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INTRODUCTION 
A Korovkin type theorem for linear positive operators acting from L

p
(a,b) into L

p
(a,b) was studied in [7] and 

then some new result in this direction were established. Ditzian and Ivanov [5] studied Bernstein type operators 

and their derivatives in L
p
(0,1) spaces and order approximation of these operator by using theK-functional of 

Peetre. Direct theorems for linear combination of Szasz-Beta type operators which defined by Gupta et all [8] in 

L
p
-approximation on positive semi axis obtained by Mahewshwari [20]. 

Our aim is to study approximation properties of 𝐵𝑚  𝑓; 𝑥 operators by meansof Korovkin’s theorem in L
p
-spaces 

on (0,B]. Then we compute the approximation order by modulus of continuity and we give a measure 

smoothness using the K-functional of Peetre [24]. We obtainand estimate the L
p
- distance  1 ≤ 𝑝 ≤ ∞  between 

a function f and its image by means of 𝐵𝑚  𝑓; 𝑥  which is given in (1). 

 

II. PRELEMINARIES 

The following operators given by Izgi and Buyukyazycy [9]. 

𝐵𝑚  𝑓; 𝑥 =
 2𝑚 + 3 ! 𝑥𝑚+3

𝑚!  𝑚 + 2 !
 

𝑡𝑚

 𝑥 + 𝑡 2𝑚+3
𝑓 𝑡 𝑑𝑡,

∞

0

𝑥 > 0                   (1) 

If we choose 

𝐾𝑚  𝑥, 𝑡 =
 2𝑚 + 3 !

𝑚!  𝑚 + 2 !
∙

𝑥𝑚+3𝑡𝑚

 𝑥 + 𝑡 2𝑚+4
, 𝑥, 𝑡 ∈  0, ∞ ,  

We can write𝐵𝑚  𝑓; 𝑥  as the following form: 

𝐵𝑚  𝑥, 𝑡 =  𝐾𝑚  𝑥, 𝑡 𝑓(𝑡)𝑑𝑡

∞

0

. 

For the process of these operators see [19] ,[21] and [9] respectively. 

𝐵𝑚  𝑓; 𝑥 =  𝐾𝑚  𝑥, 𝑡 𝑓 𝑡 𝑑𝑡
∞

0

 

𝐾𝑚  𝑥, 𝑡 =
 2𝑚 + 3 !

𝑚!  𝑚 + 2 !
∙

𝑡𝑚𝑥𝑚+3

 𝑥 + 𝑡 2𝑚+4
𝑥, 𝑡 ∈  0, ∞ , 
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In [14] it was studied the rate of pointwise convergence of the operators 𝐵𝑚  𝑥, 𝑡  on the set of functions with 

bounded variation. These operators for bivariate functions in the weighted spaces with the following operators 

studied by Izgi. A.[10]. 

𝐵𝑚 ,𝑛 𝑓 𝑟, 𝑠 𝑥, 𝑦 =   𝐾𝑚  𝑥, 𝑟 𝐾𝑚  𝑦, 𝑟 𝑓 𝑟, 𝑠 𝑑𝑟𝑑𝑠
∞

0

∞

0

                       (2) 

and also studied 𝐵𝑚  𝑓; 𝑥 for Voronoskaya type asymptotic approximation by Izgi. A in [11]. 

Now we introduce some notations which will be used in main result. 

We denote by 𝐶𝑏(0, ∞) the class of continuous and bounded functions on (0, ∞)by 𝐵𝐶(0, ∞)the spaces of all 

absolutely continuous functions on (0, ∞)  and by 𝐿2
𝑝 0, ∞ , a subspaces of 𝐿𝑝(0, ∞)such that 

𝐿2
𝑝 0, ∞ =  𝑓 ∈ 𝐿𝑝 0, ∞ : 𝑓 ′ ∈ 𝐵𝐶 0, ∞ , 𝑓 ′′ ∈ 𝐿𝑝 0, ∞  𝑓𝑜𝑟 1 ≤ 𝑝 ≤ ∞ . 

The norm on the spaces𝐿2
𝑝  0, ∞  can be defined as 

 𝘨 
𝐿2
𝑝 =  𝘨 𝐿𝑝 +  𝘨00 𝐿𝑝  

Or equivalently 

 𝘨 
𝐿2
𝑝 =   𝘨 𝑘  

𝐿𝑝

2

𝑘=0

 

=   ∫  𝘨 𝑘  𝑡  
𝑝
𝑑𝑡 

1/𝑝
2

𝑘=0

 

=  𝘨 𝐿𝑝 +  𝘨0 𝐿𝑝 +  𝘨00 𝐿𝑝  

We consider also following K-functional of Peetre [24]. 

