
ISSN (e): 2250 – 3005 || Volume, 07 || Issue, 12 || December – 2017 || 

International Journal of Computational Engineering Research (IJCER) 

www.ijceronline.com                                                    Open Access Journal                                               Page 61 

Solutions Of Heat Equation Arrived From q -Difference Operator 
 

G.Britto Antony Xavier 1 , S.John Borg 2 and B. Govindan 3  
1,2,3

Department of Mathematics, Sacred Heart College, Tirupattur - 635601, Vellore District Tamil Nadu, 

S.India. 

   

 

 

 

 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 15-12-2017                                                                            Date of acceptance: 23-12-2017 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

In 1984, Jerzy Popenda [1] introduced the difference operator   defined on ( )u k  as 

( ) = ( 1) ( )u k u k u k    . In 1989, Miller and Rose [2] introduced the discrete analogue of the Riemann-

Liouville fractional derivative and proved some properties of the inverse fractional difference operator h

  

[3,4]. The sum of 
thm  partial sums on 

thn  powers of arithmetic, arithmetic-geometric progressions and 

products of n consecutive terms of arithmetic progression have been derived using ( )mu k , where 

( ) = ( ) ( )u k u k u k     [6]. In 2011, M.M.S.Manuel, et.al, [5], extended the definition of   to 
( )




 as 

( )

( ) = ( ) ( )v k v k v k


 


 , for the real valued function ( )v k  and > 0 . In 2014, G.Britto Antony Xavier, 

et.al, [7], have introduced q -difference operator defined as ( ) = ( ) ( )qv k v qk v k   for the real valued 

function ( )v k , (0, )q   and obtained finite series solution to the corresponding generalized q -difference 

equation ( ) = ( )qv k u k . 

 For n -variable real valued function 1 2( , ,..., )nv k k k , the generalized q -difference operator is defined as  

 1 1 2 2 1 2

1 2

( ) = ( , ,..., ) ( , ,..., ),
,...,

n n n
q

n

v k v k q k q k q v k k k
q q


 
  (1) 

where 1 2= ( , ,..., ) n

nk k k k R , ( ) : nv k R R   and  1 2 ,..., nq q q  . 

For example 1 2 1 1 2 2 1 2

1 2

( , ) = ( , ) ( , )
q

v k k v k q k q v k k
q



 .  

 

II. PRELIMINARIES 

Consider, the two side temperature distribution of a very long rod. Let 1 2( , )v k k  be the temperature at 

the real time 2k  and real position 1k  of the rod. At time 2k , if the temperature 1
2 1

1

( , ), > 0
k

v k q
q

 is higher 

than 1 2( , )v k k , heat will flow from the point 1

1

k

q
 to 1k . Similarly, at time 2k , if the temperature 
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1 1 2 1( , ), > 0v k q k q  is higher than 1 2( , )v k k , heat will flow from the point 1 1k q  to 1k .  

 The amount of increase 1 2 2 1 2( , ) ( , )v k k q v k k  is proportional to the differences 1
2 1 2

1

( , ) ( , )
k

v k v k k
q

  and 

1 2 2 1 2( , ) ( , )v k k q v k k . Let   is a positive diffusion rate constant of the rod. Then the q -heat equation is 

given by  

1
1 2 2 1 2 2 1 2 1 1 2 1 2

1

( , ) ( , ) = ( ( , ) ( , )) ( ( , ) ( , )),
k

v k k q v k k v k v k k v k q k v k k
q

       

 
1 2 1 2 1 2

11
2 11

( . ) ( , ) = ( , ) ( , ).
11q qq

i e v k k v k k v k k 





    (2) 

 If 1 2 2 1( , ) =v k k k k  is the solution of (2), then the value of   is, 

2

1 1

1 2

1 2
=

( 1)

q q

q q


 


. Similarly, q-Heat 

equation for the variable coefficient is defined as,  

 
1 2 2 1 1 2 2 1 1 2

11
2 11

( , ) = ( , ) ( , ) ( , ) ( , ),
11q qq

v k k k k v k k k k v k k 





    (3) 

where 2 1( , )k k  is a function of 1k  and 2k . If 1 2 2 1( , ) =v k k k k  is a solution of (3) then the value of 

2 1( , )k k  is 

2

1 1
2 1

1 2

1 2
( , ) =

( 1)

q q
k k

q q


 


.  

