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CONSPECTUS: The combination of point-of-care (POC) medical microdevices and machine learning has the 

potentialtransform the practice of medicine. In this area, scalable lab-on-a-chip (LOC) devices have many 

advantages over standardlaboratory methods, including faster analysis, reduced cost, lower power consumption, 

and higher levels of integration andautomation. Despite significant advances in LOC technologies over the 

years, several remaining obstacles are preventing clinicalimplementation and market penetration of these novel 

medical microdevices. Similarly, while machine learning has seenexplosive growth in recent years and promises 

to shift the practice of medicine toward data-intensive and evidence-based 

decisionmaking,itsuptakehasbeenhinderedduetothelackofintegrationbetweenclinicalmeasurementsanddiseasedet

erminations.In thisAccount, we describerecent developments in the programmablebio-nanochip (p-BNC) 

system,a biosensor platformwiththe capacity for learning. The p-BNC is a “platform to digitize biology” in 

which small quantities of patient sample generateimmunofluorescent signal on agarose bead sensors that is 

optically extracted and converted to antigen concentrations. 

Theplatformcomprisesdisposablemicrofluidiccartridges,aportableanalyzer,automateddataanalysissoftware,andint

uitivemobile 

healthinterfaces.Thesingle-usecartridgesarefullyintegrated,self-

containedmicrofluidicdevicescontainingaqueousbuffersconvenientlyembeddedforPOCuse.Anovelfluiddeliverym

ethodwasdevelopedtoprovideaccurateandrepeatableflowratesvia actuation of the cartridge’s blister packs. A 

portable analyzer instrument was designed to integrate fluid delivery, opticaldetection, image analysis, and user 

interface, representing a universal system for acquiring, processing, and managing clinical 

datawhileovercomingmanyofthechallenges facingthewidespread clinicaladoptionofLOCtechnologies. 

Wedemonstratethep-BNC’s flexibility through the completion of multiplex assays within the single-use 

disposable cartridges for three clinicalapplications:prostatecancer,ovariancancer,andacutemyocardialinfarction. 

Toward the goal of creating “sensors that learn”, we have developed and describe here the Cardiac ScoreCard, a 

clinical decisionsupport system for a spectrum of cardiovascular disease. The Cardiac ScoreCard approach 

comprises a comprehensive 

biomarkerpanelandriskfactorinformationinapredictivemodelcapableofassessingearlyriskandlate-

stagediseaseprogressionforheart 

attack and heart failure patients. These marker-driven tests have the potential to radically reduce costs, decrease 

wait times, andintroducenew optionsfor patientsneeding regularhealth monitoring.Further,these eff orts demonstratethe 

clinical utilityoffusingdatafrominformation-

richbiomarkersandtheInternetofThings(IoT)usingpredictiveanalyticstogeneratesingle-indexassessments for 

wellness/illness status. By promoting disease prevention and personalized wellness management, tools of 

thisnaturehavethepotentialtoimprovehealthcareexponentially. 
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INTRODUCTION 
Weareenteringaneweraofchem-andbiosensingempowered 

byexponentialadvancesoccurringinanumberofdisciplines.WhiletheInternetageledtotheinterconnectednessbetween 

ment through the Internet of Things (IoT). EXtending thesetransformative changes to health care has the potential 

toexponentially improve lives. Despite the ubiquity of physicalsilicontransducersinvariousmobiledevicestoday,thereisa 

 

peopleatanunprecedentedrate,thenextrevolutionwillinvolve   

theconnectednessofobjects:integratingelectronics,computing,communications,andtransducerstocreateasmartenviron- 

lackofmobilehealth(mHealth)biomarkermeasurementplatforms that are programmable (i.e., can be easily retasked fora 

variety of applications) and accessible to individuals, chemists,pharmaceuticalscientists,andcare-

providers,alike.Whilenearly70%ofcurrentmedicaldecisionsaremadeusingdiagnostic tests,
1
these tests for the most part 

are currentlyperformed in traditional healthcare settings using phleboto-mists, remote laboratories, delayed reporting, and 

an ineffi cientworkflow that stifles the arrival of novel biosensor technologieswith thecapacityto transform 

clinicaltestingand medicaldecisionmaking. 