𝐾𝑝 𝑓; 𝛿 = 𝑖𝑛𝑓
𝘨∈𝐿2

𝑝
((0,𝐵])

  𝑓 − 𝘨 𝐿𝑝  0,𝐵 + 𝛿( 𝘨 
𝐿2
𝑝

(0,𝐵]) , 𝛿 ≥ 0  

For 𝑓 ∈ 𝐿𝑝 (0, ∞] ,using Theorem 2, we have 𝑙𝑖𝑚𝛿→∞ 𝐾𝑝 𝑓; 𝛿 = 0. Therefore the K-functional gives the 

degree of approximation of a function 𝑓 ∈ 𝐿𝑝(0, 𝐵]by smoother functions𝘨 ∈ 𝐿2
𝑝

((0, 𝐵]). 

Remember that the second order integral modulus of smoothness is given by 

𝜗2,𝑝 𝑓, 𝛿 = 𝑠𝑢𝑝
0≤ℎ≤𝛿

 𝑓 𝑥 + ℎ − 2𝑓 𝑥 + 𝑓 𝑥 − ℎ  𝐿𝑝  0,𝐵 (𝐼ℎ) 

For an 𝑓 ∈ 𝐿𝑝 0, 𝐵 , where 𝐼ℎ indicates that the L
p
-norm is taken over the interval  ℎ, 𝐵 − ℎ . 

It is also known that there are constants 𝑐1 > 0, 𝑐2 > 0, independent of f and p such that  

𝑐1𝜗2,𝑝  𝑓; 𝛿
1

2  ≤ 𝐾𝑝 𝑓; 𝛿 ≤ 𝑚𝑖𝑛(1, 𝛿)  𝑓 𝐿𝑝 (0,𝐵] + 2𝑐2𝜗2,𝑝  𝑓; 𝛿
1

2                  (3) 

We need the following properties of 𝐵𝑚 (𝑓; 𝑥)which where shown in [9]: 

For any 𝑝 ∈ 𝑁, 𝑝 ≤ 𝑚 + 2 

𝐵𝑚  𝑡𝑝 ; 𝑥 =
 𝑚 + 𝑝 !  𝑚 + 2 − 𝑝 !

𝑚!  𝑚 + 2 !
𝑥𝑝                                              (4) 
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It follows from (4) that 

𝐵𝑚  1; 𝑥 = 1                                                                    (5) 

𝐵𝑚  𝑡; 𝑥 = 𝑥 −
𝑥

𝑚 + 2
                                                       (6) 

𝐵𝑚  𝑡2; 𝑥 = 𝑥2                                                                     (7) 

The following equalitiesare hold by (5), (6) and (7): 

𝐵𝑚   𝑡 − 𝑥 2; 𝑥 =
2

𝑚 + 2
𝑥2                                                     (8) 

𝑠𝑢𝑝
𝑥∈(0,𝐵]

𝐵𝑚   𝑡 − 𝑥 2; 𝑥 =
2

𝑚 + 2
𝐵2                                         (9) 

Theorem1: Let 𝑓 ∈ 𝐶𝑏 0, ∞ .Then for a real number B>0, the limit relation  

𝑙𝑖𝑚
𝑚→∞

𝐵𝑚  𝑓; 𝑥 = 𝑓(𝑥) 

holds uniformly on (0, B] 

Proof: Using (6), (7) and (8) we see that: 

 𝐵𝑚  1; 𝑥 − 1 𝐶(0,𝐵] = 0 

 𝐵𝑚  𝑡; 𝑥 − 𝑥 𝐶(0,𝐵] = 𝑚𝑎𝑥
𝑥∈(0,𝐵]

𝑥

𝑚 + 2
≤

𝐵

𝑚 + 2
→ 0, (𝑚 → ∞) 

by P.P. Korovkin theorem [17], the proof of Theorem 1 is completed. 

