
ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 05|| May – 2017 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 107

DySy: Dynamic Symbolic Execution for Invariant Inference

1
debabrata Sahu,

2
rojalin Mallick

Gandhi Institute of Excellent Technocrats, Bhubaneswar,India

Rayagada Institute of Technology and Management, Rayagada, Odisha, India

I. INTRODUCTION AND MOTIVATION
Dynamic invariant inference was introduced less than adecade ago,pioneered by the Daikon tool

[8,9,29], andhas garnered significant attention in the software

engineeringcommunity.Withthehelpofatestsuitethatexercisesthe functionality of an application, an

invariant inferencesystem observes program properties that hold at pre-selectedprogram points (typically

method entries and exits).Theoutcome of the system is a collection of such

properties,postulatedasobjectstateinvariants,methodpreconditions,or method postconditions (collectively

called ―invariants‖ inthe following).The properties have no formal assurance that they are correct, but they

do match the observed programexecutions and they are produced only when there is

somestatisticalconfidencethattheiroccurrenceisnotaccidental.A crucial aspect of the dynamic invariant

inference process isthattheinvariantsproduceddonotreflectonlythebehaviorof the program, but also the

assumptions and expectationsof the test suite. This makes the approach doubly

usefulforsoftwareengineeringpurposes,byintroducingtheusagecontextofanapplication.

So far, dynamic invariant inference systems have had apre-

setcollectionofinvarianttemplates,whichgetinstanti-ated for program variables to produce the

candidate invari-antsunderexamination.Theusercanexpandthecollectionby adding more templates, but

the number of possible in-stantiationsforallcombinationsofprogramvariablesgrowsprohibitively

fast.Therefore, dynamic invariant inferencesystems typically perform best by concentrating on a

smallset of simple candidate invariants.Even so, for a tool

likeDaikonorDIDUCE[18]toproduceinvariantsthatmatchthe understanding of a human programmer,

an extensivetestsuitethatthoroughlyexercisestheapplicationisneces-sary. Furthermore, it is likely that

the inference process willalso produce several invariants that are either irrelevant

orfalse(i.e.,holdaccidentally).

In this paper we propose a dynamic symbolic executiontechnique to drastically improve the quality of

ABSTRACT

Dynamicallydiscoveringlikelyprograminvariantsfromcon-crete test executions has

emerged as a highly promisingsoftware engineering technique.Dynamic invariant infer -

ence has the advantage of succinctly summarizing both ―ex-pected‖ program inputs and the

subset of program behaviorsthat is normal under those inputs. In this paper, we intro-

duceatechniquethatcandrasticallyincreasetherelevanceof inferred invariants, or reduce

the size of the test suiterequired to obtain good invariants. Instead of falsifying in-

variants produced by pre-set patterns, we determine likelyprogram invariants by

combining the concrete execution ofactual test cases with a simultaneous symbolic

execution ofthe same tests.The symbolic execution produces abstractconditions over

program variables that the concrete testssatisfy during their execution.In this way, we

obtain thebenefitsofdynamicinferencetoolslikeDaikon:theinferredinvariants correspond

to the observed program

behaviors.Atthesametime,however,ourinferredinvariantsaremuchmore suited to the

program at hand than Daikon’s hard-coded invariant patterns. The symbolic invariants

are liter-ally derived from the program text itself, with

appropriatevaluesubstitutionsasdictatedbysymbolicexecution.

We implemented our technique in the DySy tool ,

whichutilizesapowerfulsymbolicexecutionandsimplificationen-gine.The results confirm

the benefits of our approach.InDaikon’s prime example benchmark, we infer the

majorityof the interesting Daikon invariants, while eliminating in-

variantsthatahumanuserislikelytoconsiderirrelevant.

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 108

• \

inferred in-variants (i.e., the percentage of relevant invariants) or theease of obtaining them (i.e., the

number of test cases re-quiredto disqualify irrelevant invariants).
1
In dynamic sym-

bolicexecution,weexecutetestcases,justlikeatraditionaldynamic invariant inference tool, but

simultaneously

alsoperformasymbolicexecutionoftheprogram.Thesymbolicexecutionresultsintheprogram’sbranchcond

itionsbeinginttestme(intx,inty){ intprod=x*y;

if(prod<0)

thrownewArgumentException(); if(x<y){ //swapthem

inttmp=x;x=y;

y=tmp;

}

intsqry=y*y;

returnprod*prod-sqry*sqry;

}

Figure 1: An example method whose invariants wewanttoinfer.

collected in an expression, called the path condition in thesymbolic execution literature. The path

condition is alwaysexpressed in terms of the program inputs.It gets

refinedwhilethetestexecutiontakesplace,andsymbolicvaluesofthe program variables are being updated.

At the end of ex-ecution of all tests, the overall path condition correspondsto the precondition of the

program entity under examina-tion. Symbolic values of externally observed variables pro-vide the

dynamically inferred postconditions, and symbolicconditions that are preconditions and

postconditions for allmethodsofaclassbecometheclassstateinvariants.

For a demonstration of our technique, consider the

methodofFigure1.(Theexampleisartificialbutisdesignedtoil-

lustrateseveralpointsthatwemakethroughoutthepaper.)Appropriateunittestsforthemethodwillprobablye

xerciseboththecase―x<y‖anditscomplement,butareunlikelytoexercisethecodeproducinganexception,ast

hisdirectlysignifiesillegalarguments.Considertheoutcomeofexecut-

ingthecodeforinputvaluesxsmallerthany(e.g.,x==2,y==5),whilealsoperformingtheexecutioninasym-

bolic domain with symbolic values x and y (we overload

thevariablenamestoalsodenotetherespectivesymbolicvaluesdesignatingtheoriginalinputs).Thefirstsymboli

ccondi-

tionthatweobserveis―x*y>=0‖:Thebranchofthefirstifisnottaken,andlocalvariableprodhasthevaluex*yint

hesymbolicdomain.Thesymbolicexecutionalsoaccumu-latesthecondition ―x<y‖

fromthesecondifstatement.Attheendofexecutionthesymbolicvalueofthereturnedexpressionis―y*x*y*x

-x*x*x*x‖.Notethatthisexpres-sionintegratestheswappingoftheoriginalxandyvalues.If we repeat this

process for more test inputs (also exercis-ingtheothervalidpathofthemethod)andcollecttogether

thesymbolicconditions,thenourapproachyields:

• Apreconditionx*y>=0forthemethod.

Apostconditionresult==(((x<y)->y*x*y*x

-x*x*x*x)else->(x*y*x*y-y*y*y*y)).

(Our example syntax is a variation of JML [23]:we intro-duce an if-else-like construct for

conciseness.Our tool’soutput syntax is different but equivalent.) This

capturesthemethod’sbehaviorquiteaccurately,whileensuringthatthe only symbolic conditions

considered are those consis-tentwithactualexecutionsofthetestsuite.Thustheapproach is symbolic, but

at the same time dynamic:thesymbolicexecutionisguidedbyactualprogrambehavioron test inputs.Note

that the inferred invariants are notpostulated externally, but instead discovered directly fromthe

program’s symbolic execution.This approach directlyaddresses many of the shortcomings of prior

dynamic in-variant inference tools (with Daikon used as the foremostreference point). For this

example, Daikon-inferred precon-ditionsandpostconditionsareexclusivelyoftheform―var

>= 0‖ or ―var== 0‖, and are often encoding arbitrary ar-tifacts of the test suite, unless a very thorough

test planexercises many possible combinations with respect to

zero(e.g.,x,ybothnegative,bothpositive,one/bothzero,etc.).