Microfluidic and lab-on-a-chip (LOC) systems are strongcandidates for providing the necessary “hardware” for 

thesechem- and biosensors. Originally inspired by 

microfabricationtechniquesfromthemicroelectronicsindustry,
2,3

LOCapproacheshavemadetheirwayintoseveralapplica

tionssince their introduction in the early 1990s,
4
finding utility 

inmedicine,inkjetprinters,separationsciences,foodsafety,military,andveterinarymarkets.Arguably,point-of-

care(POC)diagnosticsisthemostpromisingapplicationforLOCtechnology,wherescalablemedicalmicrodevicesoff erfaster

analysistimes,reducedvolumesofbioreagents,lowerpower 

requirements, and higher levels of integration and 

automationthanstandardcentralandremotelaboratorymethods.
5
However,despitethe potentiallyenormous societalimpact 

ofLOC technology, major barriers are preventing the translationof these novel systems from the laboratory to routine 

clinicalpractice, such as lack of integration and failure to compete withbothperformanceandcostoflaboratory-

basedtests.
6−8

Further, the field is currently experiencing significant 

challengesassociatedwithoverlyaggressiveprojectionsofcurrentcapabilitiesofselectedeff orts.Despitethesechallenges,thereis

greatopportunityforLOCtechnologiesprovidedthatopen 

and honest evaluations comprising extensive clinical validationand peer-reviewed reports are made widely available to 

clinical,regulatory,commercial,andgeneralpublicaudiences. 

Similarly, machine learning has seen explosive growth 

inrecentyearsduetotheemergenceofnewdataminingtechniques,theincreasingavailabilityofdata,andthedecreasing cost of 

computation.
9
This widespread adoption ofartificial intelligence (AI) systems over the past two decades hasresulted in a 

paradigm shift toward data-intensive and evidence-baseddecisionmaking,spanningavarietyofdisciplinesincluding 

chemistry across government, industry, and academicinstitutions,alike.Likewise,machinelearningisplayinganincreasingly 

important role in chem- and biosensingapplica-tions and within the practice of medicine; however, 

despiteenormoustechnologicalprogress,severalchallengesarepreventing AI systems from reaching their full 

potential.
10

Inthe context of clinical laboratory measurements, one of 

theprimarybarriersisthelackofintegrationbetweendataacquisition, handling, and interpretation. There is an oppor-tunity 

for universal and AI biosensor systems to significantlyimprove health care by acquiring, processing, and 

managingclinicaldata. 

InthisAccount,wedescribeourmostrecentworktoward 

developing the programmable bio-nanochip (p-BNC) ensem-

blewiththecapacitytolearn.
11−16

Thismultiplexandmulticlass platform for bio- and chemical analysis has 

beendemonstrated previously in its ability to assess 

disease/healthstatusinoralcancer,ovariancancer,prostatecancer,cardiacheart disease, and trauma using over 22 protein 

biomarkers, 12smallmolecules,and13cellularmarkers.
17

Thep-BNCsystem 

shown in Figure 1is a flexible platform for digitizing biology,featuringsensorensemblesthatmeasurebiomarkersinahighly 
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Figure 1.Intended use cycle of the p-BNC system for routine cardiacwellnesstesting. 

  

effi cient manner. The process begins by introducing a smallquantity (∼100 μL, 2 drops) of patient sample (e.g., 

serum,plasma,ororalfluids)intoadisposablecartridge.Thecartridgeisinsertedintotheportableanalyzer,whichautomatically

performs the multistep assay sequence. Image analysis routines“digitizebiology” 

byconvertingthesignalintobiomarkerconcentrations. The biomarker concentration data then flowsintodisease-

specificmachine-learningalgorithmsthathavebeen trained on >1000 patient clinical trials to predict aspectrum of 

cardiovascular disease (CVD). The result is asingle value “Cardiac Score”, which is then displayed to 

thepatientusinganmHealthapp.Providingpatientswithpersonalized wellness information has the potential to 

promoteprevention and active management of cardiac health, and thecombination of high-sensitivity POC diagnostics and 

machinelearning has the potential to transform health care movingforward. While this Account exclusively highlights 

the p-BNCsystem, more comprehensive reviews of the LOC field as awholehavebeenpublishedbyothergroups.
2,5,7,18

