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I. INTRODUCTION 
Machine learning and pattern recognition techniques like classification, clustering, regression analysis, and 

outlier detection are prevailing and further getting optimized in their performance due to the enormous 

dependency by the various real-world applications. There exist several applications in various domains, which 

require extracting just the target class from among several classes that are spatially spread at different locations. 

Consider, for example, mapping the trees in an urban area using the remotely sensed hyperspectral data, to 

extract the user interested item from an archival that stores several items purchased by the user in an  online 

transaction. Suppose the data provided by these applications are of high dimensional type then it becomes a 

challenge to the machine learning process thus, necessitate the dimensionality reduction to be used as a 

preprocessing technique to provide the better visualization of the high dimensional data. In such circumstances, 

the foremost requirement before automating the applications is to analyze and project the entire high 

dimensional input data in a feature space that could provide the accurate extraction of the required class called 

target class. In such circumstances naturally, the control set of the target will be known using which, the most 

desirable subset of the features could be determined for the better visualization of the target class from among 

several classes present in the input.  

Projection of the entire input space onto a target class guided features subspace is expected to recognize the 

target class accurately and would also bring certain geometrical or structural changes within the target class as 

well as other classes present in the input. For instance, if the forest department wishes to observe the area 

covered by trees from a hyperspectral remotely sensed image, then it is necessary to find the optimal features to 

accurately map the tree class using its training set. The procedure involved while mapping the tree class would 

change the other classes like grass, vegetation and water bodies present in the image along with some changes 

which may have occurred in the tree class too. This paper analyzes the changes in the structural and class 
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properties for the given data so that an appropriate inference can be drawn from the classification results of the 

target class as well as the other classes after preprocessing. Further, an outcome of the analysis could assist the 

researcher while solving a multiclass problem by using the target class technique.  

 

Nagabushan et al. [10] have described a procedure to find the optimal subset of the features using the control set 

of the target class. The work shows that the selection of the low variance features can enhance the compactness 

within the target class so that its extraction from the input consisting of several classes could be possible. 

Therefore, employing the method proposed by Nagabushan et al[10] this paper carries out an experimental 

model to analyze the class and structural properties affected due to the target class guided dimensionality 

reduction based on the minimum spanning tree (MST), K-nearest Neighbor (KNN) and agglomerative 

clustering. The minimum spanning tree algorithm is an acyclic subgraph of a graph G is used to address 

different issues in pattern recognition [1, 2, 3, 4, 5]. In this paper it is used to analyze the structural properties by 

measuring the changes in the proximity among the samples. In addition to this, the neighborhood changes are 

also studied using K-Nearest Neighbor (K-NN). The K-NN algorithm is also an extensively used technique for 

various purposes like classification, clustering[6,7,8,9].  Agglomerative clustering is one of the successfully 

used clustering approach [10, 11, 12,13].  As an extension to the feature subsetting, principal components are 

selected from the transformed optimal subset of data and then the analysis is carried out. The analysis carried 

out in the feature subspace includes the following: 

 Structural property analysis through the neighborhood study using the K-NN algorithm.  

 Structural property analysis by comparing the distance among the samples in the original feature space with 

the feature subspace by employing the MST. 

 Study on the target class as well as other class property by cluster analysis 

 Analysis of the associativity and disassociative among the samples  

 

The remainder of the paper is organized as follows. Section 2 presents the proposed experimentation model and 

section 3 gives the details of experimentation carried out and is followed by the conclusion. 

 

II. PROPOSED MODEL FOR EXPERIMENTATION: 
This section describes the model adopted to study the structural and class properties after incorporating the 

feature subsetting as decided by the target class.  The structural property is described by the geometric structure 

of the data which depends on the dimensionality of each feature.  

Suppose  
N

t i
s  

C 1 2
T = s , s , … , s is the control set of the target class then, by employing the feature 

subsetting proposed by Nagabushan et al.[10] all the features with large variance that would tend to split the 

target class will be eliminated and from the remaining features optimal features are obtained which could project 

the target class accurately by maximizing the compactness of the given class so that 

 
n

t i
s n N  

C 1 2
T = s , s , … , s . Given  

N

i
X x x x x  

1 2 M
= , , … ,  the input from which the 

target class requires to be extracted, and then  X also get projected on to the n optimal sub set of features. 

 Since the transformation of the features could further enhance the projection of the data, in continuation to the 

subsetting optimal principal components can be determined by transforming the feature sub space. Suppose the 

diagonalization of a covariance matrix of target class training set results in n Eigen values that are represented 

in an increasing order as  1 2
, ,

n
     and E V is the set of corresponding eigen vectors. In 

conventional linear transformation technique like PCA, the data space can be projected onto orthogonal 

principal components that preserve 90%-95% of variance [14].   In a similar manner to conventional PCA if the 

higher order principal components are selected for the projection of the CoI then it would tend to split the CoI 

itself. Thus, the principal components are computed from the eigen values that does not tend to spilt the target 

class. Therefore, if the largest eigen values whose variance is greater than 60%-65% is discarded and the next 

eigen values are selected until the density within the target class remains same.  As a result, an optimal subset of 

eigenvalues and its corresponding eigenvectors between the range   
 

form the optimal eigen subspace 

and are most significant in computing the principal component.  is the upper bound of the eigenvalue(largest 

eigenvalue) that is not greater than 60%-65%.  is the lower bound of the eigenvalue that results in the 

maximum homogeneity within the target class beyond which the homogeneity doesn‟t change and results in 
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 
d

t i
s d n  

C 1 2
T = s , s , … , s   According to the availability of the input, it can be transformed by using 

the principal components derived from the target class eigen subspace as shown in equation 2.     