 

III. MAIN RESULTS FOR THE APPROXIMATION IN LP-SPACES 
In this section, we prove theorems of Korovkin type for approximation in the norm of the space 𝐿𝑝 0, 𝐵 , 1 ≤
𝑝 ≤ ∞, of integrable functions whose first derivatives belong to the class absolutely continuous functionson (0, 

∞) and second derivatives belong to the class𝐿𝑝(0, ∞)and we will give  a rate of convergence using the K-

functional of Peetre [24]; 

It is easily to see that,  

 𝐾𝑚  𝑥, 𝑡 𝑑𝑡
∞

0

= 1,         𝑎𝑛𝑑         𝐾𝑚  𝑥, 𝑡 𝑑𝑥
∞

0

=
𝑚 + 3

𝑚
≤  4                             (10) 

Thus 𝐵𝑚 (𝑓; 𝑥)exists for all 𝑓 ∈ 𝐿𝑝(0, ∞)and for every fixed m. (see [18] cf. 31 Theorem of Orlicz). 

According to Lusinos theorem, if 𝑓 ∈ 𝐿𝑝(0, 𝐵]then there exists a function 𝘨 ∈ 𝐶(0, 𝐵]    such that for any 𝜀 > 0 

                                                         𝜑  𝑥|𝑓 𝑥 ≠ 𝘨 𝑥   = 𝜀,                                                         (11) 

Now we give the following theorem for the approximation in the L
p
 spaces, p ≥ 1. 

Theorem 2: Let 𝑓 ∈ 𝐿𝑝(0, ∞)and B be a fixed derivative point in (0, ∞) such that the condition, 

 𝑓 𝑡 − 𝑓(𝑥) 

 𝑡 − 𝑥 
≤ 𝑀,    𝑥 ∈  0, 𝐵 , 𝑡 ∈  𝐵, ∞                                       (12) 
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holds with the constant M. Then 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝 (0,𝐵] → 0,    𝑚 → ∞ . 

Prrof: By (11) 

 𝘨 − 𝑓 𝐿𝑝 (0,𝐵] < 𝜀                                                            (13) 

holds. 

From Theorem1,  𝐵𝑚𝘨 − 𝘨 𝐶(0,𝐵] → 0   𝑚 → ∞ .Thus for Ɛ > 0 there exists an 𝑚0 ∈ 𝑁such that for 

all 𝑚 > 𝑚0. 

 𝐵𝑚𝘨 − 𝘨 𝐶(0,𝐵] < 𝜀. 

Now we can write that 

𝐵𝑚  𝑓; 𝑥 − 𝑓 𝑥 =  𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝑓 𝑥  𝑑𝑡
∞

0

 

=  𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝑓 𝑥  𝑑𝑡
𝐵

0

+  𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝑓 𝑥  𝑑𝑡
∞

𝐵

 

                                                                  = 𝐸1 𝑥 + 𝐸2 𝑥                                                                 (14) 

 𝐸1 𝑥  ≤  𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝑓 𝑥  𝑑𝑡
𝐵

0

 

≤  𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝘨(𝑡) 𝑑𝑡
𝐵

0

+  𝐾𝑚  𝑥, 𝑡  𝘨 𝑡 − 𝘨(𝑥) 𝑑𝑡
𝐵

0

+  𝐾𝑚  𝑥, 𝑡  𝘨 𝑥 − 𝑓(𝑥) 𝑑𝑡
𝐵

0

 

≤ 𝐸11 𝑥 + 𝐸12 𝑥 + 𝐸13 𝑥                                                     (15) 

For sufficiently large m by (13) 

 𝐸11 𝑥  𝐿𝑝 (0,𝐵] ≤   |𝑓 𝑡 −
𝐵

0

𝘨 𝑡   𝑃𝑑𝑡 

1

𝑝

< 𝜀.                                 (16) 

Now, we evaluate  𝐸12 𝑥  𝐿𝑝 (0,𝐵]. Since g is a continuous function in (0, B] we can write well known 

inequality 

 𝘨 𝑡 − 𝘨(𝑥) < 𝜀 +
2𝑀1 𝑡 − 𝑥 2

𝛿2
, 

where δ > 0 and M1 constant such that  𝘨(𝑥) < 𝑀1. Then 

𝐸12 𝑥 =  𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝘨(𝑡) 𝑑𝑡
𝐵

0

< 𝜀  𝐾 𝑥, 𝑡 𝑑𝑡
∞

0

+
2𝑀1

𝛿2
  𝑡 − 𝑥 2𝐾 𝑥, 𝑡 𝑑𝑡

∞

0

 

and by (9) 

𝐸12 𝑥 < 𝜀 +
2𝑀1

𝛿2

2

2 + 𝑚
𝐵2 
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Since 
2𝐵2

2+𝑚
→ 0as 𝑚 → ∞, for a large m 

 𝐸12 𝑥  𝐿𝑃(0,𝐵] < 𝐶𝜀,                                                         (17) 

 where C is a positive constant, If 𝑡 − 𝑥 < 𝜑 then|𝘨 𝑡 − 𝘨 𝑥 | < 𝜀, hence 

 𝐾𝑚  𝑥, 𝑡  𝘨 𝑡 − 𝘨(𝑥) 𝑑𝑡
∞

0

< 𝜀. 