 

III. q -HEAT EQUATION WITH CONSTANT COEFFICIENT 

 In this section we derive a solution of equation (2) and also we obtain a function 1 2( , )v k k  satisfying the 

equation (2).   

Theorem 3.1.1 If 
1 2 1 1 2

11
1

( , ) = ( , )
1

q
q

v k k u k k
 
  and 

1 2 1 2
1

1

( , ) = ( , )
1

q

q

v k k u k k

  are known functions. Then 

the q -heat equation has a solution  

  2
1 2 1 1 2 2 1 2 2 1

11=12

( , ) ( , ) = ( , ) ( , ) .
m

r r

qm q
r

k
k k v k u k q k u k q k

q
v   

   (4) 

   

Proof. From the linearity of 

1 2

1

,q q



  and (2), we have  

 
1 2 1 2 1 2

11
2 11

1
( , ) = ( , ) ( , ) .

11q qq

v k k v k k v k k


  
 
  

    (5) 

Now the proof of (4) follows by taking 
1 2 1 1 2

11
1

( , ) = ( , )
1

q
q

v k k u k k
 
  and 

1 2 1 2
1

1

( , ) = ( , )
1

q

q

v k k u k k

 . 

   

Theorem 3.2.2 If 1 2( , )v k k  is a solution of q-heat equation (2), then the following four relations are 

equivalent: 

 

2 1
1 2 1 2 2 1 1 2 2 1 2

=12 1

( ) ( , ) ( , ) = ( , ) ( , ) 2 ( , ) .
m

r r

m
r

k k
i v k k v k v k q v k q k q v k k

q q
   

   
 

  (6) 
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1 2 1 2 2

1
( ) ( , ) = ( , )

(1 )

m

m
ii v k k v k k q


  

 
1 11

2 2 1 1 2 2

=1 1

( , ) ( , ) .
(1 )

m
r r

r
r

k
v k q v k q k q

q





  
  

  
  (7) 

  

1
2 1 1 2 2 1 1 2 2 21

1

1
( ) ( , ) = ( , ) ( , ) ( , )

1 2 1 2 (1 2 )

m

m

k
iii v k k v k k q v k q k v k q

q

 

   
 

  
 

  

 

2
( 1) ( 1)1

2 2 1 2 21 2
=1 1

( , ) ( , ) .
(1 2 )

m
r r

r
r

k
v k q v k k q

q





 



 
  

  
  (8) 

  

1
2 1 1 2 2 2 1 1 2 21

1

1
( ) ( , ) = ( , ) ( , ) ( , )

1 2 1 2 (1 2 )

m

m

k
iv v k k v k k q v k v k q k q

q

 

   
 

  
 

  

  
2

( 1) 2 ( 1)

1 2 2 1 1 2 21
=1

( , ) ( , ) .
(1 2 )

m
r r

r
r

v k k q v k q k q




 


 


  (9) 

   

  

Proof. From the q-difference Heat equation (2), we have  

  1
1 2 2 1 2 2 1 2 1 1 2 1 2

1

( , ) ( , ) = ( , ) ( , ) ( , ) ( , )
k

v k k q v k k v k v k k v k q k v k k
q

 
 

    
 

 

  

 1
1 2 1 2 2 2 1 1 2

1

1
( , ) = ( , ) ( , ) ( , ).