    
1

T

X X E V



 
                                                      

  eq   (1) 

It is evident from the equation (1) that the transforming of the input based on the eigenvectors obtained from the 

target class eigen subspace would definitely help in the categorization of the target class samples from the input 

space. Nevertheless, the intriguing points of the study are the changes in the neighborhood property of the input 

space and the class property of the classes present in the input.  

 

2.1. Analysis of structural properties  

The training phase required to learn about the target class for the purpose of feature selection is based on just the 

target class samples. In the original feature space, the initial intuition is that all the neighbor samples of every 

training sample belong to the same class. However, this neighborhood might not continue to exist for the reason 

that the input samples of any other class would become the neighbor of any sample belonging to the target class 

that requires being verified. Therefore, the experimentation model to analyze the structural property should 

validate the following issues: 

 

1. The resultant total distance calculated by connecting all the training samples based on their shortest 

proximity in the intrinsic feature subspace obtained during the training phase should be less than or equal to 

the distance in the original feature space. 

2. Classification of the input space by incorporating the feature reduction either by subsetting or 

transformation guided by the target class training set should ensure that the neighborhood of target class 

samples will have only the samples that belong to the target class but not any other samples belonging to 

any unknown classes. 

 

The first issue focuses on the quality of the training phase and the second phase addresses the classification 

results. Unless there is a favorable geometric structure change in the target class represented in the optimal 

feature subspace, the classification accuracy of the target class cannot be guaranteed. The geometric structural 

changes can be treated as favorable only when the subspace results in a good classification results in terms of 

minimum false acceptance and maximum true acceptance into the target class. In view of the geometric of data 

K-Nearest Neighbor is estimated to analyze the neighborhood changes[ ] and a graph based Minimum Spanning 

Tree (MST) approach is also employed to evaluate the total distance between the samples of the given class 

before and after its feature reduction.  

 

2.1.1. K-Nearest Neighbor (KNN):  To represent the K-nearest neighbors of all M training samples the NN-

matrix have to be computed in which samples are ordered row-wise with each column consists of 
th

k NN. For 

M  samples and K neighbors the NN matrix is MxK.  The following acronym is used with respect 

dimensionality reduction of the data:  

OFS- Original feature space, FSS- Feature Subset Space and TFS- Transformed Feature Subspace. 

 

K-NN can be employed to analyze the impact of optimal features on the samples at two phases: 

 

Phase 1: The structural changes caused within the target class are measured in terms of the neighborhood 

changes during the training phase in the OS, FS, and TS. 

 

Phase 2: Analysis of neighborhood changes in target class after classification of input space. 

The structural property that exists in the original feature space may not remain the same after feature reduction 

in the training phase and after classification thereafter. In the first phase, the overall percentage of neighborhood 

properties being preserved for all of the K-NN is measured. In the second phase, the order of the K-NN samples 

gets preserved for the target class in the reduced space after classification to ensure true acceptance.  

 

Phase1: To measure the amount of structural property being preserved, an indicator called structural property 

index is here proposed which is determined as follows. If the
th

k  neighbor of the sample 
i

S has changed its 

position to either far or near after feature reduction then each row of NN matrix in OFS can be compared with 

the corresponding row of the NN matrix obtained in the reduced feature space. Results of such a comparison 
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indicate that the change or transformation caused in the neighborhood can be represented in the form of a new 

matrix called Transformed NN matrix.–TNN matrix. Each row of the TNN matrix reflects the shift of the 

neighborhood of a sample 
i

S  to either far or near after feature reduction. The procedure to compute the change 

in position is as explained in procedure given below. If the new position of any k
th

 neighbor of a sample 
i

S is a 

positive number it then indicates that the neighbor of that sample has moved far away, a negative number 

indicates that sample has changed to a nearby position and zero indicates that no changes have occurred due to 

feature reduction.  

 

Algorithm to compute the change in position 

 

 

Depending on the changes represented in a new matrix TNN, the structural property index is computed by 

assigning credence to the change.  Zero change is given with highest credence, and the next change is with less 

credence. If 
i

W is the credence for zero change then  1 change gets
i j

W


. For example, if zero change means 

100% credence then  1 change means 75%. Similarly, the credence is assigned to cover all KNN being 

computed.  Then the structural property index is given as in (2). 

1

K

i

i

W

S tr u c tu r a l n d e x
K


   



                                                                                   eq (2) 

The index varies between [0 1], where I=0 means 100% structural property is preserved or in the other way no 

structural changes has caused due to feature reduction. 
 