Overall,ourworkmakesthefollowingcontributions:

We introduce the idea of using dynamic symbolic ex-

ecutionforinvariantinference.Webelievethatourapproachrepresentsthefutureofdynamicinvariantinference

tools, as it replaces a blind search for possi-ble invariants with a well-founded derivation of

•

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 109

suchinvariantsfromtheprogram’sconditionsandside-effects.

We implemented our approach in the invariant infer-ence tool DySy, built on top of the Pex

framework forinstrumentation and symbolic execution of .NET pro-grams.We discuss the heuristics

used by DySy in orderto simplify symbolic conditions (e.g., our

abstractionheuristicsfordealingwithloops).DySyrepresentswellthe benefits of the proposed technique.

For instance,DySy’ssymbolicapproachcaninferinvariants,suchaspurity (absence of side-effects), that

are too deep fortraditional dynamic tools.In contrast, prior dynamic invariant inference tools (which only

observe after-the-fact effects) typically can establish purity only in

verylimitedsettings,astheywouldneedtoobservetheen-tirereachableheap.

We evaluate DySy in direct comparison with Daikon,in order to showcase the tradeoffs of the approach.

FortheStackArbenchmark(hand-translatedintoC#),which has been thoroughly investigated in the

Daikonliterature [10], DySy infers 24 of the 27 interesting in-variants (as independently inferred by a

human user),while eliminating Daikon’s multiple irrelevant or acci-dentalinvariants.

The rest of this paper begins with a brief discussion ofwhat our work is not (Section 2), and continues

with somebackgroundondynamicinvariantinferenceandsymbolicex-ecution (Section 3) before detailing

the technical aspects ofourapproachandtool(Section4)andpresentingourevalu-ation (Section 5).

Related work (Section 6) and our conclu-sions(Section7)follow.

II. POSITIONING
Ourapproachisacombinationofsymbolicexecutionwithdynamic testing.As such, it has commonalities

with mul-tiple other approaches in the research literature. To avoidearly misunderstandings, we next

outline a few techniquesthatmayatfirstseemsimilartoourapproachbutaredeeplydifferent.

Our dynamic symbolic execution is not equivalent tolifting conditions from the program text (e.g.,

condi-tionsinifstatementsorinwhileloops)andpostulating them as likely invariants.(Several prior

analy-sis tools do this—e.g., Liblit’s statistical bug

isolationapproach[25]andDaikon’sCreateSpinfosupporting utility.)For instance, notice how the

precondition ofour example in the Introduction (x*y > = 0) does notappear anywhere in the program

text.Instead, pro-gramconditionsarechangedduringthecourseofsym-bolic execution:local variable

bindings are replacedwith their symbolic values, and assignments updatethe symbolic values held by

variables, thus affectingthepathcondition.

Our approach is not invariant inference through statictechniques (e.g., using abstract interpretation

[26], orsymbolic execution [32]). Inferring invariants throughstatic analysis is certainly a related and

valuable tech-nique,butitismissingthedynamicaspectofourwork,as it takes into account only the

program text and notthe behavior of its test suite. Specifically, our dynamicsymbolic execution uses

the test suite as a way to dis-cover properties that users of the code are aware of.This is highly

valuable in practice, as invariant infer-ence tools are often used to ―read the

programmer’smind‖anddiscovertheinterestingparameterspaceofamethod(e.g.,fortesting[5]).

Ourapproachis notconcolic execution (as in toolslikeDart[17],Cute[30],orParasoft’s original ―dy-

namicsymbolicexecution‖ patent[21]). Although

wedoaconcreteexecutionoftestcasesinparallelwithasymbolicone,wedonotusethesymbolicexecutionto

produce more values in order to influence the pathtaken by concrete executions.Our technique

followsprecisely the concrete program paths that the originaltestsuiteinduces.

III. BACKGROUND
We next present some background on dynamic invariantinference and on symbolic execution,

emphasizing the fea-tures of both that are particularly pertinent to our laterdiscussion.

DynamicInvariantInference:Daikon

Dynamicinvariantinferenceisexemplifiedby(andoftenevenidentifiedwith)theDaikontool[8,9,27,29] —

thefirstandmostmaturerepresentativeoftheapproach,withthewidest use in further applications (e.g., [2,

6, 7, 11, 22, 36]).Daikontracksa program’svariables during

executionandgeneralizestheobservedbehaviortoinvariants—

preconditions,postconditions,andclassinvariants.Daikoninstrumentstheprogram,executesit(forexample,

onanexistingtestsuiteorduringproductionuse),andanalyzestheproducedexecut iontraces.Ateachmethode

ntryandexit,Daikoninstantiatessomethreedozeninvarianttem-

plates,includingunary,binary,andternaryrelationsoverscalars,andrelationsoverarrays.Examplerelationsi

n-cludecomparison’sofavariablewithaconstantvalue(x

=a, or x> 0), linear relationships (y == a*x + b), order-ing (x <= y), membership and sortedness,

•

•

•

•

•

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 110

etc.Users canextend the invariant templates with application-specific ordomain-specific

properties.The number of candidate in-variants grows combinatorially, however. For each

invarianttemplate, Daikon tries several combinations of method pa-

rameters,methodresults,andobjectstate. Forexample,

itmightproposethatsome methodmneverreturnsnull, or that its first argument is always larger than its

second.Daikonsubsequentlydisqualifiesinvariantsthatarerefutedbyanexecutiontrace—

forexample,itmightprocessasitu-ationwheremreturnednullanditwillthereforeignorethe above

invariant.So Daikon summarizes the behavior ob-served in the execution traces as invariants and

generalizesit by proposing that the invariants might hold in all otherexecutions as well. Daikon can

annotate the testee’s sourcecodewiththeinferredinvariantsasJMLannotations[23].

SymbolicExecution

Symbolicexecution[20]isatechniqueforusingapro-gram’scodetoderiveageneralrepresentationofitsbe-havior,

by simulating execution with some values being un-known.Specifically,symbolicexecutionreplacesthe

con-creteinputsofaprogramunit(typically,amethod)withsymbolicvalues,andsimulatestheexecutionof the

pro-gramsothatall variables hold symbolic expressions overtheinput symbols,insteadofvalues. For

symbolicexecu-tion to ―simulate‖ regular, concrete execution, its semanticsmustcorrectlygeneralizethat of

concrete execution. Thekey property is commutativity:performing symbolic execu-tion and instantiating

its output state with concrete valuesmust yield the same result as instantiating the initial sym -

bolicstatewiththesameconcretevaluesandperformingconcreteexecution.

A concept of symbolic execution that is particularly im-portant for our work is that of a path

condition, defined as―theaccumulatorofpropertieswhichtheinputsmustsatisfyin order for an execution

to follow the particular associatedpath‖ [20].Thus, a path condition can be seen as a precon-

ditionforaprogrampath,whichisexactlythewayweuseitinourwork.

Generally,thegreatestchallengeofsymbolicexecutionisto reason about symbolic program properties.

For instance,in traditional symbolic execution, when accumulating pred-icates in the path condition, it

is important to recognizewhenthepathconditionbecomesunsatisfiablebytheaddi-

tionofanextrapredicate—i.e.,whentheexistingpathcon-dition contradicts a program branch.To do so, a

symbolicreasoningengine(typicallyanautomatictheoremprover)isemployed.Inourapproach,wedonotnee

dtorecognizein-feasible program paths, as the concrete execution guaranteesthat the paths we are

examining are feasible. Nevertheless,weneedsimilarautomaticreasoningpowerinordertosim -plify path

conditions and symbolic expressions and presentthemtotheuserasprograminvariants.

