditions are conjoined (logical-

and)togetherinthesamepathcondition,thepathconditionbe-

comesjustfalse,whichisclearlyerroneous.Inourheuris- tic, we ignore a loop’s exit condition (unless the 

loop is notenteredatall).Inourexample,thepreconditionbecomes: 

 

arr!=null&& 

($i<arr.Length&&!(ele==arr[$i])&&$i>=0|| 

$i<arr.Length&&ele==arr[$i]&&$i>=0) 

 

This demonstrates a few interesting points. First, sym-bolicvariable$iistreatedasapseudo-

input.Essentially,in theabovelogicformula,$iisexistentiallyquantified:there 

existssome$iwiththeseproperties.Second,nocondition ―$i>=arr.Length‖isoutput.Everytestcaseentersthe 

loop at least once.Third, we can see how path conditionsare collapsed per-program-point inside the 

loop body: Exe-

cutionsthatdofindthesearchedelementproduceboththecondition―!(ele==arr[$i])‖(foriterationsoverot

herel- ements)andthecomplement,―ele==arr[$i]‖(fortheit- eration that finally finds the element). Yet 

the former arereplaced when the latter take place. Finally, this precondi-tion contains redundancy. It 

covers the complementary casesof―ele==arr[$i]‖and―!(ele==arr[$i])‖,whichcan be simplified 

away. It is fortunate, however, that the DySysimplifier misses this opportunity because this helps 

illus-trate how the different cases arise.The separation of thecases does not matter for the  method’s 

precondition, butdoesmatterforthepostcondition.There,weobtain(slightlysimplified): 

 

!(ele==arr[$i])==>\result==-1|| ele==arr[$i]==>\result==$i 

This is a quite informative postcondition for the method,andcapturesitsessenceaccurately.  

In the immediate future, we plan to refine our 

heuristicintoaslightlymoresophisticatedversionthathandlesmorethan for loops and also produces useful 

conditions for exit-ing the loop body. Specifically, we intend to recognize loopvariables by observing 

program variables that get assignedduring the loop’s iterations.Each of these program vari-

ableswillgiverisetotwosymbolicvariables—e.g.,$i0and 

$i1.Thefirstsymbolicvariablewillrepresentthevalues of the program variable in the body of the loop, 

while thesecondwillrepresentthevalueonexitfromtheloop.Thesevariables are again existentially 

quantified:our conditionswillonlyreflectthatthereissomevalue$i0(resp.$i1)for which the symbolic 

conditions derived while executing theloopbody(resp.whenexitingtheloop)hold. 

 

V. EVALUATION 
We next discuss and evaluate DySy in comparison withtheDaikondynamicinvariantinferencetool.  

Discussion 

At a high level, our discussion of the dynamic symbolicapproach should give the reader a qualitative 

idea of thecomparative advantages of DySy.Every dynamic invariant inference process captures, to 

some extent, the peculiaritiesof the test suite used. Nevertheless, our symbolic approachhas a smaller 

risk of being overly specific, since the condi-tions themselves are induced by the program text and 

refinedthrough symbolic execution.Instead, an approach observ-ing arbitrary, pre-set conditions at 

method boundaries isboundtobe―fooled‖muchmoreeasily.ForthelinSearchmethod of the previous 

section, with the test cases describedearlier(allnumbers0..9searched inthearray{5,4,3, 

12,6})Daikoninfersalmostnousefulinvariants,buta large number of spurious ones.Example 

―accidental‖ in-variantsinclude―size(arr[])inarr[]‖,―size(arr[])-1 

inarr[]‖,―arr[i]!=i‖,etc.(Theserelatetheindexor size of an array to its contents!) Certainly these 

spurious in-variantscanbedisqualifiedwithamoreextensivetestsuitethat uses more arrays as 

inputs.Nevertheless, test suitesencountered in practice tend to exercise as many differentcases in the 

program logic as possible, but without muchvariety of data. It is, thus, very plausible for a 
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programmertounit-testmethodlinSearchwithonlyasinglearray,yet with multiple input search values. A 

larger test input (e.g.,asystem-test)thatexerciseslinSearchmayalsofailtoin- validatesome 

ofthefalseinvariants—forinstance,―arr[i] 

!=i‖islikelytoholdformanyarrays. 