Phase2: Let 1
, 1

j
S S j K  is the K-NN of a sample

i
S  in the original feature space. After the feature 

reduction, if the same order of the neighborhood is maintained for the sample 
i

S then, it suggests that no 

structural changes have happened to the target class during the training phase. After classifying the input 

samples as target class if K nearest neighbors of the sample
i

S  further continue to exist then the feature 

reduction has not caused the structural property to change and also has not allowed a false acceptance into the 

target class.   

Suppose the order of the neighborhood has changed and the new neighbors of the samples
i

S  are also found to 

be belonging to the target class then such structural changes caused by feature reduction are favorable and 

acceptable. On the other hand, if the new neighbors of a sample
i

S are from some unknown classes then it 

follows that the intrinsic feature subspace obtained from the target class dimensionality reduction have 

destructed the geometric structure of the target class but induced a false acceptance into the target class which is 

not acceptable. The structural changes along with false acceptance can be measured by an index called 

structural property-false acceptance Index- . If is  zero then there may be or may not be structural changes 

but there is no false acceptance into the target class which is as expected by the application. 

 

 

 

Input :  
M xN

T nn , 
M xn

T n n  NN matrix of target class computed in original feature and in reduced feature sub space 

Output:      TNN matrix consisting of weight indicating the structural change 

                   for  i=1 to M do  // for M samples  

                            for  x  =1 to K  do // for K nearest neighbors of samples 
i

S  

                                              P= x  neighbor of
i

S  in an original feature Space; 

                                              for y =1 to K do  

                                                                 Search for P in NN matrix of 
i

S  in feature subset space; 

                                                                  if found 
ix

P y x    ; 

                                            end; 

                           end; 

                  end; 
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Algorithm to compute the structural property-false acceptance Index: 

 

 

Another study on the structural property using the K-NN is to find out the number of K common nearest 

neighbors for a sample represented in one feature space when compared to another feature. By varying the value 

of K the neighborhood changes can be measured. Suppose    1
,

i K
f s nn nn  is a function applied on a 

sample to find the K-NN in a given features space then the common neighbors can be analyzed 

    ,
i i

g f s f s   where g  is function to find the common neighbors of a samples in two different feature 

space. 

 

2.1.2. Minimum spanning Tree (MST) 
MST is constructed to validate the changes caused in the proximity among the samples due to dimensionality 

reduction. Given an undirected weighted graph  , ,G V E w with non-negative weights, the minimum 

spanning tree (MST) problem is to connect all the nodes that have the minimum weight. Each sample from the 

target class training set is considered as a vertex in N dimensional and the weight is computed between the 

vertices as in equation (3). Similarly, pairwise distance between all the samples can be computed to form the  

graph G which represents the target class.    

   
2

,
i a b a b

d x x x x 
                                                 eq (3)                      

Further, the Prims algorithm is used to construct the MST in N-dimensional space. Similarly, after the feature 

reduction graph is built in both L-dimensional and n-dimensional space followed by MST in the intrinsic 

subspace. To analyze the changes in proximity two MSTs are required to be compared.  
Let 

i
T and 

j
T are the 

MST obtained in L and n dimension respectively. The distance between 
i

T and 
j

T is the edges present in 

   i j
E T E T (symmetric difference) given as 

     ,
i j i j

d T T E T E T                                        eq (4)                                                              
 

A greater difference indicates several changes in the neighborhood and changes in the proximity between the 

samples whereas a small difference indicate the symmetric or isomorphism of the two MST. 

 

2.2. Analysis of Class properties  
The optimal features obtained from feature subsetting or principle components derived from target class eigen 

subspace are used to reduce the input space. When such target class guided dimensionality reduction of input is 

subjected to classification, it is expected that the samples belonging to the target class would get classified 

accurately. In this context, it is essential to study the impact of feature reduction on the samples of unknown 

classes that are present in the input which could affect the classification results of the target class. To simplify 

the analysis, a training set of other classes is also assumed and an agglomerative clustering is adopted to analyze 

the class behavior of each sample due to dimensionality reduction. The analysis of class property based on the 

clustering is carried out at three levels:  

Input:, 
M xn

T n n   
X xn

Inn  : K-NN matrices of target in reduced feature space and input space represented in the target 

class derived feature space including the target class training set 

Output:   

                for  i=1 to M do                // for M samples  

                                                  0  ;        //  structural property-false acceptance Index 

                for j =1 to K  do      // for K nearest neighbors of samples 
i

S  

                 if (    
th

j nearest neighbor of sample 
i

S in  T nn   
th

j nearest neighbor of sample 
i

S in Inn    )  then,    

                                      if (
th

j nearest neighbor of sample 
i

S in Inn     T nn          then,            

                                                   ;                          

                            end;  

            end;       
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Level1: Clustering of the target class training samples in N-dimensional original feature space, L-subset of 

features. 

Level2:  The input projected onto the target class derived feature subspace when subjected for classification that 

results in several classes. The input samples that are classified as target class in the reduced feature space which 

are carried for cluster analysis. 

Level3:  The other classes resulted in the classification also undergoes cluster analysis. 