 

SINGLE-USEMICROFLUIDICCARTRIDGES 

Criticaltothe“sensorsthatlearn” conceptarethesensorensembles themselves and the platform technology that 

enablesprotein,antibody,smallmolecule,andoligonucleotidebiomarker measurements at the POC. To illustrate how 

thep-BNC technology functions, Figure 2depicts the bead-basedassaysystemacrossvariouslengthscales.Thep-

BNCcartridgeisafullyintegrated,self-containedmicrofluidicdevicethathas 

aqueousbuff ersconvenientlyembeddedforuseatthePOC.Inthecurrentconfiguration,thisinjection-

moldedcartridgecontainsa4× 5matriXofflow-throughmicrocontainersdesigned to hold agarose bead sensors. Multiplexing 

is achievedthrough spatially programming the bead sensors within 

themicrochipwherequantitationofproteinsandantibodiesoutperformsELISA,achievinglowerlimitsofdetection,faster  
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Figure 2. A graphical depiction of p-BNC features at various length scales: (a) The approXimately credit-card sized p-

BNC cartridge. (b) The p-BNC’s 4 × 5 bead array with (bottom, fluorescence image) and without (top, SEM image) 

agarose bead sensors. (c) Magnified view of a single beadsensor (bottom, fluorescence image) and flow-through 

microcontainer (top, SEM image). (d) Porous agarose bead network (SEM image). 

(e)Illustrationofatypicalsandwichimmunoassayperformedonanagarosebeadfiber. 

 

Figure 3.Illustrations of the p-BNC cartridge. The exploded diagram (left) reveals the main fluidics module onto 

which two reagent blister 

packsandanadhesivecaparemounted.Thecartridgeoutershellenclosesandprotectsthecartridge.Thefluidroutingdiagram(right)sho

wsthelocationof the sample entry, user-configurable reagent pad chamber, self-containing waste chambers, and bead sensor 

array. Reproduced from ref 15 withpermissionfromTheRoyalSocietyofChemistry. 

 

analysis times, and improved usability.
13

The siX-sided flow-

throughmicrocontainerdesignallowsconvectivetransporttopenetrate the agarose beads, where short depletion 

layersimprovecaptureeffi ciencyrelativeto2-Dmethods.
19

Theagarose beads’ 3-D fibrous network that is indexed matched 

towater provides a distinct advantage over 2-D capture (e.g.,lateral flow devices, planar microarrays, 96-well plates) 

becausethe3-Dlatticestructureconcentratesahigherdensityofimmunocomplexes within the optical path of the 

fluorescencemicroscope,resultinginhighersignaland,thus,improved 

sensitivity.Otheradvantagesofthisagarosebeadsysteminclude(1)drastically reducedanalysistimes relativetodiffusion-

dominant ELISA, (2) the ability accommodate awide range of target analyte properties (e.g., molecular weight,size,and 

shape)bycustomizingporosity,(3)a capacitytoperform both two-site immunometric and competitive 

assayformats,and(4)lownonspecificbindingcharacteristicsprovided by this polymerized sugar matriX. The first p-

BNCdesigns were composed of anisotropically etched silicon 100wafers. Recent eff orts to translate these devices into 

clinicalpractice have resulted in the mass-produced, globally 

scalable,inexpensiveinjectionmoldedplasticcartridgesshownhere. 

A common obstacle for translating LOC devices from 

R&Dlaboratoriestoclinicalpracticeistheabsenceofrobustinterfacesforthechipanditsperipheralreagents.These 

complicated“world-to-chip”interfacesrendersomeLOCdevices impractical outside of research settings, inheriting thetitle 

“chips in a lab”.
6,7

The methods through which fluids (e.g.,the specimen, bioreagents, aqueous buff ers, and waste) 

aremanipulated must be carefully considered when designing amicrofluidic device. Further, successful LOC devices 

minimizemanual fluid handling steps and perform preprocessing stepswithinthedevice. 