Ontheotherhand,  a possible  threat for  DySy  

comparedtoDaikonisthatinterestingconditionsarenotreflectedinthe program text.  For instance, an 

interesting concept, suchas ordering, may be implicit or hard to infer from programconditions,yetmaybe  

inferable  by  Daikon. 

Nevertheless,wehavenotfoundthistooftenbethecase.Webelievethatthisisnotsurprising:findinganimplicitinter

estingconcept by unguided search over a space of pre-set invarianttemplatesisquiteunlikely. 

ACaseStudy 

We evaluate DySy by replicating a case study analyzed inthe Daikon literature.The StackAr class was 

an exampleprogramoriginallybyWeiss[34],whichisincludedastheTable 1:How many of the ―ideal‖ 

invariants Daikonand DySy infer for StackAr methods and construc-tors exercised by the test 

suite.(Higher is better.)―Goalinv‖ isthenumberofourmanuallydeter-mined ideal invariants. 

―Recognized inv‖ is the num-ber of these ideal invariants inferred by Daikon 

andDySy.Foreachtool,wereportastrict  and  a  re-

laxedcount(thenumbersinparentheses)becauseof object equality invariants.If the tool does 

notestablishthedeepequalityof  objects  (or  full  pu-rity of a method), but does establish some 

shallowequality condition (e.g., reference equality, or valueequalityup  to  level-1)  then  the 

―relaxed‖ numberin parentheses counts this as matching the expectedinvariant.  

 Goal 

inv 

Recognizedinv 

Daikon DySy 

Invariant 5  5  4 

Constructor 3  3  2 

push 4  2(4)  2(4) 

top 3  1(3)  2(3) 

topAndPop 4  2(4)  2(4) 

isEmpty 3  2(3)  3 

isFull 3  2(3)  3 

makeEmpty 2  2  2 

Total 27 19 (27) 20 (25) 

 

 

main example in the Daikon distribution. StackAr is a 

stackalgebraicdatatypeimplementedusinganarray.Ernstetal.  

[10] examineStackAr in detail and discuss Daikon’s abilityto infer StackAr’s invariants. In order to 

perform a compar-ison with DySy, we rewrote StackAr in C# (also with thehelp of the Java 

Conversion Assistant in the Visual StudioIDE). 

WeranDaikononthetestsuitessuppliedforStackArby the Daikon authors. To do a comparison of Daikon 

andDySy, we needed an ―ideal‖ reference set of invariants forStackAr.Before beginning our 

experimentation, a humanuser hand-produced our reference invariants.Inspection re-veals that this set 

of invariants is comprehensive and min-imal (in informal terms).It captures the behavior of 

eachmethod in terms expected by human users.(We discussspecificexampleslater.)  

Running DySy on the test suite takes 28 seconds, com-

paredto9secondsforDaikon(2.2secondsmonitoringand 

6.7 seconds inference reported) on a 2 GHz AMD Athlon 64X2 dual core 3800+ with 4 GB of RAM. 

Generally, our sym-bolicexecutionaddssignificantoverhead,which,however,isstrictly lower than that of 

concolic execution [17, 30].  Thisisfastenoughforrealuseonspecificprogramunits.Gener-ally, we 

believe that the matter of invariant quality is muchmore significant than that of runtime overheads, as 

there issubstantialpotentialforoptimizationsinthefuture.  

The results of the DySy and Daikon inference are summa-rized in Tables 1 and 2. Table 1 shows the 

number of idealinvariants that were actually detected by Daikon and DySy.As can be seen, the test 

suite is quite thorough and bothtools detect the vast majority of the target invariants.Anint eresting 

issue concerns object equality (and method pu-rity), which is often part of the ideal invariant. The 

meaningofequalityinourhuman-producedinvariantsisdeepequal Table 2:Metrics on all reported 

invariants (lower isbetter), compared to ideal reference set.  ―Goal inv‖is the number of ideal 

invariants. ―Daikon inv‖ is thenumber of invariants reported for Daikon. ―Uniquesubexpr‖ 

are the unique subexpressions produced byDaikon and DySy to present their invariants to 
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theuser.The total expression count is relative to theentire class so here it is less than the 

sum.(Somesubexpressionsarecommonacrossmethods.) 