The same principle of the clustering algorithm is adopted in all the three level. It starts with each sample of a 

class as a cluster. Clusters are further combined based on their close proximity to the samples. The proximity is 

computed based on Euclidean distance as it allows the summarizing of the collection of samples by their 

centroid which is the average of the samples. The merging continues till all the samples are grouped into one 

cluster. Once all the samples are grouped into one cluster in the form of a tree, the inconsistent samples of the 

cluster can get estimated. Inconsistent samples are measured to determine the samples that are more deviated 

from the centroids of the cluster. Such deviated samples are the indication of samples or sub-clusters that get 

delayed in getting merged due to more proximity or dissimilarity. The cluster tree is cut at various random 

points to find the inconsistent samples by using the equation (5). The inconsistent value of k+1 cluster is a 

measure of the separation between the two clusters whose merger is  represented by that node, compared to the 

separation between  sub-clusters merged within those clusters which are normalized by the standard deviation of 

that cluster. 

1 1

1

( ( , ) )
i j

k k k

k

k

d l l
I




 






                                          eq (5)   

The feature reduction process is expected to minimize the inconsistent samples within the target class. 

Therefore, in level1 cluster analysis has to be carried out by considering the training set of target class before 

and after feature reduction so that standard deviation can be minimized. In level2 the input samples that are 

classified as target class are considered for cluster analysis so that true acceptance as well as false acceptance 

into the required class can be validated.  Similarly, in level3 samples classified under other classes are subjected 

to cluster analysis so as to verify the impact of target class derived features subspace. Since the samples of other 

classes are represented in the target class feature space it is expected that they don‟t get classified into the target 

class. Suppose the input contains any overlapping samples, then the target class feature subspace would become 

a closely relevant feature space of overlapping classes. Therefore, if inconsistent samples result when the cluster 

tree is cut off, it then indicates that dimensionality reduction is effective in maximizing the distance between 

target class and the other classes.  

 

III. EXPERIMENTS AND RESULTS 
The experimental analysis was carried out on four bench mark data sets as described in table1. The 

experimentation was conducted individually on different target classes chosen from the data set listed in table1.  

 

Table1. Data set description used for experimental analysis of structural and class property 

 
Data set Dimension classes 

IRIS data set 4 3 

AVIRIS Indian Pine mini data set 200 8 

ROSIS Pavia University mini data set 103 5 

 

3.1. Iris data set 

Setosa as CoI: Considering Setosa as the target class both feature subsetting and eigen subspace was employed. 

To find the subset of optimal feature original setosa class 10 training samples were considered initially as listed 

in table 2a. The features whose variance was greater than the threshold value were eliminated. The threshold 

was chosen to be slightly greater than the smallest variance that would not split the target class. 2 features 

having variance greater the threshold were eliminated and features 3, 4 were chosen as the optimal subset. 

Similarly, the eigen subspace was found from the original space of the seotsa class and two major principle 

components were selected to represent the target class. Subsequent to finding the optimal subset of features and 

principle components structural, the class properties were analyzed. 

 

3.1.1. Structural Analysis 

KNN: Assuming K=5, the nearest neighbor matrix- KNN Matrix is computed in the original feature space, 

feature subset space and eigen subspace of setosa class as in table 2b. The sequenced number of the samples 

according to their occurrence in the input space is used as entries in the matrices. For the purpose of illustration, 

the first 10 samples are being considered. 
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Table 2a. 10 training samples of Setosa class in original feature space 
Sample F1 F2 F3 F4 

1 4.9 3.0 1.4 0.2 

2 4.7 3.2     1.3     0.2 

3 4.6    3.1     1.5 0.2 

4 5.0    3.6     1.7     0.2 

5 5.4   3.9     1.7    0.4 

6 5.1 3.5 1.4 0.2 

7 4.9 3.1  1.5 0.1 

8 4.4 2.9 1.4 0.2 

9 5.0 3.4  1.5 0.2 

 

Based on the NN matrix, the geometric structure changes were observed by comparing the NN matrix of 

original features space-OS against the NN matrix obtained after feature subsetting and the results of the 

comparison were noted in the form of the transformed NN matrix-TNN as in table 2c. It was observed from the 

TNN matrix that some of the samples were moved forward that is indicated by a positive number and that some 

of the samples had become near neighbor as indicated by the negative number. Values „0‟ indicates that a few 

samples had not changed their neighborhood. Some samples were found to be not within 5NN which are 

indicated by .  This signifies that even after representing the Setosa class with its optimal features, the 

geometric structure of some of the samples has not changed. From the table 2c, the structural property index is 

computed so as to determine the average structural property being preserved by each sample. The computation 

of the index is based on the weight assigned to every change in the neighborhood. The weight is assumed as 

follows:  

 

 

 

 

 

 

 
 

Using equation (3) the average index computation is given below  

 
S Structural property index in feature subset space Structural property index in eigen subspace 