1 2 1 2 1 2

k
v k k v k k q v k v k q k

q

 

  
 

  
 (10) 

(i) Replacing 2k  by 2

2

k

q
 in (10), we get (6). 

(ii) Replacing 2k  by 2 2k q  in (10), continuing the same process we get (7). 

(iii) Replacing 1k  by 1

1

k

q
 in (10), we get (8). 

(iv) Replacing 1k  by 1 1k q  in (10), we get (9).  

 

Corollary 3.3.3 Let 1k , 2k  and 2 0q   and 2 1q  . Then, we have  

  

2 1 2
1

1 2 1 2 2 2
2 2

=12 2 2 2

( )

( )
= ( ) 1 .

1 1

m m m
r

r

k k k
k log

k k log k k q q
k q

q logq q logq



 
    

      
    

  

  (11) 

Proof. Taking 1 2
1 2

2

( , ) =
1

k k
v k k

q




, 1 2 2( , ) =u k k k , 1 2( , ) = 1w k k  in (4), we get the proof of (11).  

   

Example 3.4.4 Taking 1 = 0.3k , 2 = 0.2,k , 2 = 2q  and = 2m  in (11), we have 2.15 = 2.15    

   

Corollary 3.5.5 Let 1 2 0  , 1 0q  . Then, we have 
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2 1

1 2 1 2 2 2 2 1 1 2 22 2 2

1

1
= ( ) ( ) ( )

(1 2 ) (1 2 ) (1 2 )

k
k k k k q k q k q k q

q

 

  
 

  
  

 1
2 1 1 2

1

( ) ( ).
(1 2 ) (1 2 )

k
k k q k

q

 

 
 

 
 (12) 

   

Proof. The proof of (12) follows by taking 1 2 1 2( , ) =v k k k k  and = 2m  in (7).  

   

Example 3.6.6 Taking 1 = 4,k  2 = 2,k  2 = 2,q  1 = 3q  in (12), we get 8 = 8 .   

   

Corollary 3.7.7 Let 1 2 0  , 1 0q  . Then we have 

 

22

1 1
1 2 1 2 2 2 2 22 2

1 1

1
= ( ) ( ) ( )

1 2 (1 2 ) (1 2 )

k k
k k k k q k q k

q q

 

  
 

  
  

 

2

1 2 1 1 22
( ) ( ).

(1 2 ) 1 2
k k k q k

 

 
 

 
 (13) 

   

Proof. Taking 1 2 1 2( , ) =v k k k k  and =1m  in (12), we get the proof of (13).  

   

Example 3.8.8 Taking 1 = 4,k  2 = 2,k  2 = 2,q  1 = 3q  in (13), we get 8 = 8 .   

   

Corollary 3.9.9 Let 1 2 0  , 1 0q  . Then we have 

 1
1 2 1 2 2 2 1 1 2 22

1

1
= ( ) ( ) ( )

1 2 (1 2 ) (1 2 )

k
k k k k q k k q k q

q

 

  
 

  
  

 

2 2
2

1 2 1 1 22 2
( ) ( ).

(1 2 ) 1 2
k k k q k

 

 
 

 
 (14)  

Proof. The proof of (14) follows by taking 1 2 1 2( , ) =v k k k k  and =1m  in (9).  

   

Example 3.1010 When 1 = 4,k  2 = 2,k  1 = 3q  2 = 2,q  in (14), we get 8 = 8 .   

  

IV. q -HEAT EQUATION WITH VARIABLE COEFFICIENT 

 In this section we derive a solution of q -heat equation with variable coefficient of (3) and also we obtain a 

function 1 2( , )v k k  satisfying the equation (3).   