By (14) we have 

 𝐸13 𝑥  𝐿𝑃(0,𝐵] < 𝜀.                                                       (18) 

Thus for larg m, 

 𝐸1 𝑥  𝐿𝑃(0,𝐵] < 𝜀.                                                      (19) 

Consider 𝐸2 𝑥  using the condition (12) and Holder’s inequality, we get 

|𝐸2 𝑥 | ≤   𝐾𝑚  𝑥, 𝑡  𝑓 𝑡 − 𝑓 𝑥   𝑑𝑡
∞

𝐵

 

≤ 𝑀 𝐾𝑚  𝑥, 𝑡  𝑡 − 𝑥 𝑑𝑡
∞

𝐵

 

≤ 𝑀  𝐾𝑚  𝑥, 𝑡  𝑡 − 𝑥 2𝑑𝑡
∞

𝐵

  𝐾𝑚  𝑥, 𝑡 𝑑𝑡
∞

0

 

≤ 𝑀 𝛿𝑚 . 

where 𝛿𝑚 =
2𝐵2

𝑚+2
 (see (9)), 

Thus, 

 𝐸2 𝑥  𝐿𝑃(0,𝐵] ≤ 𝑀 𝛿𝑚𝐵
1

𝑝                                                 (20) 

and therefore (13), (19) and (20) 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝 (0,𝐵] ≤  𝜀 + 𝑀 𝛿𝑚𝐵
1

𝑝                                    (21)  

Holds for 𝑥 ∈  0, 𝐵  and for sufficiently large m. Thus the proof is completed. 

 

IV. RATE OF CONVERGENCE 

We use Lemma 1 to establish the degree of approximation with (3). Namely, we first approximate  

𝑓 ∈ 𝐿𝑝(0, 𝐵]by 𝑓 ∈ 𝐿2
𝑝

((0, 𝐵])and then use Lemma 1, the J.J. Swetits and definition the K-functional and (4). 

Also see [2], [4] and [22] for this method. 

The following lemma gives upper bound of approximation of 𝐵𝑚𝑓to fin 𝐿𝑝 0, 𝐵 (𝑚 → ∞)with help of 

 𝑓 𝐿𝑝 and 𝛿𝑚 . Also it helps the prove of Theorem 3. 

Lemma 1: Let 𝑓 ∈ 𝐿2
𝑝

(0, ∞)and f satisfies the condition (13). For all sufficiently large m, 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝  0,𝐵 ≤ 𝐶𝑝   𝑓 
𝐿2
𝑝

(0,𝐵] 𝛿𝑚  
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where Cpis a positive constant and independent of f and m. 

 

Proof:Now we assume that, p > 1 and 𝑥 ∈ (0, 𝐵]. Since 𝑓 ∈ 𝐿2
𝑝

(0, ∞]using Taylor Theorem, we can write that, 

𝑓 𝑡 − 𝑓 𝑥 = 𝑓0 𝑥  𝑡 − 𝑥 +   𝑡 − 𝑟 𝑓 ′′ 𝑟 𝑑𝑟
𝑡

0

. 

 

Applying operator Bmon both side we get  

𝐵𝑚  𝑓 𝑡 − 𝑓 𝑥 ; 𝑥 = 𝑓 ′ 𝑥 𝐵𝑚  𝑡 − 𝑥; 𝑥 + 𝐵𝑚    𝑡 − 𝑟 𝑓 ′′ 𝑟 𝑑𝑟
𝑡

𝑥

; 𝑥  

                                                              = 𝑈1 𝑥 + 𝑈2 𝑥 .                                                                  (22) 

 

Using (6) we get following inequality 

 𝑈1 𝐿𝑝 (0,𝐵] ≤ 𝐶1  𝑓 𝐿𝑝 (0,𝐵] 
𝐵

𝑚 + 2

1

𝐵𝑝
. 