IV. DYNAMICSYMBOLIC EXECUTION FOR INVARIANT INFERENCE
Wenextdiscussthegeneralelementsofourapproach,as well as the technical specifics of our DySy tool,

and theabstractionheuristicsweemployforhandlingloops.

OverviewandInsights

As outlined earlier, our dynamic symbolic execution per-forms a symbolic execution of the program

simultaneouslywith its concrete execution. For a method under examina-tion, all class instance and

static variables, the method’sparameters, and the method’s result are treated as sym -

bolicvariables.Thepathconditionofthesymbolicexecutionisdeterminedpurelybythepathstakenintheconcr

eteexecution—no exploration of other paths using symbolic val-ues is performed. When executing a single

test case, the pathcondition at the end of the symbolic execution representsthe symbolic condition for

the path the program followed.Thus, the path condition corresponds exactly to a precon-ditionfor that

particular test case execution. Similarly, thesymbolic values of the method’s result and of the

objectinstance variables form the method’spostcondition for thespecific test case. Repeating the process

for all test cases, weget a collection of preconditions and postconditions, whichall need to hold for the

method.Combining the precon-ditions and postconditions for all test runs, we obtain thetotal

precondition and postcondition of the

method.Theconditionsaresimplifiedthroughsymbolicreasoningbeforebeing presented to the

user.Individual conditions (i.e., with-outlogicaldisjunction—seelater)thatconcernonlyinstancevariables

(i.e., no parameters) and that hold on entry andexitofallmethodsarereportedasclassinvariants.

This general scheme elides several important

elements.Thefirstinterestingpointconcernshowconditionsarecom-

bined.ConsiderthefollowingsimplemethodfromtheStackArbenchmark,describedinSection5.

publicObjecttop(){ if(Empty)

returnnull;

returntheArray[topOfStack];

}

Imagine that we execute this method for two test cases:firstonanemptystackandthen on a non -empty

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 111

\

\

one.Thefirstexecutionproducesapathcondition―Empty==

true‖.(EmptyisaC#―property‖,thereforetakingits

valueresultsincallingamethod,whichchecksthevalueoftopOfStack.Nevertheless,thismethodispureso

oursystem usesEmptyasalogicalvariableincondi- tions instead of expanding it, as we discuss later in

Sec-tion4.2.)Thepathconditionbecomesthepreconditionof the method for this test case.Similarly, the

postcon-ditionis―result==null‖,againonlyforthisparticu- lar execution. The test case of a non-empty

stack pro-ducesaprecondition―Empty==false&&topOfStack>=

0&&topOfStack<theArray.Length‖.Thecorresponding

postconditionis―result==theArray[topOfStack]‖.

Combiningpreconditionsisdonebytakingthedisjunction(logical-or) of the individual test cases’

preconditions.Inthisexample,thecombinedpreconditionbecomes:

Empty==true||

(Empty==false&&topOfStack>=0&&topOfStack<theArray.Length)

Similarly,postconditions are combined by taking theirconjunction but appropriately predicated with

the corre-sponding precondition.Following common convention, wereport the conjunction of

postconditions as two separatepostconditions. In our example, the inferred postconditionsbecome:

Empty==true==>(\result==null)

and

(Empty==false&&topOfStack>=0&&topOfStack<theArray.Length)

==>(\result==theArray[topOfStack])

Combininginvariantsbydisjunction,conjunction,andim-plication brings out an interesting feature of

our approach.Consider method preconditions.The crux of every dy-namic invariant inference system

is its abstraction technique.Givenamethodvoidm(inti)andtestinputvaluesfrom1

to1000,themostprecisepreconditionthataninvariantsys-temcaninferisbydisjunction—i.e.,―i==1||i==2||

... || i == 1000‖. Generally, the system can be preciseby inferring one disjunct for every test case

executed, andcombining them to form the complete precondition. Never-theless, this precision means

that dynamic observations donot generalize to other test inputs that have not been al-

readyencountered.Thevalueofaninvariantinferencetoolis exactly in this generalization. Thus,

traditional dynamicinvariantinferencetools(suchasDaikonorDIDUCE)oftenavoid combining

observations precisely using disjunction andinstead try to generalize and abstract. For instance, a rea-

sonable abstract precondition for the above inputs is ―i >0‖. Once conditions have been abstracted

sufficiently, theycan be combined precisely across test cases using disjunc-tion. The tool is overall

responsible for heuristically decid-ingwhentousedisjunctionandwhentoabstractawayfromconcrete

observations. The typical result is that dynamic in-variant inference tools use disjunction (i.e.,

multiple cases)sparingly,insteadpreferringtogeneralize,whichoftenleadsto over-generalization.Instead,

our approach employs nosuch heuristics.Our observations are already generalized,since they

correspond to branch conditions in the programtext, appropriately modified in the course of symbolic

exe-cution.Thus, they can freely be combined precisely usingdisjunction. Even if there is a large

number of test inputs,thenumberofdisjunctsinouroutputisboundedbythepro-gram paths in the method

under examination. (Of course,the number of program paths can be infinite in the case ofloops, and

we have to apply special abstraction techniques,discussedlaterinthepaper.)

Another interesting feature of the dynamic symbolic ex-ecution technique is that some relatively

―deep‖ invariantscan be easily established. For the above example, our DySytoo l easily infers the

postconditionpure, indicating that themethodhasnoeffectsvisibletoitsclients.Incontrast,tradi-

tionaldynamicinvariantinferencetoolstreatthemethodasa black box, and can only establish shallow

properties withobservations at its boundaries. For instance, Daikon infersseveral shallow purity

properties for the above example, suchas―theArray==old(theArray)‖.Itcannot,however,es-

tablishthefullpurityofthemethodrelativetoallreachableheapdata(e.g.,withrespecttotheelementsheldinsid

ethearray,andalltheelementsreferencedbythem,etc.).

Finally, the dynamic symbolic execution approach to in-variant inference is heavily dependent on a

symbolic rea-soningengine(e.g.,atheoremprover)forproducingoutputthat is close to the expectations of

a human user. Withoutsymbolic simplification of conditions, invariants end up tooverbose, with

multiple tautologies.For a simple example,consideramethodallIntswiththefollowingstructure:

voidallInts(inti){ if(i<0)

{...}//dosomething

elseif(i==0){...}//dosomethingelse i++;

if(i>1){...}//dosomethingelse

}

If the program’s regression test suite exercises all paths,then it is natural to expect a precondition of

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 112

\ \
\

\

true ratherthantheunreduced―((i<0)&&!(i+1>1))

||(!(i<0)&&(i==0)&&!(i+1>1))

||(!(i<0)&&!(i==0)&&(i+1>1))‖.Thus,sym- bolicreasoningisnecessaryto establish this

tautology.It is worth noting that existing dynamic invariant infer-ence tools can also benefit from

symbolic reasoning in or-der to simplify their reported invariants.For instance,Daikon produces

several extraneous invariants for the ear-liertoproutineofStackAr:apostcondition―topOfStack

==old(topOfStack)‖isreported,butotherpostconditionsincludebothclauses―result==theArray[topOfSt

ack]‖ and―result==theArray[old(topOfStack)]‖.

We next discuss our specific implementation of dynamicsymbolic execution for invariant detection in

the DySy tool.DySy benefits from the mature symbolic execution and rea-

soningcapabilitiesofthePexframework.