1 (0.8+0+0+1+1)/5= 0.56 (0.6+1+0.6+0.4)/5=0.52 

2 (0+0.6+0+0+0.6)/5= 0.24 ( 1+0.6+0.6)/5=0.44 

3 (0+0.4+0.8+0+0.8)/5= 0.4 (0.2)/5=0.4 

4 (0+0+0.8+0+0.8)/5= 0.32 (0.4+1)/5=0.28 

5 (1+0+0.6+1+0.8)/5= 0.52 (0.8+0.6+0.6+0.4)/5=0.48 

6 (0+0.4+0.8+0.8 +0.8)/5= 0.56 (1+0.8)/5=0.36 

7 (0.2+0+0+0.8+0)/5= 0.2 (0.6+0.6)/5=0.24 

8 (0.6+0.4+0.8+0+0.8)/5= 0.52 (1+0.6)/5=0.32 

9 (0+0.6+0.8+0.8+0)/5= 0.44 (1+0.6)/5=0.32 

10 (0.8+0+0.6+0.6+0.6)/5= 0.44 (1+0.6+0.6)/5=0.44 

 

In an average, the geometric structure maintained by the 10 training samples after the feature subsetting and 

transformed eigen subspace is 42% and 38%. The favorability of the feature subsetting can further be verified 

with the results of the classification.  Next, the entire IRIS data set with 150 input samples (which also includes 

the training samples that are considered while training about the setosa class) were projected on to the features 

derived from setosa target class and after that, an NN matrix is computed.   

Table 2b. NN matrix in original space, Feature Subset space, in eigen subspace 
S 1-NN 2-

NN 

3-NN 4-

NN 

5-

NN 

S 1-

NN 

2-

NN 

3-

NN 

4-

NN 

5-

NN 

S 1-

NN 

2-

NN 

3-

NN 

4-

NN 

5-NN 

1 5  8 10 3  7 1 2 5 9 3 7 1 3 8 5 2 10 

2 10 3 4 8 9 2 1 5 9 3 7 2 10 8 1 6 4 

3 4 7 2 10 8 3 1 2 5 9 7 3 5 1 8 9 4 

4 3 9 10 7 2 4 8 10 1 2 5 4 6 9 8 3 5 

5 1 8 7 3 10 5 1 2 9 3 7 5 3 1 9 8 7 

6 5 1 8 7 10 6 4  8  7 10 1 6 4 9 8 10 3 

7 3 4 8 5 10 7 1 2 5 9 3 7 9 5 3 4 6 

8 1 5 10 3 2 8 4 10 1 2 5 8 1 9 4 6 10 

9 4 3 2 7 10 9 1 2 5 3 7 9 4 6 8 3 5 

10 2 3 4 8 1 10 4 8 1 2 5 10 2 8 1 6 4 

 

Change in neighborhood position weight [1-0] 

„0‟ 1 

{+1} or {-1}
 

0.8 

{+2} or {-2} 0.6 

{+3} or {-3} 0.4 

{+4} or {-4} 0.2 


 

0
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Table 2c. Comparison of NN matrix of original space with feature subset space and with eigen subspace in 

TNN matrix 
S 1-NN 2-NN 3-NN 4-NN 5-NN S 1-NN 2-NN 3-NN 4-NN 5-NN 

1 +1     0 0 1 2 0 2 -3   

2   +2     -2 2 0   2 -2   

3   3 -1   -1 3 4       -2 

4     -1   -1 4 3 0       

5 0   +2 0    5 1 2 2 -3   

6   +3 -1 -1 -1 6     0   -1 

7 +4     1   7 2 2   -2   

8 2 3 -1   -1 8 0   2     

9   2 -1 1   9 0 2       

10 3   -2 -2 -2 10 0   2 -2 -2 

 

Similarly, the input was transformed to the eigen subspace derived by the Setosa class and then NN was 

obtained as is given in table 2d.  Further, the nearest neighbors computed for 10 setosa training samples in the 

feature subset space during the training phase given in table 2b is compared with the nearest neighbors obtained 

for the same 10 samples after the classification as given in table 2d. This comparison helps us to understand the 

neighborhood changes caused due to misclassified samples of the target class. 

 

Table 2d. Comparison of NN after classifying the IRIS 150 input samples   based on the feature space obtained 

from Setosa as target class 

         Feature subset space eigen subspace 
S 1-NN 2-NN 3-NN 4-NN 5-NN S 1-NN 2-NN 3-NN 4-NN 5-NN 

1 22 10 9 3 5 1 2 5 10 3 12 

2 1 5 18 34 25 2 1 5 21 3 7 

3 1 6 5 8 14 3 8 21 5 9 7 

4 21 6 1 2 5 4 9 10 11 42 49 

5 35 23 17 12 32  5 1 36 22 17 27 

6 14 8  7 10 1 6 4  13  45 10 34 

7 12 13 5 4 27 7 7 2 5 9 3 

8 45 29 8 2 5 8 14 10 1 2 5 

9 9 21 5 3 41 9 3 2 5 3 7 

10 16 11 9 2 5 10 7 8 9 2 43 

 

Similarly, the samples in the transformed eigen subspace were also compared for nearest neighbors during 

training phase and after classification. The comparisons were noted in the form of structural property-false 

acceptance index which is computed as follows:  

 

  

 

 

 

 

 

 

 

 

 

The value of  for 10 samples of setosa class was found to be zero in both of the feature reduced spaces. This 

indicated that, there were no false acceptances into the target class irrespective of structural changes.  