The p-BNC microfluidic cartridge (Figure 3) 

streamlinesvariousfluidhandlingsteps.First,asmallvolumeofbiospecimen(i.e.,serum,plasma,urine,ororalfluids)isintro

duced into the loading port. The sample fills the fluidiccartridgeviacapillaryflow,andapassivevalvegovernsautomatic 

metering(100 μL) of sample volumes.After thesample is loaded, the user closes the device via an adhesive cap.“On-chip” 

processing of sample is completed by inline filters.Thecartridgefeaturestwofoilblisterpackscontainingphosphate-

buff eredsaline(PBS),whichserveastheaqueous 

buff ers. Puncturing mechanisms on the cartridge underneaththe blisters rupture the foil upon external compression via 

theanalyzer’s automated blister actuation system. The right blistercontrols the antigen delivery pathway while the left 

blistercontrols the detecting antibody pathway. An easily accessiblereagent pad chamber on the top face of the 

cartridge holds aglassfiberconjugatepadwithdetectingantibodyreagentsthat 
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Figure4.Portableandautomatedinstrumentationforthep-

BNC.(a)Illustrationoftheanalyzerprototype(internalsideview).(b)Automatedfluiddeliverysystemshowingimagesoftheact

uatorcompressingablisteratvariousheights(top)andflowrateverificationresults(bottom)withmeanflow rates and standard 

deviation (error bars) for five runs at each target flow rate. (c) Summary of the automated image analysis procedure, 

whichlocates,extracts,andaveragesthebeads’fluorescencesignal.Reproducedfromref15withpermissionfromTheRoyalSoc

ietyofChemistry. 

 

are eluted and delivered to the bead sensor array. Any unboundreagents and antigen are drained into waste chambers 

adjacentto the bead array. When the assay is complete, the cartridgemay be removed from the instrument and safely 

disposed in abiohazardouswastecontainer.Thep-

BNC’shighleveloffluidicintegrationreducespotentialhumanerrors,improvesrepeat-ability, and qualifies its use at the 

POC. Additionally, theautomation of fluid handling steps allows p-BNC assays to 

beperformedwithminimaltraining. 

 

PORTABLE AND AUTOMATED POINT-OF-CARE ANALYZER 

Integratingmicrofluidicdisposablesandtheirassociatedinstrumentationintoaunifiedanalysissystemis 

aprimarychallengeforPOCdiagnostics.
20

Inthecaseoffluorescenceimmunoassays,theopticaldetectionsystemmustbeportable,i

nexpensive,andsensitive.Recentimprovementsinoptoelec-tronicshardwarelikeCMOScamerasandLEDsoff ernewlow-

costandsensitiveoptionsforLOCinstrumentation.Similarly,astheperformancecharacteristicsofsingle-

boardcomputersforembeddedsystemscontinuetoimprove,increasinglysophisticatedsoftwareprovidesnewopportunitiesforde

vel-opersto improve device performanceanduser 

experience.Thegoalfordevelopingasuccessfulportableassaysystemistocreateanautomatedworkflowthatrequiresnospecialtrai

ning.Thep-BNCanalyzerprototypedescribedpreviously
15

andshowninFigure4isapproXimately22cm×22cm×30cm(l 

× w× h),weighslessthan7kg,andfeaturesacompact 

fluorescenceimagingmodule,automatedfluiddeliverysystem, 

cartridgealignment,embeddedPC,andtouchscreeninterface(Figure4a).Theanalyzer’sminiaturizedopticalsystemisdesigned to 

image fluorescently labeled beads (AlexaFluor-488)and consists of an off -axis illumination module with four blueLEDs 

that are filtered (483 nm) and directed to the 

objectplanewithasphericcondenserlenses.Theinlineopticalassemblycomprisesanobjectivelens(4×,0.13NA),anemission 

bandpassfilter (535 nm), a tube lens, and a CCDimager attached to a precision positioning actuator for 

focusing.Inadditiontothecompactfluorescencemicroscope,anautomatedfluiddeliverysystemcomprisingtwoverticallyorien

tedactuators compressesthe cartridge’s blisterpacks toperformcustomizableflowprotocols.Thecartridgeslotcontains a 
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loading mechanism that aligns the cartridge withthe blister actuators and optics field of view. The p-BNCsoftware 

user interface is displayed and manipulated via aninteractivetouchscreen. 