 DySy,Pex,andSymbolicReasoning

Pex [33] is a dynamic analysis and test generation frame-work for .NET, developed by the

Foundations of SoftwareEngineering group at Microsoft Research. Pex monitors theexecution of a

program through code instrumentation. Theinstrumented code drives a ―shadow interpreter‖ in parallel

with the actual program execution. For every regular .NETinstruction,there is a callback to Pex,which

causes the―shadow interpreter‖ to execute the operation symbolically.The Pex interpreter is almost

complete for the .NET instruc-tion set. It is only missing the logic to perform control-

flowdecisions,sinceitispassivelymonitoringtheactualprogramexecution,whichperformsthedecisionactiv

ely.

Pex’s main functionality is similar to the Dart tool

[17]:Pextestsprogramsexhaustivelyinafeedbackloop,inwhichan automatic constraint solver finds new

test inputs thatrepresent execution paths that Pex did not monitor yet.While we do not use this test

input generation feature inDySy, we do use Pex’s capability to construct and

reasonaboutsymbolicprogramstates.

Background:PexSymbolicStates,Terms

A symbolic program state is a predicate over logical vari-

ablestogetherwithanassignmentoftermsoverlogicalvari-ables to locations, just as a concrete program

state is anassignment of values to locations. The locations of a statemay be stati c fields, instance

fields, method arguments, lo-cals,andpositionsontheoperandstack.

Pex’s term constructors include primitive constants (inte-

gers,floats,objectreferences),andfunctionsoverintegersandfloatsrepresentingparticularmachineinstructio

ns,e.g.,additionandmultiplication.Othertermconstructorsimple-

mentcommondatatypessuchastuplesandmaps.Pexusestuplestorepresent.NETvaluetypes(―structs‖),and

mapstorepresentinstancefieldsandarrays,similartotheheapencodingofESC/Java[13]:Aninstancefieldofa

nobjectisrepresentedbyasinglemapwhichassociatesobjectref-

erenceswithfieldvalues.Constraintsoverthe.NETtypesystemandvirtualmethoddispatchlookupscanbeencod

edaswell.Predicatesarerepresentedbyboolean-

valuedterms.Peximplementsvarioustechniquestoreducetheoverheadof the symbolic state representation.

Before building a newterm,Pexalwaysappliesasetofreductionrulesthatcom-

puteanormalform.Asimpleexampleofareductionrule

is constant folding, e.g., 1 + 1 is reduced to 2.All

logicalconnectivesaretransformedintoaBDDrepresentationwithif-then-else terms [3]. All terms are

hash-consed, i.e., onlyone instance is ever allocated in memory for all structurallyequivalentterms.

Recall the method top given in an earlier example.

WhenweexecutethemethodandEmpty==false,thentheresult

ofthemethodcall,theArray[topOfStack],willhavethe followingtermrepresentation.

select(select(int[]_Map,

select(theArray_Map,this)), select(topOfStack_Map,this))

whereselect(m,i)representstheselectionofthevalue storedatindexiinthemapm.theArray_Mapand

topOfStack_Maparemapsindexedoverobjectrefer- ences,soselect(theArray_Map,this)correspondsto

this.theArrayinthesourcelanguage.int[]_Mapisamap of array references to another map that contains

the ele-mentsofthearray,indexedoverintegers.

Astateupdate,e.g.,

this.topOfStack=this.topOfStack+1;

which method push may perform, is represented using an up-

datefunctionupdate(m,i,v),whichrepresentsthemap mafteriswasupdatedatindexiwithnewvaluev.

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 113

topOfStack_Map’=update(topOfStack_Map,this,

add(select(topOfStack_Map,this),1))

The interpreter records all conditions that cause the pro-

gramtobranch.Inadditiontotheexplicitconditionalbranches performed by the program, Pex’s interpreter

alsomodels all implicit checks performed by the runtime whichmay induce exceptional behavior—e.g.,

following a referenceistreatedasanimplicitbranchbasedonwhethertherefer-

enceisnull(exceptionalpath)ornot(normalpath).

Basedonthealreadyaccumulatedpathcondition,termsarefurthersimplified.Forexample,ifthepathconditi

onalreadyestablishedthatx>0,thenx<0reducestofalse.

Pex has a term pretty printer which can translate

backreducedandsimplifiedtermsintoreadableC#syntax.

 DySyAlgorithm

DySy symbolically monitors the concrete execution of agiven test suite. For the duration of each

method call,DySy registers a separate interpreter with Pex’s monitor-ing framework.Thus, as soon as

there are nested methodcalls, multiple interpreters will be listening to the callbacksof the instrumented

code. DySy builds a set of

quadruples(method,pathCondition,result,finalState)asitmonitorstheprogram.Each quadruple

characterizes an execution pathofamethod.

Step1:Pathconditionandfinalstatediscovery.

When the program initiates a call to a method M(in-cludingtheMainmethodofthetestsuite),DySycreatesa

newinterpreterinstancealongwithanewsymbolicstatein-stance. DySy initializes the locations of the

symbolic state,including the method’s arguments, with logical variables.The interpreter will evolve

the symbolic state according toallsubsequentlyexecutedinstructions,includingtransitionsinto and out of

other method calls. When the call to M

thatspawnedthisinterpreterinstancereturns,DySyrecordsthequadruple(M,pathCondition,result,finalStat

e),andaban-dons the interpreter.The result is the term that M

returns.Duringnestedmethodcalls,thestate’slocationsalwaysholdtermsbuiltovertheoriginallogicalvariable

sofM,andtheresultofthecallisalsoatermovertheoriginallogicalvariables.Whentheprogramperformsnostat

eupdatesduringa(nested)call,exceptupdatestothelocalvariablesofnewlycreatedstackframesandupdatesto

instancefieldsofnewlycreatedobjects,DySyconsidersthecallpure.DySyreplacestheresultofapurecallwith

atermrepresentingthecall—e.g.,inourearlierexampleitreplacestheexplicit

resulttopOfStack>=0withthemethodname Empty.

Also, DySy abstracts all, directly or indirectly, recursivecalls to M in this way, regardless of whether

they are purecalls or not.This is a heuristic treatment, which results inrecursive invariants. (This

avoids unbounded paths throughrecursivemethods.Theotherinterestingcaseisunboundedpaths through

loops, which we discuss separately in Sec-tion4.3.)Forexample,thefactorialfunction

intfac(inti){ if(i<=1)

return1;else

returni*fac(i-1);

}

iseventuallycharacterizedbyDySyasamethodwithnoprecondition,andthepostcondition

\result==((i<=1)->1)else->i*fac(i-1)tion of path-specific postconditions.A path-specific post-

condition is an implication with a path condition on the

lefthandsideandaconjunctionofequalities,whereeachequal-

ityrelatesalocationtothetermassignedtothatlocationinthefinalstate.(E.g.,recallpostcondition―Empty==tru

e

==>(\result==null)‖inourearlierexample.)

AbstractionforLoops

Handling loops is a fundamental challenge for symbolicexecution in general.In our specific context,

we discussedearlierhowloopsresultinamethodhavinganinfinitenum-

berofpossiblepaths.Sinceoursymbolicexecutionisguidedby a concrete execution, every path we observe

has a finitelength, but grows quickly and without bounds. In prac-tice,this means that straightforward

symbolic executionproduces enormous path conditions that are overly specificand defeat the purpose

of using program conditions as po-tential invariants. We next discuss the heuristics that

DySyusesforabstractioninthecaseofloops.