MST: Similar to KNN, Minimum Spanning Tree was also constructed on the original feature space, the optimal 

feature subset and the eigen subspace derived principle components for 10 of the training samples of the setosa 

class. To build a tree, a pairwise Euclidian distance was computed for all of the 10 training samples as in (3). 

Next, the distance between the MST obtained in OS-FS, OS-TS were computed. Later, considering the complete 

150 IRIS data set the MST was built.  The input was projected once onto the setosa derived optimal feature 

subset and separately onto the eigen subspace. For each case, the MST was built separately.   The distance 

between MST of all 150 samples in OS-FS and OS-TS were then calculated for comparison. A similar 

experiment was carried out by varying the training samples from 10 to 50 samples and for individual training set 

the value of K was varied for KNN analysis and MST was also build for distance comparison.   The table 

outlines the structural analysis results for the different training set.  

S  In feature subspace   In eigen subspace  

1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 0 0 
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Versicolor as CoI:  Since, versicolor has many overlapping samples with verginica; a structural analysis by 

means of KNN and MST was carried out by considering the 10 training samples of versicolor as listed in table 

3a.  

KNN:  As with the KNN procedure as demonstrated above for setosa class, the following procedure lists the 

result for versicolor class treated as target class. Feature 1 and feature2 get eliminated so that only feature 3 and 

feature 4 were being considered to be the optimal subset for versiciolor class. Similarly, versicolor in the 

original feature space was transformed, which resulted in 2 principle components. Table 3b shows the NN 

matrix computed for versicolor. 

Table 3a. 10 training samples of Setosa class in original feature space 

 

 

 

 

 

 

 

 

 

 

Table 3b. NN matrix computed in original space, Feature Subset space, in eigen subspace for target class 

versicolor 

 

Table 3c. Comparison of NN matrix of original space with feature subset space and eigen subspace in TNN 

matrix form 
S 1-NN 2-NN 3-NN 4-NN 5-NN S 1-NN 2-NN 3-NN 4-NN 5-NN 

51   -1 2 -3 -2 51 2 0 1 1   

52 4 1 -2 0   52 1     -1 0 

53 0 2 0 1 -3 53 3 0 -2     

54 0 0   1 -2 54   2   -3   

55 3 -1 0   -3 55 2     -3 -1 

56     0 -2 0 56   -1 1 1 -2 

57 2 -1 2 0 -3 57 1     0 0 

58 0 0 0 0   58       -1 0 

59 2 2   -2 0 59 0   -1 -1   

60 0 0   -1 0 60       -2 0 

 

Table 3d. Comparison of NN after classifying the IRIS 150 input samples   based on the feature space obtained 

from Setosa 
Feature subset space eigen subspace 

S 1-NN 2-NN 3-NN 4-NN 5-NN S 1-NN 2-NN 3-NN 4-NN 5-NN 

51 60 57 61 56 101 51 68 59 53 67 105 

52 65 56 59 51 150 52 62 57 59 81 120 

53 51 75 55 73 150 53 55 59 54 51 152 

54 60 67  69 90 134 54 55 53 99 88 89 

55 52 51 57 59 120 55 93 54 64 67 56 

56 92 96 89 51 76 56 72 53 57 55 129 

57 55 51 52 53 100 57 80 52 56 53 51 

58 66 54 56 52 59 58 61 59 52 53 67 

59 56 78 55 52 57 59 65 53 51 61 81 

60 59 71 63 81 105 60 78 89 100 92 74 

Sample F1 F2 F3 F4 

51 7.0 3.2 4.7 1.4 

52 6.4 3.2 4.5 1.5 

53 6.9 3.1 4.9 1.5 

54 5.5 2.3 4.0 1.3 

55 6.5 2.8 4.6 1.5 

56 5.7 2.8 4.5 1.3 

57 6.3 3.3 4.7 1.6 

58 4.9 2.4 3.3 1.0 

59 6.6 2.9 4.6 1.3 

60 5.2 2.7 3.9 1.4 
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Further, the NN matrix in the original feature space was compared to the NN matrix obtained in the feature 

subset space and the NN matrix in the original feature space with eigen subspace principle components to study 

the changes in the neighborhood. Table 3c gives the results of the comparison. Based on the NN matrix as given 

in table 3c, the structural property index- I was computed as given below: 

 
S Structural property index in feature subset space Structural property index in eigen subspace 