Themethodofmotivating fluidswithinamicrofluidic device 

is an important consideration when developing a new deviceconcept. While there are a variety of driving forces to 

choosefrom, blister packs are a popular choice for POC settingsbecause the aqueous buff ers can be stored 

conveniently on thedevice. Several groups developing POC devices have 

selectedblisterpackactuationastheirprimarysourceoffluidmotivation
21

including commercial products such as the 

Abbotti-STAT device
22

and the Daktari Diagnostics device.
23

Despitethe numerous examples of blister pack actuation 

systems in theliterature,littleinformationregardingtheaccuracyandprecisionoftheflowratesresultingfromactuationhavebeen 

 

 
 

Figure 5.p-BNC’smultifunctionality was demonstrated by completing assays within the single-use disposable cartridges (i). 

Fluorescence images 

areshownfornoncases/controls(ii)andcases(iii)whereeachpanelincludespositivecalibratorsandnegativecontrolsattheleft-

mostcolumnofthebead array. Analytes were detected for each disease application; total PSA (blue) and free PSA 

(yellow) for prostate cancer (a); CA125 (red) andHE4(green)forovariancancer(b);cTnI(red),CK-

MB(green),MYO(blue),andNT-

proBNP(yellow)forAMIdiagnosis(c).Meanfluorescenceintensities(iv)weredeterminedfromtheannularROImethodwit

herrorbarsshowingthestandarddeviationfromduplicatebeadsensorsfromasingleexperiment.Reproducedfromref15with

permissionfromTheRoyalSocietyofChemistry. 

published. Previously, our group showed that flow rate is animportant parameter for optimizing analyte 

capture;
19

there-fore, delivering accurate and repeatable flow rates was a highprioritywhendesigninginstrumentation. 

Recently,wedevelopedamethodfordeliveringhighlycustomizable and repeatable flow rates with blister actuation.
15

Our 

fluid delivery system features two key innovations: blisterburst detection and a dynamic blister actuation model. 

Forcesensitive resistors are embedded underneath the blister actuatortips, and a burst detection algorithm recognizes the 

event whenthe blister has ruptured, allowing the automated fluid deliverysystem to track and administer accurate flow 

rates into thecartridge. Once the blister is burst, the actuators compress theblister with an actuation rate derived from a 

geometric model ofthe blister volume. The blister was mounted to an 

experimentalmicrofluidiccardwithknownvolume,andvideoanalysissoftware estimated the volumetric flow rate by 

measuring thevelocityofadyesolution(Figure4b).Flowratesatthreetargetlevels (100, 50, and 10 μL/min) were delivered 

for five runseach, demonstrating exceptional control of fluid delivery. 

Theautomationofsampleandreagentfluidseliminateslabor-

intensivemanipulationsandimprovesrepeatabilityandreproducibility en route to making quality standard measure-

mentsatthePOCareality. 

AutomateddataanalysisroutinesthatwouldpreviouslybeconsideredtoocomputationallyintensiveforportablePOCsystemsaren
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owfeasibleassingle-

boardcomputersarebecomingbetter,faster,andcheaper.Inthismanner,increasinglysophisticatedsoftwaresolutionsareexpecte

dtorelax,andperhapsdisplacealtogether,certaindesignrequire- 

ments resulting in LOC systems that are easier and cheaper tobuild. In addition to algorithmically controlling fluid 

delivery,thep-BNCanalyzer automatestheanalysisof 

fluorescencemicrographs,convertingpiXelintensitiesintobiomarkerconcentrations.
15

The image analysis software 

summarized inFigure 4c and applied to each bead individually uses novelcomputer vision methods to detect the bead’s 

locations andanalyze piXels within a region of interest (ROI). First, the finitediff erence image identifies the bead’s outer 

edge. Next, 

beadswithintheexpectedsizedistributionareidentifiedviageneratingseveralGaborannuli
24

withslightlydiff erentpropertiesa

ndsubsequentlyperforming2-Dconvolutionoperations on the derivative image. The resulting convolutionresponses are 

normalized and averaged, and the bead locationsare defined by the maximum averaged response. The outer edgeis 

determined by fitting a circle to the points of maximumintensityin thefinitediff erenceimage.Next,anannularROIis 

mappedalongthebead’souteredge,thesignalwithintheROIis averaged, and a Grubbs’ test removes outlier beads from 

theanalysis.Lastly,theresultingmeanfluorescentintensities 

(MFI)areconvertedtobiomarkerconcentrationsbyreferencingapredetermineddosecurve(four-orfive-

parameterlogisticcurve). 