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 114

Let us examine the problem with the example of a

simplelinearsearchmethod,forwhichwewanttoderiveinvariants.

publicintlinSearch(intele,int[]arr){ if(arr==null)

thrownewArgumentException();

for(inti=0;i<arr.Length;i++){ if(ele==arr[i])

returni;

}

return-1;

}

Pex does not know the effects of code that it does notmonitor.For example, calls to ―native‖ methods

are notmonitored. Here, the user can choose between a conservativeandanoptimistictreatment.

Step2:Classinvariantderivation.

At the end of symbolic execution and before outputtingmethod preconditions and postconditions,

DySy first com-putes class invariants, which are used to simplify the meth-ods’ invariants.DySy

defines the set of ―class invariant can-didates‖ of a class C as the set of conjuncts c of all recordedpath

conditions of all methods of C, where c only refers

tothethisargumentbutnootherargument.(Forfuturework,

onecouldexistentiallyquantifytheotherargumentsymbolsto gain more class invariant candidates.) For

each path con-dition and final state of a method of C, DySy then checkswhich candidates are implied

by all path conditions in thefinal states of all methods of C.(In fact, in its current im-plementation,

DySy does not perform a precise

implicationcheckusinganautomatictheoremprover.Instead,itsimplyexecutes the test suite again, and

checks the candidates inthe concrete final state of each call to a method of C.)

Theimpliedcandidatesarethe―classinvariant‖ofC.

Step3:Pre-andpostconditioncomputation.

Finally, DySy further simplifies the method’s path con-ditions, assuming the derived class

invariant.As a conse-quence of this simplification, some of the quadruples mightcollapsetogether.

Thepreconditionofamethodisthedisjunctionofitspathconditions.Thepostconditionofamethodistheconjun

ct Considerrunningtestsforthismethodwithasingleinput

array{5,4,3,12,6}andthenumbers0to9ascandi- date element values. Performing symbolic execution

alongthepathofconcreteexecutionforeleequalto0willyield a long and too-specific path condition, even

after full sim-plification:―arr!=null&&arr.Length==5&&ele!=

arr[0]&&ele!=arr[1]&&ele!=arr[2]

&&ele!=arr[3]&&ele!=arr[4]‖.Thepreconditionis not only unwieldy, but also fairly bad for our

purposeof inferring invariants because it does not contain generalobservations that may also appear in

preconditions derivedfor other test cases: Even after all tests are run, the com-bined preconditions

and postconditions will end up havingfewcommonalities(e.g.,―arr!=null&&arr.Length==

5‖)and5separatecases.(Fourcasescorrespondtothefournumbers from 0 to 9 that appear in the array, and

one casecorresponds to the path for numbers that are not found inthe array.) This is exactly the

―precise but useless‖ invariant thatdynamicinvariantinferenceaimstoavoid,asdiscussedin Section 4.1.

The problem is that our technique is basedon using program conditions to partition the abstract

spaceofpossibilitiesintoafewgeneralbutinterestingcategories.Thesecoarsepartitionscanthenbecombinedt

ogetherwithdisjunctions (i.e., case-analysis).When the partitions be-come too fine, there is no

abstraction benefit and the in-variantsdescribeexactlythebehaviorofthetestinputsandlittlemore.

Thegeneralapproachtodealingwithsuchover-specificityin program analysis is to force abstraction by

forgetting someof the information in the too-precise program paths.Wecan do this by collapsing

conditions together (e.g., one con-ditionper-program-point)orbyturningprogramvariablesinto

unknowns (i.e., symbolic values) if they get

assignedmoretimesthanagiventhreshold.Theidealsolutionwouldbe to produce a concise strongest loop

invariant condition.This is generally infeasible, although the rich research resultson automatic techniques

for deriving loop invariants (e.g.,

[4,14,28])areapplicabletotheproblem.DySycurrentlyusesasimpleheuristicthatdoesnotinvolveanattemptf

orinvari-ant inference, only local collapsing of conditions.We firstrecognize loop variables by treating

specially the commoncode pattern of for loops that introduce explicit variables.Loop variables are

then treated as symbolic values, and aloop’sexitconditiondoesnotbecomepartofthepathcon -dition if the

loop body is entered at all. Furthermore, sym-bolic conditions inside the body of the loop are

collapsedper-program-point with only the latest value remembered:If a certain if statement in a loop

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 115

body evaluates to true inoneiterationandtofalseinanother,thelatestconditionre-places the earlier one in

the path condition. This effectivelytreats a loop as if it were an ifstatement with the symbolic

conditionsintheloopbodycollapsedper-program-point.

Toillustratetheapproach,ourlinSearchexampleuses aforloopwithloopvariablei,declaredexplicitlyinthe

for loop’s initialization expression.This signals to DySythat variable i will likely be assigned

multiple values, andwill participate in conditions. DySy then treats i as a sym-bolic value and does

not keep track of its state updates.By itself, this would be insufficient: executing the loop andthen

exiting would produce contradictory symbolic condi-tions.Inourexample,wewouldhave―i<arr.Length‖

(forthepartofthepathexecutingtheloopbody)and―!(i

<arr.Length)‖(when thesamepathlaterexitstheloop body).Since both conditions are conjoined (logical-

and)togetherinthesamepathcondition,thepathconditionbe-

comesjustfalse,whichisclearlyerroneous.Inourheuris- tic, we ignore a loop’s exit condition (unless the

loop is notenteredatall).Inourexample,thepreconditionbecomes:

arr!=null&&

($i<arr.Length&&!(ele==arr[$i])&&$i>=0||

$i<arr.Length&&ele==arr[$i]&&$i>=0)

This demonstrates a few interesting points. First, sym-bolicvariable$iistreatedasapseudo-

input.Essentially,in theabovelogicformula,$iisexistentiallyquantified:there

existssome$iwiththeseproperties.Second,nocondition ―$i>=arr.Length‖isoutput.Everytestcaseentersthe

loop at least once.Third, we can see how path conditionsare collapsed per-program-point inside the

loop body: Exe-

cutionsthatdofindthesearchedelementproduceboththecondition―!(ele==arr[$i])‖(foriterationsoverot

herel- ements)andthecomplement,―ele==arr[$i]‖(fortheit- eration that finally finds the element). Yet

the former arereplaced when the latter take place. Finally, this precondi-tion contains redundancy. It

covers the complementary casesof―ele==arr[$i]‖and―!(ele==arr[$i])‖,whichcan be simplified

away. It is fortunate, however, that the DySysimplifier misses this opportunity because this helps

illus-trate how the different cases arise.The separation of thecases does not matter for the method’s

precondition, butdoesmatterforthepostcondition.There,weobtain(slightlysimplified):

!(ele==arr[$i])==>\result==-1|| ele==arr[$i]==>\result==$i

This is a quite informative postcondition for the method,andcapturesitsessenceaccurately.

In the immediate future, we plan to refine our

heuristicintoaslightlymoresophisticatedversionthathandlesmorethan for loops and also produces useful

conditions for exit-ing the loop body. Specifically, we intend to recognize loopvariables by observing

program variables that get assignedduring the loop’s iterations.Each of these program vari-

ableswillgiverisetotwosymbolicvariables—e.g.,$i0and

$i1.Thefirstsymbolicvariablewillrepresentthevalues of the program variable in the body of the loop,

while thesecondwillrepresentthevalueonexitfromtheloop.Thesevariables are again existentially

quantified:our conditionswillonlyreflectthatthereissomevalue$i0(resp.$i1)for which the symbolic

conditions derived while executing theloopbody(resp.whenexitingtheloop)hold.