 

 Goal 

inv 

Daikon 

inv 

Uniquesubexpr 

Goal Daikon DySy 

Invariant 5 8 26 26 16 

Constructor 3 7 17 24 17 

push 4 21 28 69 43 

top 3 22 14 81 25 

topAndPop 4 41 21 145 50 

isEmpty 3 13 9 53 9 

isFull 3 11 13 45 13 

makeEmpty 2 15 5 47 22 

Total 27 138 89 316 133 

 

ity.This is not always inferred by the tools, but referenceequality is more often inferred (which cannot 

preclude 

thatthemembersofanobjectchanged).Thetableoffersastrictandarelaxedcount.Thestrictcountconsidersthe

invariantfoundevenifonlyreferenceequalityisestablished. 

Although both tools infer the required invariants for thistest suite, the benefit of DySy is demonstrated in 

its avoidingirrelevantinvariants.Table 2 shows how many total invari-ants Daikon inferred (third 

column).To detect the 27 idealinvariants,Daikonproduceda  total  of  138  invariants. 

WedonotgiveasimilarcountforDySy,sinceitsoutputcon-sistsofcondensedexpressions(e.g.,if-

likeconstructsjointogetherinvariantsintoasingletop-levelone)whichmakethe comparison uneven. Instead, we 

list a more reliable met-ric for both tools’ output:The last three columns of Table 2present the number of 

unique subexpressions in the ideal andinferred invariants.We parse the output for both tools 

andcountthenumberofuniquesubtrees  in  the  abstract  syn-tax tree:  if a subtree/subexpression occurs on 

two branches,it is counted only once.Thus, surface verbosity is ignored:what is measured is the number of 

truly distinct clauses thateach tool infers. (Measuring the full size of the output wouldbias the numbers in 

favor of DySy, as its output is simplifiedsymbolically with common subexpressions factored out.)Ascan be 

seen,DySy infers many fewer total invariants thanDaikon—

aboutathirdofthetotalsize.Indeed,theDySyoutputisveryclosetothereferencesetofinvariantsforStackAr.(There

areminorinaccuraciesinourcountingofunique subexpressions, due to manual conversions 

betweenthetools’differingoutputsyntax.Whenindoubt  wefa-vored Daikon, by underapproximating the 

number of uniquesubexpressionsDaikonreports.) 

To see an example of the differences, consider 

methodtopAndPop,whichremovesandreturnsthestack’smostre-cently inserted element, or null if the 

stack is empty.Thetwo important postconditions for this method concern 

itseffectontopOfStackanditsreturnvalue.Wehave: 

\result==((Empty->null) 

else->theArray[\old(topOfStack)]) 

and 

topOfStack==((Empty->\old(topOfStack)) 

else->\old(topOfStack)-1) 

BothDySyandDaikoninferthesepostconditions.Onemoreprecondition states that all stack contents 

below the topelement remain unchanged by the method’s execution. 

Bothtoolsinferthatpreconditionbutonlyundershallowequality.At the same time, to infer these correct 

invariants, Daikoninfers a total of 41 invariants for this method. Many range from erroneous to 

irrelevant from the perspective of a humanuser.Oneinvariantis: 

\old(this.topOfStack)>=0)==>(this.theArray.getClass()!=\result.getClass()) 

The invariant relates the type of the array with the types ofelementsitholds.AnotherDaikoninvariantis:  

\old(this.topOfStack)>=0)==>((\old(this.topOfStack)>> 

stackar.StackAr.DEFAULT_CAPACITY==0)) 

ThisrelatestopOfStackwiththestack’sdefaultcapacity usingabit-shiftoperator!(Wehand-

translatedtheaboveinvariantstoJML.TheywereoriginallyonlyoutputinDaikon’sdedicatedinvariantlangu

agebecausetheyarenotallowedinJML—

e.g.,becauseofreferencestoprivatefields.)EliminatingtheextraneousDaikoninvariantswouldbepossiblewit

halargertestsuitethatwouldexercisetheStackArfunctionalityundermanyconditions.Neverthelessthefunda

mentaltensionremains:IfDaikonistoinferalltrueinvariants,itneedstoexploreagreatnumberofin -
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varianttemplates,whichincreasestheprobabilityofacci-

dentalinvariants.Incontrast,DySyobtainsitscandidateinvariantsdirectlyfromtheprogram’sconditionsand

as-signments,thereforetheinvariantsitinfersareverylikely 

relevant. 