To demonstrate the p-BNC system’s bioassay flexibility, aproofofconceptstudywasperformedusingtheintegratedand 

automatedbioassayplatformdescribedpreviously.
15

Indevelopment assays for the screenings of prostate and ovariancancer 

and acute myocardial infarction (AMI) diagnosis wereconducted on the p-BNC system using human serum 

samplesforcasesandcontrols(Figure5).Theprostatecancerscreening 

 
Figure6.Cardiacbiomarkersandtheirpathophysiologicalroleinatheroscleroticplaquedevelopment.Anidealizeddiagram(le

ft)showssimplifiedstagesofatheroscleroticplaquedevelopmentandassociatedbiomarkers.AcorrelationmatriX(right)showsthePe

arsoncorrelationcoeffi cientmatriXfor 

allpatients(N=579)andallpatientoutcomesinthestudy.Reproducedwithpermissionfromref16.Copyright2016Elsevi

er. 
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panel (Figure 5a) exhibits higher signal in both the total andfree PSA beads for the suspected positive case, indicating 

thatthe p-BNC can distinguish between prostate cancer cases andcontrols. Similarly for ovarian cancer, the p-BNC 

(Figure 5b)distinguishes a late-stage cancer patient from a noncase patientvia substantially higher signal in HE4 bead 

sensors. For AMIdiagnosis (Figure 5c), all four cardiac biomarkers (cTnI, CK-MB,MYO,andNT-

proBNP)areelevatedintheAMIpatient,suggesting the p-BNC’s utility in distinguishing between 

AMIandnoncasechestpainpatients.Thiscompilationofdatashowcasesthep-

BNCplatform’sflexibilityinwhichauniversalcartridge can be reconfigured via the spatial programming ofbead sensors. 

While the work described here demonstrates thep-BNC’s capacity for highly customizable multiplex panels 

tocoveranumberofdiseaseindications,ourpriorworkperformed on less integrated instrumentation enumerates theassay 

performances for a selection of analyte targets
17

anddedicated multiplex panels such as drugs of 

abuse,
14

cardiacheartdisease,
25

andovariancancer.
12

 

 

CARDIACSCORECARD FORPREDICTINGASPECTRUMOFCARDIOVASCULARDISEASES 

Theimplementationofmachineandstatisticallearningindiagnostic devices has the potential to radically alter the way 

wequantify our health, and once adopted clinically these devicescould outperform current standard methods for diagnosing 

anddeterminingprognosisofdiseases.
26

Notonlywillthecompositeinformationonmultiplexbiomarkerpanelsoutper-

formanysingle-

markerdiagnostictest,butalsotheintroductionofnewdiseasescoresandclassificationsprovidesaresultthatismoreinterpretabl

ethansimplyalistof 

biomarker concentration values. The bridge between integratedPOC testing and model development is critical for 

translatingtheoretical approaches into mainstream clinical practice. In 

thiscapacity,ourgroupisdevelopingtheCardiacScoreCard,statisticallearningmodelsthat predictcardiovasculardiseasesusing 

data from multiplex cardiac marker panels and risk factorinformation.
16

CVD is the leading cause of death in the 

U.S.andglobally,andtheexorbitanthealthcarecostattributedtoCVD is burdening the U.S. economy. The joint goal of 

savinglives and reducing healthcare costs may be accomplished byshifting the focus from late-stage disease maintenance 

to earlydetectionandpreventionofCVD. 