V. EVALUATION
We next discuss and evaluate DySy in comparison withtheDaikondynamicinvariantinferencetool.

Discussion

At a high level, our discussion of the dynamic symbolicapproach should give the reader a qualitative

idea of thecomparative advantages of DySy.Every dynamic invariant inference process captures, to

some extent, the peculiaritiesof the test suite used. Nevertheless, our symbolic approachhas a smaller

risk of being overly specific, since the condi-tions themselves are induced by the program text and

refinedthrough symbolic execution.Instead, an approach observ-ing arbitrary, pre-set conditions at

method boundaries isboundtobe―fooled‖muchmoreeasily.ForthelinSearchmethod of the previous

section, with the test cases describedearlier(allnumbers0..9searched inthearray{5,4,3,

12,6})Daikoninfersalmostnousefulinvariants,buta large number of spurious ones.Example

―accidental‖ in-variantsinclude―size(arr[])inarr[]‖,―size(arr[])-1

inarr[]‖,―arr[i]!=i‖,etc.(Theserelatetheindexor size of an array to its contents!) Certainly these

spurious in-variantscanbedisqualifiedwithamoreextensivetestsuitethat uses more arrays as

inputs.Nevertheless, test suitesencountered in practice tend to exercise as many differentcases in the

program logic as possible, but without muchvariety of data. It is, thus, very plausible for a

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 116

programmertounit-testmethodlinSearchwithonlyasinglearray,yet with multiple input search values. A

larger test input (e.g.,asystem-test)thatexerciseslinSearchmayalsofailtoin- validatesome

ofthefalseinvariants—forinstance,―arr[i]

!=i‖islikelytoholdformanyarrays.

Ontheotherhand, a possible threat for DySy

comparedtoDaikonisthatinterestingconditionsarenotreflectedinthe program text. For instance, an

interesting concept, suchas ordering, may be implicit or hard to infer from programconditions,yetmaybe

inferable by Daikon.

Nevertheless,wehavenotfoundthistooftenbethecase.Webelievethatthisisnotsurprising:findinganimplicitinter

estingconcept by unguided search over a space of pre-set invarianttemplatesisquiteunlikely.

ACaseStudy

We evaluate DySy by replicating a case study analyzed inthe Daikon literature.The StackAr class was

an exampleprogramoriginallybyWeiss[34],whichisincludedastheTable 1:How many of the ―ideal‖

invariants Daikonand DySy infer for StackAr methods and construc-tors exercised by the test

suite.(Higher is better.)―Goalinv‖ isthenumberofourmanuallydeter-mined ideal invariants.

―Recognized inv‖ is the num-ber of these ideal invariants inferred by Daikon

andDySy.Foreachtool,wereportastrict and a re-

laxedcount(thenumbersinparentheses)becauseof object equality invariants.If the tool does

notestablishthedeepequalityof objects (or full pu-rity of a method), but does establish some

shallowequality condition (e.g., reference equality, or valueequalityup to level-1) then the

―relaxed‖ numberin parentheses counts this as matching the expectedinvariant.

 Goal

inv

Recognizedinv

Daikon DySy

Invariant 5 5 4

Constructor 3 3 2

push 4 2(4) 2(4)

top 3 1(3) 2(3)

topAndPop 4 2(4) 2(4)

isEmpty 3 2(3) 3

isFull 3 2(3) 3

makeEmpty 2 2 2

Total 27 19 (27) 20 (25)

main example in the Daikon distribution. StackAr is a

stackalgebraicdatatypeimplementedusinganarray.Ernstetal.

[10] examineStackAr in detail and discuss Daikon’s abilityto infer StackAr’s invariants. In order to

perform a compar-ison with DySy, we rewrote StackAr in C# (also with thehelp of the Java

Conversion Assistant in the Visual StudioIDE).

WeranDaikononthetestsuitessuppliedforStackArby the Daikon authors. To do a comparison of Daikon

andDySy, we needed an ―ideal‖ reference set of invariants forStackAr.Before beginning our

experimentation, a humanuser hand-produced our reference invariants.Inspection re-veals that this set

of invariants is comprehensive and min-imal (in informal terms).It captures the behavior of

eachmethod in terms expected by human users.(We discussspecificexampleslater.)

Running DySy on the test suite takes 28 seconds, com-

paredto9secondsforDaikon(2.2secondsmonitoringand

6.7 seconds inference reported) on a 2 GHz AMD Athlon 64X2 dual core 3800+ with 4 GB of RAM.

Generally, our sym-bolicexecutionaddssignificantoverhead,which,however,isstrictly lower than that of

concolic execution [17, 30]. Thisisfastenoughforrealuseonspecificprogramunits.Gener-ally, we

believe that the matter of invariant quality is muchmore significant than that of runtime overheads, as

there issubstantialpotentialforoptimizationsinthefuture.

The results of the DySy and Daikon inference are summa-rized in Tables 1 and 2. Table 1 shows the

number of idealinvariants that were actually detected by Daikon and DySy.As can be seen, the test

suite is quite thorough and bothtools detect the vast majority of the target invariants.Anint eresting

issue concerns object equality (and method pu-rity), which is often part of the ideal invariant. The

meaningofequalityinourhuman-producedinvariantsisdeepequal Table 2:Metrics on all reported

invariants (lower isbetter), compared to ideal reference set. ―Goal inv‖is the number of ideal

invariants. ―Daikon inv‖ is thenumber of invariants reported for Daikon. ―Uniquesubexpr‖

are the unique subexpressions produced byDaikon and DySy to present their invariants to

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 117

theuser.The total expression count is relative to theentire class so here it is less than the

sum.(Somesubexpressionsarecommonacrossmethods.)

 Goal

inv

Daikon

inv

Uniquesubexpr

Goal Daikon DySy

Invariant 5 8 26 26 16

Constructor 3 7 17 24 17

push 4 21 28 69 43

top 3 22 14 81 25

topAndPop 4 41 21 145 50

isEmpty 3 13 9 53 9

isFull 3 11 13 45 13

makeEmpty 2 15 5 47 22

Total 27 138 89 316 133

ity.This is not always inferred by the tools, but referenceequality is more often inferred (which cannot

preclude

thatthemembersofanobjectchanged).Thetableoffersastrictandarelaxedcount.Thestrictcountconsidersthe

invariantfoundevenifonlyreferenceequalityisestablished.

Although both tools infer the required invariants for thistest suite, the benefit of DySy is demonstrated in

its avoidingirrelevantinvariants.Table 2 shows how many total invari-ants Daikon inferred (third

column).To detect the 27 idealinvariants,Daikonproduceda total of 138 invariants.

WedonotgiveasimilarcountforDySy,sinceitsoutputcon-sistsofcondensedexpressions(e.g.,if-

likeconstructsjointogetherinvariantsintoasingletop-levelone)whichmakethe comparison uneven. Instead, we

list a more reliable met-ric for both tools’ output:The last three columns of Table 2present the number of

unique subexpressions in the ideal andinferred invariants.We parse the output for both tools

andcountthenumberofuniquesubtrees in the abstract syn-tax tree: if a subtree/subexpression occurs on

two branches,it is counted only once.Thus, surface verbosity is ignored:what is measured is the number of

truly distinct clauses thateach tool infers. (Measuring the full size of the output wouldbias the numbers in

favor of DySy, as its output is simplifiedsymbolically with common subexpressions factored out.)Ascan be

seen,DySy infers many fewer total invariants thanDaikon—

aboutathirdofthetotalsize.Indeed,theDySyoutputisveryclosetothereferencesetofinvariantsforStackAr.(There

areminorinaccuraciesinourcountingofunique subexpressions, due to manual conversions

betweenthetools’differingoutputsyntax.Whenindoubt wefa-vored Daikon, by underapproximating the

number of uniquesubexpressionsDaikonreports.)