51 (0+0.8+0.6+0.4+0.6)/5= 0.48 (0.6+1+0.8+0.8+0)/5=0.64 

52 (0.2+0.8+0.6+1+0)/5= 0.52 ( 0.8+0+0+0.8+1)/5=0.52 

53 (1+0.6+1+0.8+0.4)/5= 0.76 (0.4+1+0.6+0+0)/5=0.4 

54 (1+1+0+0.8+0.6)/5= 0.68 (0+0.6+0+0.4+0)/5=0.2 

55 (0.4+0.8+1+0+0.4)/5= 0.52 (0.6+0+0+0.6+0.8)/5=0.4 

56 (0+0+1+0.6 +1)/5= 0.52 (0+0.8+0.8+0.8+0.6)/5=0.6 

57 (0.6+0.8+0.6+1+0.4)/5= 0.68 (0.8+0+0+1+1)/5=0.56 

58 (1+1+1+1+0)/5= 0.80 (0+0+0+0.8+1)/5=0.36 

59 (0.6+0.6+0+0.6+1)/5= 0.56 (1+0+0.8+0.8+0)/5=0.52 

60 (1+1+0+0.8+1)/5= 0.76 (0+0+0+0.6+1)/5=0.32 

 
S  In feature subspace   In PC 

51 1 1 

52 1 1 

53 1 1 

54 1 0 

55 1 0 

56 0 1 

57 0 0 

58 0 0 

59 0 0 

60 1 0 

 

In the next step, all 150 samples of the IRIS data set were represented on the feature space derived by the 

versicolor target class and then classified to map the versicolor class.  

An NN matrix was computed on the samples classified as versicolor as shown on table 3d. Further, the 

structural property-false acceptance Index  was also computed to study the falsely accepted samples after 

feature reduction. The value of  =1 indicates that for the sample 
i

S one of the nearest neighbor does belong to 

an unknown class hence, it is a false acceptance into the target class with or without structural changes. A false 

acceptance could exists at K>5. But in this illustration K values is chosen to be 50% of the training size. 

The nearest neighbor analysis was also used to study the common neighbors by varying the K value in different 

feature space. Also, the % of the sequence of the order of the neighborhood maintenance is computed which is 

shown in fig 1. 

 

 
(a)                                                                                    (b) 

Fig1.  (a) K-Common neighbors of a sample (b) % of order of sequence maintained for IRIS data set 

MST:  A minimum spanning tree was built on the original, feature subset and eigen subspace of the versicolor 

training samples. The distance between these MST was then computed. After classification the MST was also 

built on the reduced space for target class and the results are as given in table 3e. 



Study Of The Class And Structural Changes Caused By Incorporating The Target Class Guided… 

www.ijceronline.com                                      Open Access Journal                                            Page 48 

 3.1.2. Analysis of Class properties 

Agglomerative clustering was used on training samples of Setosa class and inconsistent samples were measured 

as in (5) to see how many samples deviated from the mean in original space. Further, the same samples were 

represented in the optimal subset of feature space and next on principle components. In each intrinsic subspace, 

clustering was carried out to see inconsistent samples. It was observed that the standard deviation of all the 

samples was minimized in subspace when compared to the original space. Further, the clustering was done on 

the entire input space consisting of 150 samples projecting on to setosa feature space. Since, this 

experimentation was set up for the validation purpose; the training set of other two classes namely, Verginica 

and Versicolor was used to classify the entire 150 samples in the Setosa class derived feature subspace.  On the 

classified class, cluster analysis was implemented so as to realize the behavior of verignica and versicolor 

samples. It was observed that, by cutting the cluster tree of setosa class randomly at different heights, the 

tendency of the split of the samples was less whereas for other two classes there were more inconsistent 

samples. 

Table 3e. Structural analysis of IRIS data set based on KNN and MST 
Target 

class 

Training 

samples 

KNN(K=50%of training set) MST 

Feature subsetting Eigen subspace Training phase After classification 

I   I   d(OFS,FSS) d(OFS,TFS) d(OFS,FSS) d(OFS,TFS) 

Setosa 10 42% 0 38% 0 4 4 36 37 

20 46% 0 41% 0 9 10 36 36 

30 50%  0 40% 0 12 15 38 38 

40 48% 0 40% 0 25 30 32 32 

50 51% 0 41% 0 30 38 34 34 

Versicolor 10 16.52% 12 14.21% 10 2 4 12 12 

20 13.21% 10 10.12% 9 5 7 14 14 

30 11.34% 8 9.36% 7 9 10 13 13 

40 9.99% 8 8.67% 8 12 12 14 14 

50 8.0% 9 6.23% 10 13 13 12 12 

 

3.2. Analysis of the high dimensional data in the reduced feature space for class and structural properties 

        Since the proposed dimensionality reduction is focused towards high dimensional data; a similar analysis 

was carried out on Pavia University and Indiana Pine data set which has high spectral bands. Since Pavia 

University and Indiana pine data set consists of more number of samples and classes, a mini subset was created 

for experimental analysis whose details are as given in table 4. There were a lot of correlated spectral bands in 

both the data sets and hence, feature elimination found good scope in eliminating correlated and high variance 

spectral bands. The number of features that got eliminated from the original features space followed by the 

optimal subset of features being selected and principal components obtained from the eigen subspace are listed 

in the table5a. The results reported in the table are of an experiment conducted by assuming each class as a 

target class.  