Clinical decision support systems (CDSSs) are support toolsthat assist in medical decisions by providing clinicians 

withpersonalized assessments or recommendations
27

and off er apromising solution for managing CVD. Several 

CDSSs forCVD have been developed, featuring various machine-learningmethods such as artificial neural 

networks,
28

Support 

VectorMachines,
29

randomforest,
30

Bayesiannetworks,
31

logisticregression,
32

andensemblemethods.
33

AlthoughCDSSs

promiseenhanceddiagnosticresults,shorterwaittimes,andreduced cost versus the standard of care, physicians may 

behesitanttoimplement“blackboX”CDSSs(i.e.,thealgorithm’s 

resultsandmethodstoobtainthemareeitheruninterpretable 

ornotcapableofprovidingactionabletherapeuticrecom-mendations). Therefore, the Cardiac ScoreCard uses a 

lassologisticregressionapproach,convertingriskfactorsandbiomarkerdataintoasinglescorewithinterpretableandclinically 

useful information in the form of logistic regressioncoeffi cients. When fully developed, the Cardiac ScoreCard 

isintendedtoprovidepersonalizedcardiachealthassessments 
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Figure 7.Results of the Cardiac ScoreCard and various reference methods. (a) Receiver operating characteristic (ROC) 

curves for the cardiacwellness application (high versus low risk) for the Framingham 10-year risk score, a biomarkers-

only model, and the Cardiac ScoreCard. (b) ROCcurves for HF diagnosis using a single-marker BNP test and the 

Cardiac ScoreCard. (c) Lasso logistic regression coeffi cients for the 

CardiacScoreCardwellnessandHFmodels.Reproducedwithpermissionfromref16.Copyright2016Elsevier. 

across a spectrum of CVD with predictive models for cardiacwellness, AMI diagnosis, AMI prognosis, heart failure 

(HF)diagnosis, and HF prognosis. In this Account, we report ourrecent results for cardiac wellness and HF 

diagnosis,
16

while theotherswillbefeaturedinfuturepublications. 

The Cardiac ScoreCard assay comprises a multiplex panel ofbiomarkers from a diverse pathophysiology for two 

reasons(Figure 6). First, others have demonstrated that a multimarkerstrategy with pathobiologically diverse 

biomarkers improvesperformance in CVD risk prediction.
34

Further, a selection ofmarkers that are diff erentially 

expressed across various phases ofatherosclerotic plaque development provides new opportunitiesfor CVD prediction 

models. Second, it is important to train themodels with predictors that are uncorrelated. When biomarkersfrom the same 

pathophysiology are selected for a model, thepredictors tend to be highly correlated. Conversely, selectingbiomarkers 

from a diverse background are expected to increasetheoverallinformationcontentinthepredictivemodel. 

A model for assessing and predicting overall heart health forconsumerwellnesstestingwasrecentlydevelopedanddescribed 

previously.
16

Briefly, the wellness ScoreCard model(AUC=0.84)outperformedboththeFramingham10-yearCVD risk 

score (AUC = 0.80) and a biomarker-only model(AUC = 0.77) in terms of discrimination between high risk 

andlowriskpatientgroups(Figure7a).Additionally,theScoreCardmodel showed good calibration across deciles of predicted 

risk(Hosmer−Lemeshowp=0.98),demonstratingitsusefulnessasascoreforwellness.Similarly,aHFdiagnosismodelwas 

developedandcomparedwithastandardmethodfordiagnosis 

(BNP test). The multivariate ScoreCard algorithm showedbetter discrimination in diagnosing HF than the single-

markerBNP score (AUC = 0.94 and 0.93, respectively) (Figure 

7b),suggestingthatthediagnosisofHFcanbeenhancedbyaddingauXiliarybiomarkersandpatientdemographics. 

Oneadvantageousfeatureoflassologisticregressionisautomatic feature selection.
35

Feature selection reduces 

modelcomplexity and improves generalization by discarding unneces-sary predictors while retaining the most relevant, and 

the lassologistic regression method performs this feature selection 

byshrinkingtheregressioncoeffi cients.Notonlydoesthisfeatureselection approach improve prediction performance, but it 

alsoprovides assay developers with a prioritized list of 

biomarkercandidatesforfutureimplementationinmultimarkerpanels.Figure7cshowsthelogisticregressioncoeffi cientsforbotht

hewellnessandHFmodels.Inthewellnessmodel,thelassomethod selected 15 predictors (i.e., nonzero coeffi cients) 

withBMI(βBMI=0.82),smoking(βsmoking=0.47),age(βage=0.45),myoglobin(βMYO=0.34),gender(βgender=0.19),andIL-