To see an example of the differences, consider

methodtopAndPop,whichremovesandreturnsthestack’smostre-cently inserted element, or null if the

stack is empty.Thetwo important postconditions for this method concern

itseffectontopOfStackanditsreturnvalue.Wehave:

\result==((Empty->null)

else->theArray[\old(topOfStack)])

and

topOfStack==((Empty->\old(topOfStack))

else->\old(topOfStack)-1)

BothDySyandDaikoninferthesepostconditions.Onemoreprecondition states that all stack contents

below the topelement remain unchanged by the method’s execution.

Bothtoolsinferthatpreconditionbutonlyundershallowequality.At the same time, to infer these correct

invariants, Daikoninfers a total of 41 invariants for this method. Many range from erroneous to

irrelevant from the perspective of a humanuser.Oneinvariantis:

\old(this.topOfStack)>=0)==>(this.theArray.getClass()!=\result.getClass())

The invariant relates the type of the array with the types ofelementsitholds.AnotherDaikoninvariantis:

\old(this.topOfStack)>=0)==>((\old(this.topOfStack)>>

stackar.StackAr.DEFAULT_CAPACITY==0))

ThisrelatestopOfStackwiththestack’sdefaultcapacity usingabit-shiftoperator!(Wehand-

translatedtheaboveinvariantstoJML.TheywereoriginallyonlyoutputinDaikon’sdedicatedinvariantlangu

agebecausetheyarenotallowedinJML—

e.g.,becauseofreferencestoprivatefields.)EliminatingtheextraneousDaikoninvariantswouldbepossiblewit

halargertestsuitethatwouldexercisetheStackArfunctionalityundermanyconditions.Neverthelessthefunda

mentaltensionremains:IfDaikonistoinferalltrueinvariants,itneedstoexploreagreatnumberofin -

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 118

varianttemplates,whichincreasestheprobabilityofacci-

dentalinvariants.Incontrast,DySyobtainsitscandidateinvariantsdirectlyfromtheprogram’sconditionsand

as-signments,thereforetheinvariantsitinfersareverylikely

relevant.

VI. RELATED WORK
We have already discussed the most directly related workthroughout the paper.We next present some less

directlyrelatedworkthatstillexertedinfluencesonourtechnique,yeteitherusesexclusivelystaticmethodsforinvar

iantin-ference, or infers program specifications purely dynamically,byexaminingpre-definedpatterns.

For reverse engineering, Gannod and Cheng [15] proposedto infer detailed specifications statically by

computing

thestrongestpostconditions.Nevertheless,pre/postconditionsobtainedfromanalyzingtheimplementationare

usuallytoodetailed to understand and too specific to support programevolution.Gannod and Cheng

[16]addressedthisdefi-ciencybygeneralizingtheinferredspecification,forinstanceby deleting conjuncts,

or adding disjuncts or

implications.Theirapproachrequiresloopboundsandinvariants,bothofwhichmustbeaddedmanually.

Flanagan and Leino [12] propose a lightweight verification-based tool, named Houdini, to statically infer

ESC/Java an-notations from unannotated Java programs. Based on pre-set property patterns, Houdini

conjectures a large numberofpossibleannotationsandthenusesESC/Javatoverifyor refute each of them.

The ability of this approach is lim-ited by the patterns used. In fact, only simple patterns arefeasible,

otherwise too many candidate annotations will begenerated, and, consequently, it will take a long time

forESC/Javatoverifycomplicatedproperties.Taghdiri[31]usesacounterexample-

guidedrefinementprocesstoinferover-approximatespecificationsforproce-durescalledinthefunction being

verified. In contrast toourapproach,Taghdiriaimsto approximate the behaviorsfor the procedures within

the caller’s context instead of in-ferringspecificationsoftheprocedure.

HenkelandDiwan[19]havebuiltatooltodynamicallydiscover algebraic specifications for interfaces of Java

classes.Their specifications relate sequences of method invocations.The tool generates many terms as test

cases from the classsignature.The results of these tests are generalized to alge-braicspecifications.

Much of the work on specification mining is targeted atinferring API protocols dynamically.Whaley

et al.[35]describe a system to extract component interfaces as finitestate machines from execution

traces. Other approaches usedata mining techniques. For instance Ammons et al.[1]use a learner to

infer nondeterministic state machines fromtraces; similarly, Yang and Evans [37] built Terracotta,

atool to generate regular patterns of method invocations fromobserved runs of the program. Li and Zhou

[24] apply datamining in the source code to infer programming rules,

i.e.,usageofrelatedmethodsandvariables,andthendetectpo-tentialbugs

bylocatingtheviolationoftheserules.

VII. CONCLUSIONS
Theexcitementthatfollowedtheoriginalintroductionof dynamic invariant detection in the Software

Engineeringworld seems to have been followed by a degree of skepticism.Dynamic invariant inference

tools require huge and thoroughregression test suites, and infer properties that are occasion-ally interesting

but often too simplistic. Additionally,

havingenoughteststoeliminatefalseinvariantsdoesnotprecludeextraneous invariants, which are

disappointing to a humanuser.In this paper we presented an approach that holdspromise for the future

of dynamic invariant inference: us-ing symbolic execution, simultaneously with concrete

testexecution in order to obtain conditions for

invariants.Webelievethatthistechniquerepresentsthefutureofdynamicinvariant inference. It combines

the advantages of invariantinference through static analysis, with the immediate prac-

ticalityofobservinginvariantsbyexecutingtestswrittenby programmers who exercise valid scenarios.

Furthermore,thetechniqueisstrictlyanincrementoverpriorapproaches,as it adds an orthogonal

dimension: It is certainly possibletocombinedynamicsymbolicexecutionwithobservationofproperties

from pre-defined templates, as in other dynamicinvariant detectors.The symbolic simplification

approachcan then apply to both symbolically inferred invariants andinvariants instantiated from

templates. A complete evalua-tion of such a hybrid is part of future work. We hope

thatthiswillbejustoneofmanyavenuesthatthepresentpaperwillopenfordynamicinvariantdetection.

REFERENCES
[1] G.Ammons,R.Bodik,andJ.R.Larus.Miningspecifications.InProc.29thACMSIGPLAN-

SIGACTSymposiumonPrinciplesofProgrammingLanguages(POPL),pages4–

16.ACM,Jan.2002.M.Boshernitsan,R.Doong,andA.Savoia.FromDaikontoAgitator:lessons and challenges in

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 119

building a
commercialtoolfordevelopertesting.InProc.ACM/SIGSOFTInternationalSymposiumonSoftwareTestingandAn

alysis(ISSTA),pages169–180.ACM,July2006.

[2] K. S.Brace,R.L.Rudell,andR.E. Bryant. Efficientimplementation of abddpackage.In
Proc.27thACM/IEEEDesignAutomationConference(DAC),pages40–45.ACM,June1990.

[3] M.Colón,S.Sankaranarayanan,andH.Sipma.Linear invariantgenerationusingnon-
linearconstraintsolving.InProc.15thInternationalConferenceonComputer-AidedVerification(CAV),pages420–

432.Springer,July2003.