Theorem 4.1.11 If 1 2( , )v k k  is a solution of equation (3) with variable coefficients. Then the follwoing 

relations are equivalent  

       
2 1

1 2 1 1 2 2 2 1 1 2 2 1 2

=12 1

( ) ( , ) ( , ) = ( , ) ( , ) ( , ) 2 ( , ) .
m

r r

m
r

k k
i v k k v k k k v k q v k q k q v k k

q q
   

   
 

  (15) 

1 2 1 2 2
1

1 2 2

=1

1
( ) ( , ) = ( , )

[1 2 ( , )]

m

m
r

r

ii v k k v k k q

k k q 
  

 

1
1 11 2 2 1

2 2 1 1 2 2
1=1 1

1 2 2

=1

( , )
( , ) ( , )

[1 2 ( , )]

rm
r r

r
sr

s

k k q k
v k q v k q k q

q
k k q






 



 
  

 



 (16) 
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 1 2
1 2 1 2 2 1 1 2

1 2 1 2

( , )1
( ) ( , ) = ( , ) ( , )

1 2 ( , ) 1 2 ( , )

k k
iii v k k v k k q v k q k

k k k k



 


 
 

 
1 2 1

2 2
11 1

1 2 2 2

=1 1

( , )
( , )

[1 2 ( , )] [1 2 ( , )]

m

m
r

r

k k k
v k q

k q
k k k q

q



  



 
 

 

 

11
1 2 2 2

( 1) ( 1)1 1
2 2 1 2 22

1=1 1 1
1 2 2 2

=1 1

[ ( , )][ ( , )]

( , ) ( , ) .

[1 2 ( , )] [1 2 ( , )]

r

m
r r

r
sr

s

k
k k k q

q k
v k q v k k q

k q
k k k q

q

 

 



 



 
  

  



 (17) 

 1 2 1
1 2 1 2 2 2

1 2 1 2 1

( , )1
( ) ( , ) = ( , ) ( , )

1 2 ( , ) 1 2 ( , )

k k k
iv v k k v k k q v k

k k k k q



 


 
 

 1 2
1 1 2 2

1

1 2 1 1 2 2

=1

( , )
( , )

[1 2 ( , )] [1 2 ( , )]

m

m
r

r

k k
v k q k q

k k k q k q



  



 
 

 

  
1

( 1) 2 ( 1)1 2 1 1 2 2
1 2 2 1 1 2 2

1=1
1 2 1 1 2 2

=1

( , ) ( , )
( , ) ( , ) .

[1 2 ( , )] [1 2 ( , )]

rm
s r

r
rr

s

k k k q k q
v k k q v k q k q

k k k q k q

 

 


 



 

 




 (18) 

   

Proof. (i) From the linearity of 

2 1

1

,q q



  and (3), we have  

  2
1 2 1 1 2 1 2 2 1 2 2

=12

( , ) ( , ) = ( , ) ( , ) ( , ) .
m

r r

m
r

k
k k v k k k u k k q w k k q

q
v      (19) 

From the experimental value, we take  

 
1 2 1 2 1 2 1 2

1
11

( , ) = ( , ), ( , ) = ( , ).
11 qq

v k k u k k v k k w k k
 
   (20) 

Equation (20) is the solution of Heat Equation (3). 

In (19), 1
1 2 2( , )

r
u k k q


 is obtained by replacing 2k  by 1

2 2

r
k q


 in (20) . 

Substituting (20) in (19), we get (15). (ii) From the q-Heat equation (3), we have  

 1 2 1 1 2
1 2 1 2 2 2 1 1 2

1 2 1 2 1 1 2

( , ) ( , )1
( , ) = ( , ) ( , ) ( , )

1 2 ( , ) 1 2 ( , ) 1 2 ( , )

k k k k k
v k k v k k q v k v k q k

k k k k q k k

 

  
 

  

 (21) 

Replacing 2k  by 2 2( )k q  in (21), repeating the process we get (16). 

(iii) Replacing 1k  by 1

1

( )
k

q
 in (21), we get (17). 

(iv) Replacing 1k  by 1 1( )k q  in (21), we get (18).  