1β 

(βIL‑1β= 0.17) having the largest eff ect sizes. These resultssuggestthatthediscriminationbetweenhighandlowrisk 

patients is contingent on a relatively large number of 

predictors,comprisingdemographicsandbiomarkersfromadiversepathophysiology.On the other hand, the lasso method 

returneda sparse model for HF diagnosis with only four 

nonzeropredictors:BNP(βBNP=1.51),cTnI(βcTnI=0.28),BMI(βBMI 

=0.25),andage(βage=0.06).Fromapracticalassaydevelopment perspective, this sparse HF model, made 

possiblethroughlasso-basedfeatureselectionmethods,has thepotential 

 

 
Figure8.Academicandpublicinterestsinvarioustopicsoverthepastdecade:(a)Numberofscientificpublicationsreportedbyth

eWebofScience(http://www.webofscience.com). (b) Relative popularity of topics in the United States (total searches 

for the topic out of all Google searches)reportedbyGoogleTrends(http://www.google.com/trends). 

http://www.webofscience.com/
http://www.google.com/trends
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to significantly reduce the cost of reagents and simplify theassaychemistry. 

Theimportanceoftranslatingbiomarkerdataintointerpretable wellness scores is further underscored by thedisparity 

between academic and general public interests. In thepastdecade,over100 000biomarkerpapershavebeenpublished with the 

number of biomarker papers increasingevery year; however, the relative public interest in 

biomarkersappearstobedecliningovertime(Figure8).Tobridgethegap,researchers must convey biomarker information 

more eff ec-tively to the general population by developing intuitive 

healthreportcards,liketheCardiacScoreCard.TheCardiacScoreCardtechnologywillprovideacomprehensivebiomarkerp

anel capable of assessing early risk as well as monitoring 

latestagediseaseprogressionforAMIandHFpatients.Thesemarker-driven tests have the potential to radically reduce 

costs,decrease wait times, and add new options for patients needingregular health monitoring. EXpanding on the 

capabilities ofconsumerelectronics,bigdataanalytics,andweb-awaresensors,cloud-

connecteddiagnosticscanbepowerfulinstru-ments for wellness tracking and behavior modification. 

Thefusionofdatafrominformation-

richbiomarkersandIoTinfrastructureswithpredictiveanalyticsmayexponentiallyimprovedrugdiscoveryandhealthpolicya

ndallownewoptionsforpersonalizedwellnessmanagement. 

 

CONCLUSIONS AND OUTLOOK 
Thepotentcombinationofmedicalmicrodevices,newbiomarkermeasurements,andmachinelearninghasthepotential to 

transform medicine by empowering individuals toplay more active roles in the management of their own wellnessstatus. 

However, while the application of AI in medicine is stillin its infancy, several challenges remain for these 

integratedchem- and biosensing strategies to reach their full potential.With the ever-increasing value and volume of 

data, we will becontinually faced with ethical questions regarding the owner-ship and use of these sensitive data. 

Researchers developingnewCDSSsneedtoprioritizepatientconfidentialitybydesigning systems that provide secure user 

authentication anddata transactions. In addition to privacy concerns, issues withthe integration of data acquisition, 

handling, and interpretationcontinues to plague the healthcare industry. Integrated chem-and biosensor platform developers 

need to design universalsystems that are compatible with the workflows of 

healthcareprovidersinordertostreamlinedatatransactions.Lastly,cliniciansmaybereluctanttoadoptCDSSsthatuse“blackbo

X” 

methods(e.g.,artificialneuralnetworksandSVMs)and 

 

provideuninterpretable results. When developing machine-learning algorithms, researchers should implement models 

thatprovide both interpretable rationale for diagnostic decisionsandtheessentialinformationtomakepatient-

specificrecommendations. The combination of a platform to digitizebiology and predictive analytics can change the 

trajectory ofmedicine, where the current linear thinking, mainly based onlate-

stagediseasediagnosisusingexpensiveandcumbersometools, is replaced by a pathway to exponential medicine madepossible 

through the introduction of scalable tools with thecapacitytolearn. 
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