[4] C.CsallnerandY.Smaragdakis.DSD-
Crasher:Ahybridanalysistoolforbugfinding.InProc.ACMSIGSOFTInternational Symposium on Software

Testing andAnalysis(ISSTA),pages245–254.ACM,July2006.
[5] C.CsallnerandY.Smaragdakis.Dynamicallydiscoveringlikely interface invariants. In Proc. 28th

InternationalConference on Software Engineering (ICSE), EmergingResults,pages861–864.ACM,May2006.

[6] S.ElbaumandM.Diep.Profilingdeployedsoftware:Assessingstrategiesandtestingopportunities.IEEETransactions on
Software Engineering, 31(4):312–327, Apr.2005.

[7] M.D.Ernst,J.Cockrell,W.G.Griswold,andD.Notkin.Dynamically discovering likely program invariants
tosupport program evolution. In Proc. 21st International ConferenceonSoftwareEngineering(ICSE),pages213–

224.IEEE,May1999.
[8] M.D.Ernst,J.Cockrell,W.G.Griswold,andD.Notkin.Dynamically discovering likely program invariants

tosupportprogramevolution.IEEETransactionsonSoftware Engineering,27(2):99–123,Feb.2001.

[9] M.D.Ernst,J.H.Perkins,P.J.Guo,S.McCamant,C.Pacheco,M.S.Tschantz,andC.Xiao.TheDaikonsystemfordynami
cdetectionoflikelyinvariants.ScienceofComputerProgramming,69(1–3):35–45,Dec.2007.

[10] D. EvansandM.Peck.Inculcatinginvariantsinintroductory courses. In Proc. 28th
InternationalConferenceonSoftwareEngineering(ICSE),pages673–678.ACM,May2006.

[11] C.FlanaganandK.R.M.Leino.Houdini,anannotationassistantforESC/Java.InProc.InternationalSymposiumofFormal

MethodsEurope(FME), pages 500–517.Springer,Mar.2001.
[12] C.Flanagan,K.R.M.Leino,M.Lillibridge,G.Nelson,J. B. Saxe, and R. Stata. Extended static checking

forJava. In Proc.ACMSIGPLANConferenceonProgramming Language Design and
Implementation(PLDI),pages234–245.ACM,June2002.

[13] C.FlanaganandS.Qadeer.Predicateabstractionforsoftwareverification.InProc.29thACMSIGPLAN-

SIGACTSymposiumonPrinciplesofProgrammingLanguages(POPL),pages191–202.ACM,Jan.2002.
[14] G.C.GannodandB.H.C.Cheng.Strongestpostconditionsemantics as the formal basis for reverse engineering.

InProc. Second Working Conference on Reverse Engineering(WCRE),pages188–197.IEEE,July1995.
[15] G.C.GannodandB.H.C.Cheng.Aspecificationmatchingbasedapproachtoreverseengineering.InProc.International

Conference on Software Engineering, pages389–398.ACM,May1999.

[16] P.Godefroid,N.Klarlund,andK.Sen.DART:Directedautomatedrandomtesting.InProc.ACMSIGPLANConferen
ce on Programming Language Design andImplementation(PLDI),pages213–223.ACM,June2005.

[17] S. Hangal and M. S. Lam. Tracking down software bugsusing automatic
anomalydetection.InProc.24thInternational Conference on Software Engineering (ICSE),pages291–

301.ACM,May2002.J.HenkelandA.Diwan.DiscoveringalgebraicspecificationsfromJavaclasses.InProc.17thEurope
anConferenceonObject-OrientedProgramming(ECOOP),pages431–456.Springer,July2003.

[18] J.C.King.Symbolicexecutionandprogramtesting.Commun.ACM,19(7):385–394, 1976.

[19] A.K.Kolawa.MethodandsystemforgeneratingacomputerprogramtestsuiteusingdynamicsymbolicexecutionofJavapro
grams.UnitedStatesPatent5784553,July1998.

[20] N.KuzminaandR.Gamboa.Extendingdynamicconstraintdetectionwithpolymorphicanalysis.InProc.5thInternational
WorkshoponDynamicAnalysis(WODA),May2007.

[21] G.T.Leavens,A.L.Baker,andC.Ruby.Preliminarydesign of JML: A behavioral interface

specificationlanguageforJava.TechnicalReportTR98-
06y,DepartmentofComputerScience,IowaStateUniversity,June1998.

[22] Z.LiandY. Zhou.PR-miner:automaticallyextractingimplicitprogrammingrulesanddetectingviolationsinlarge
software code. In Proc. 13th InternationalSymposium on Foundations of Software

Engineering(FSE),pages306–315.ACM,Sept.2005.

[23] B. Liblit,M.Naik,A.X.Zheng,A. Aiken,andM.I.Jordan.Scalable statistical bugisolation.In Proc.ACMSIGPLAN
Conference on Programming Language DesignandImplementation(PLDI), pages15–26. ACM,June2005.

[24] F.Logozzo.ModularStaticAnalysisofObject-OrientedLanguages.PhDthesis,EcolePolytechnique,June2004.
[25] J.W.NimmerandM.D.Ernst.Invariantinferenceforstatic checking: An empirical evaluation. In Proc.

10thInternationalSymposiumonFoundationsofSoftwareEngineering(FSE),pages11–20.ACM,Nov.2002.

[26] C.S.PasareanuandW.Visser.VerificationofJavaprogramsusingsymbolicexecutionandinvariantgeneration.InProc.11t
hInternationalSPINWorkshop,pages164–181.Springer,Apr.2004.

[27] J.H.PerkinsandM.D.Ernst.Efficientincrementalalgorithms for dynamic detection of likely invariants.
InProc.12thInternationalSymposiumontheFoundationsofSoftwareEngineering (FSE),pages23–32,Nov.2004.

[28] K.Sen,D.Marinov,andG.Agha.CUTE:aconcolicunittestingengineforC.InProc.13thInternationalSymposium on
Foundations of Software Engineering(FSE),pages263–272.ACM,Sept.2005.

[29] M.Taghdiri.Inferringspecificationstodetecterrorsincode. In Proc.19thIEEE InternationalConferenceonAutomated

Software Engineering (ASE), pages 144–153,Sept.2004.
[30] N. Tillmann, F. Chen, and W. Schulte. Discovering likelymethodspecifications.In

Proc.8thInternationalConference on Formal Engineering Methods (ICFEM’06),LNCS.Springer-Verlag,2006.
[31] N.TillmannandJ.deHalleux.Pex–

whiteboxtestgenerationfor.NET.InProc.SecondInternationalConferenceonTestsandProofs(TAP).Springer,Apr.

2008.Toappear.
[32] M.A.Weiss.DataStructuresandAlgorithmAnalysisinJava.AddisonWesleyLongman,1999.

[33] J.Whaley,M.C.Martin,andM.S.Lam.Automaticextraction of object-oriented component interfaces.
InProc.InternationalSymposiumonSoftwareTestingandAnalysis(ISSTA),pages218–228.ACM,July2002.

[34] T.XieandD.Notkin. Tool-assisted unit test

DySy: Dynamic Symbolic Execution for Invariant Inference

www.ijceronline.com Open Access Journal Page 120

generationandselectionbasedonoperationalabstractions.AutomatedSoftwareEngineering,13(3):345–371,July2006.
[35] J. Yang and D. Evans. Dynamically inferring temporalproperties.InProc.5thACMSIGPLAN-

SIGSOFTWorkshoponProgramAnalysisforSoftwareToolsandEngineering(PASTE), pages 23–28. ACM,

June2004.