 

VI. RELATED WORK 
We have already discussed the most directly related workthroughout the paper.We next present some less 

directlyrelatedworkthatstillexertedinfluencesonourtechnique,yeteitherusesexclusivelystaticmethodsforinvar

iantin-ference, or infers program specifications purely dynamically,byexaminingpre-definedpatterns. 

For reverse engineering, Gannod and Cheng [15] proposedto infer detailed specifications statically by 

computing 

thestrongestpostconditions.Nevertheless,pre/postconditionsobtainedfromanalyzingtheimplementationare

usuallytoodetailed to understand and too specific to support programevolution.Gannod and Cheng 

[16]addressedthisdefi-ciencybygeneralizingtheinferredspecification,forinstanceby deleting conjuncts, 

or adding disjuncts or 

implications.Theirapproachrequiresloopboundsandinvariants,bothofwhichmustbeaddedmanually. 

Flanagan and Leino [12] propose a lightweight verification-based tool, named Houdini, to statically infer 

ESC/Java an-notations from unannotated Java programs. Based on pre-set property patterns, Houdini 

conjectures a large numberofpossibleannotationsandthenusesESC/Javatoverifyor refute each of them. 

The ability of this approach is lim-ited by the patterns used. In fact, only simple patterns arefeasible, 

otherwise too many candidate annotations will begenerated, and, consequently, it will take a long time 

forESC/Javatoverifycomplicatedproperties.Taghdiri[31]usesacounterexample-

guidedrefinementprocesstoinferover-approximatespecificationsforproce-durescalledinthefunction  being  

verified. In  contrast  toourapproach,Taghdiriaimsto  approximate  the  behaviorsfor the procedures within 

the caller’s context instead of in-ferringspecificationsoftheprocedure. 

HenkelandDiwan[19]havebuiltatooltodynamicallydiscover algebraic specifications for interfaces of Java 

classes.Their specifications relate sequences of method invocations.The tool generates many terms as test 

cases from the classsignature.The results of these tests are generalized to alge-braicspecifications. 

Much of the work on specification mining is targeted atinferring API protocols dynamically.Whaley 

et al.[35]describe a system to extract component interfaces as finitestate machines from execution 

traces. Other approaches usedata mining techniques. For instance Ammons et al.[1]use a learner to 

infer nondeterministic state machines fromtraces; similarly, Yang and Evans [37] built Terracotta, 

atool to generate regular patterns of method invocations fromobserved runs of the program. Li and Zhou 

[24] apply datamining in the source code to infer programming rules, 

i.e.,usageofrelatedmethodsandvariables,andthendetectpo-tentialbugs 

bylocatingtheviolationoftheserules. 

 

VII. CONCLUSIONS 
Theexcitementthatfollowedtheoriginalintroductionof dynamic invariant detection in the Software 

Engineeringworld seems to have been followed by a degree of skepticism.Dynamic invariant inference 

tools require huge and thoroughregression test suites, and infer properties that are occasion-ally interesting 

but often too simplistic. Additionally, 

havingenoughteststoeliminatefalseinvariantsdoesnotprecludeextraneous invariants, which are 

disappointing to a humanuser.In this paper we presented an approach that holdspromise for the future 

of dynamic invariant inference: us-ing symbolic execution, simultaneously with concrete 

testexecution in order to obtain conditions for 

invariants.Webelievethatthistechniquerepresentsthefutureofdynamicinvariant inference. It combines 

the advantages of invariantinference through static analysis, with the immediate prac-

ticalityofobservinginvariantsbyexecutingtestswrittenby programmers who exercise valid scenarios. 

Furthermore,thetechniqueisstrictlyanincrementoverpriorapproaches,as it adds an orthogonal 

dimension: It is certainly possibletocombinedynamicsymbolicexecutionwithobservationofproperties 

from pre-defined templates, as in other dynamicinvariant detectors.The symbolic simplification 

approachcan then apply to both symbolically inferred invariants andinvariants instantiated from 

templates. A complete evalua-tion of such a hybrid is part of future work. We hope 

thatthiswillbejustoneofmanyavenuesthatthepresentpaperwillopenfordynamicinvariantdetection.  
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