   

Corollary 4.2. 12 Let 2 0q   and 2 1q  . Then we have 

 
 

2 1 2
1

1 2 2 1 2 2
2 2

=12 2 2 2

( )

( )
= ( ) 1 .

1 1

m m m
r

r

k k k
k log

k k log k k q q
k q

q logq q logq



 
    

      
    

  


 (22) 
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  Proof. The proof of (22) follows by taking 1 2
1 2

2

( , ) =
1

k k
v k k

q




, 1 2 2( , ) =u k k k , 1 2( , ) = 1w k k  in (19).  

   

Example 4.3.13 Taking 2 = 0.2k , 1 = 0.3k , 2 = 2q , = 2m  in (22), we get 2.15 = 2.15 .   

   

Corollary 4.4.  14Let 1 0q  , 1 21 2 ( , ) 0k k   and 1 2 21 2 ( , ) 0k k q  . Then 

 
2 1 2

1 2 1 2 2

1 2 1 2 2 1 2 1 2 2

( , )1
= ( )

[1 2 ( , )][1 2 ( , )] [1 2 ( , )][1 2 ( , )]

k k
k k k k q

k k k k q k k k k q



   


   
  

 
1 1 2 1

2 2 1 1 2 2 2 1 1 2

1 1 2 1

( , )
( ) ( ) ( ) ( ) .

[1 2 ( , )]

k k k k
k q k q k q k k q k

q k k q





   
     

   
 (23) 

   

Proof. Taking 1 2 1 2( , ) =v k k k k  and = 2m  in (16), we get (23).  

Example 4.5.15 Taking 1 = 4,k  2 = 2,k  1 = 3,q q_2 = 2 ,in weget 8 = 8 

 

Corollary 4.6.  16Let 1
1 2 2

1

1 1
( , ) ( , )

2 2

k
k k and k

q
   . Then we have 

 1 2 1
1 2 1 2 2 2 2

11 2 1
1 2 2

1

( , )1
= ( ) ( )

1 2 ( , )
[1 2 ( , )][1 2 ( , )]

k k k
k k k k q k q

kk k q
k k k

q



  




 

  

 

1 1
1 2 2 1 2 22

1 1 1
2 1 2 1 1 2

1 1 1 2
1 2 2

1

( , ) ( , ) ( , ) ( , )

( ) ( ) ( ).
1 2 ( , )

[1 2 ( , )][1 2 ( , )]

k k
k k k k k k

q k q
k k k k q k

k q k k
k k k

q

   

 

 
   

  

       (24) 

 

Proof. Taking 1 2 1 2( , ) =v k k k k  and =1m  in (17), we get (24).  

Example 4.7.17 Taking 1 = 4,k  2 = 2,k  1 = 3,q 2 = 2,q  (24),in we get 8 = 8 

 

Corollary 4.8.18 Let 1 21 2 ( , ) 0k k   and 1 1 21 2 ( , ) 0k q k  . Then we have 

 1 2 1 1 2
2 1 1 2 2 2 1 1 2 2

1 2 1 2 1 1 2

( , ) ( , )1
= ( ) ( ) ( )

1 2 ( , ) 1 2 ( , ) 1 2 ( , )

k k k k k
k k k k q k k q k q

k k k k q k k

 

  
 

  
  

  21 2 1 1 2
2 1 2 1 1

1 2 1 1 2

( , ) ( , )
.

[1 2 ( , )][1 2 ( , )]

k k k q k
k k k k q

k k k q k

 

 
 

 
 (25) 

   

  

Proof. Taking 1 2 2 1( , ) =v k k k k  and =1m  in (18), we get (25).  

   

Example 4.9.19 Let 2 = 2,k  1 = 4,k  2 = 2,q  1 = 3q  in (25), we get 8 = 8 .   

Conclusion: In the above study, the heat equation model is studied using generalized q - difference operator. 

We can say that the above research helps us in reducing any wastage of heat and also enables us in making a 

optimal choice.  
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