Table 4. Mini- Indiana Pines data set Total 500 samples 

 
 

On the reduced dimensional space area of the entire input space  was also measure when subjecting for 

classification the. The structural property index was observed to be more than 50% and  was seen to be very 

less. This indicates that there was a structural change in the target class during the training phase as well as after 

the classification. However, the false acceptance into the target class was very negligible. It can be inferred that 

although the target class dimensionality reduction has caused a geometric change in the structure it has not yet 

destroyed the classification results. The proposed dimensionality reduction techniques were tested for the 

classification of the target class. Classification results of the entire input space after its projection on to the 

optimal features and eigen subspace as decided by the chosen target class is as shown in table 6. Sensitivity or 

recall-   is used to test the number of samples that are truly classified as the target class and the number of 

samples classified as target class that is relevant using precision-   as given in  (7). 

 

 

T P

T P F N
 



 and 
 

T P

T P F P
 



                                                                                  eq (7) 
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Further, the minimum spanning tree was also built on the various target classes chosen from both the high 

dimensional mini data set. The distances, measured between each MST in different feature space are shown in 

fig2. The distance between the spanning trees constructed in the original space is compared with the tree built in 

the feature subset space as well as the tree in the transformed eigen subspace. The distance between the 

spanning tree in the OFS, FSS, and OFS, TFS was comparatively higher which indicates that the changes 

proximity between the samples in the original feature space is not the same after incorporating the feature 

reduction process. 

 

KNN was also employed to analyze the structural property of hyperspectral data.  Structural property index was 

computed to analyze the structural changes. The values of I for none of the chosen target class was found to be 

zero which indicates that the both the feature subsetting and feature transformation has caused structural 

changes in the data. To understand the favorability the classification results were also taken into consideration. 

The value of H indicated that the false acceptance was found along with structural changes. Particularly, for the 

target class Oats, the value of was H large which is greater than the actual number of samples. One of the 

reasons is due to the very less number of training samples chosen in the mini data set. However, the study of the 

optimal number of training samples for the dimensionality reduction is out of the scope of this paper which can 

be considered as separate future work. 

 

In continuation of the structural analysis, cluster analysis was carried out to study the class property after the 

classification of the input space based on the chosen target class feature space. Fig 3 illustrates the dendrogram 

plotted for the target class Meadows from the Pavia university mini data set but the results of the other classes 

are not shown in the paper. The cluster tree was cut at different levels to analyze the inconsistent samples. The 

cutoff point- C was chosen as being less than the standard deviation of the class 0<C<1 and then inconsistent 

samples were measured as in (6). The experiment was conducted for several cutoff levels.  The cluster tree was 

cut at different levels until all the nodes or samples are split to form a single sample. It was observed that some 

of the samples that were delayed in the merging with the tree in the original feature space did not tend to get 

split in the reduced feature space. This indicates that the optimal features obtained in the target class guided 

dimensionality reduction process have improved the binding between the samples belonging to the same class. 
 

 
2a      2b 

Fig 2. Structural Property Analysis of target class using MST:  2a. Indiana Pine mini dataset 2b. Pavia 

University mini data set: 

Table 5.  Structural analysis of high dimensional data after the target class guided dimensionality reduction 
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Table 6. Classification results of different target class guided dimensionality reduction techniques. 
 

Data Set CoI Total 

samples 

FS FS FT 

  
    


                 
         

AVIRIS Indiana Pine 

mini data set 

Alfalfa 4 0 0 0 0 0.5 0.5 
Corn-notill 109 0.099 0.089 0.477 0.825 0.908 0.9 
Grass-trees 56 0.012 0.023 0.785 0.721 0.892 0.833 

Hay-windrowed 36 0.45 0.067 0.666 0.774 0.861 0.885 
Oats 3 0.00 0.00 0.00 0.00 0.333 0.2 

Soybean-mintill 188 0.101 0.156 0.627 0.776 0.957 0.923 
Woods 97 0.06 0.058 0.855 0.855 0.938 0.919 

Stone-Steel-Towers 7 0.01 0.125 0.142 0.111 0.714 0.5 

ROSIS Pavia University 

mini data set 

Asphalt 57 0.109 0.10 0.807 0.821 0.912 0.912 

Meadows 162 0.189 0.099 0.629 0.809 0.876 0.916 
Trees 26 0.05 0.033 0.538 0.451 0.846 0.758 

Painted metal sheets 12 0.009 0.004 0.50 0.345 0.56 0.62 
Bare Soil 43 0.03 0.078 0.57 0.456 0.61 0.64 

 

IV. CONCLUSION 
An experimental analysis is carried out to study the structural changes and class structures which resulted due to dimensionality reduction 

based on the control set of the target class. The philosophy of the target class guided feature selection and feature transformation is discussed 
followed by an experimentation to study the structural properties. A Minimum spanning tree is constructed at each stage of dimensionality 

reduction and the results are then compared. To study the neighborhood structure K-NN is also used and a comparative analysis has been 

presented. Further, for the purpose of studying the class structure agglomerative clustering is applied and the class structure is analyzed. 
Based on the structural analysis results, a new dimensionality reduction can be designed for preserving the structure that occurs upon 

reducing the feature as required by text, audio or video signals. The class structure analysis can help in optimizing the principal components 

which can be the basis of a future work. 
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