 

Now we need the Hardy-Littlewoodmajorante of 𝑓 ′′𝑎𝑡 𝑥,which is defined to be 

𝜃𝑓00 𝑥 = 𝑠𝑢𝑝
0≤𝑡≤𝑥 ;𝑡≠𝑥

1

𝑡 − 𝑥
 |𝑓 ′′ 𝑟 |𝑑𝑟

𝑡

𝑥

.                                      (23) 

 

Since 𝑝 > 1 and 𝑓 ∈ 𝐿2
𝑝

, 𝜃𝑓00 (𝑥) ∈ 𝐿𝑝   according to [29 Theorem 13.5] we get, 

  𝜃𝑓00 𝑥  
𝑝
𝑑𝑥

𝐵

0

≤ 2  
𝑝

𝑝 − 1
 
𝑝

  𝑓 ′′ 𝑥  
𝑝
𝑑𝑥

𝐵

0

,                                (24) 

 

By using (9) and (23) then we obtain on (0, B] 

 𝑈2 𝑥  ≤ 𝐵𝑚   𝑡 − 𝑥   𝑓 ′′ 𝑟  𝑑𝑟; 𝑥
𝑡

𝑥

  

≤ 𝜃𝑓00 𝑥 𝐵𝑚   𝑡 − 𝑥 2 ; 𝑥) 

≤ 𝜃𝑓00 𝑥 𝛿𝑚 .                                                                        (25) 

 

Then, when we use (24) in above inequality (25) 

 𝑈2 𝐿𝑝 (0,𝐵] ≤ 2
1

𝑝  
𝑝

𝑝 − 1
  𝑓′′ 𝐿𝑝 (0,𝐵]𝛿𝑚 . 

Since 
𝐵

𝑚+2
≤ 𝛿𝑚   we obtain that,  

 𝑈1 𝐿𝑝  0,𝐵 +  𝑈2 𝐿𝑝  0,𝐵 ≤  𝐶1𝐵
1

𝑝 + 2
1

𝑝  
𝑝

𝑝 − 1
    𝑓 𝐿𝑝  0,𝐵 +  𝑓 ′′ 

𝐿𝑝  0,𝐵 
 𝛿𝑚  

≤ 𝐶𝑝   𝑓 𝐿𝑝  0,𝐵 +  𝑓 ′′ 
𝐿𝑝  0,𝐵 

 𝛿𝑚  

where𝐶𝑝 =  𝐶1𝐵
1

𝑝 + 2
1

𝑝  
𝑝

𝑝−1
   

Let p = 1 

  𝑓 ′ 𝑥   𝐵𝑚  𝑡 − 𝑥 ; 𝑥 𝑑𝑥
𝐵

0

≤ 𝐶2   𝑓 𝐿1 0,𝐵 +  𝑓 ′′ 
𝐿1 0,𝐵 

 
𝐵2

𝑚 + 2
                     (26) 

 |𝑈2 𝑥 |𝑑𝑥
𝐵

0

≤  𝐵𝑚   𝑡 − 𝑥   𝑓 ′′  𝑟  𝑑𝑟
𝑡

𝑥

; 𝑥 𝑑𝑥
𝐵

0

 

                               ≤  𝑓 ′′ 
𝐿1 0,𝐵 

 𝐵𝑚   𝑡 − 𝑥 2; 𝑥 𝑑𝑥
𝐵

0

 

≤  𝑓 ′′ 
𝐿1 0,𝐵 

𝐵𝛿𝑚  

                             ≤ 𝐵   𝑓 𝐿1 0,𝐵 +  𝑓 ′′ 
𝐿1 0,𝐵 

 𝛿𝑚  

                                                                     ≤ 𝐵   𝑓 ′′ 
𝐿2

1 0,𝐵 
 𝛿𝑚                                                      (27) 
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Since 
𝐵

𝑚+2
≤ 𝛿𝑚anduse (26), (27) in (22), for 𝑝 ≥ 1we have 

 𝑈1 𝐿𝑝 (0,𝐵] +  𝑈2 𝐿𝑝 (0,𝐵] ≤ 𝐶3   𝑓 
𝐿2
𝑝

(0,𝐵] 𝐵𝛿𝑚  

where𝐶3 = 1 + 𝐶2. 
Thus, the proof of Lemma 1 is completed. 

Theorem 3: Let 𝑓 ∈ 𝐿𝑝 0, ∞  1 ≤ 𝑝 ≤ ∞ and f satisfied the condition (12). For all sufficiently large m and B> 

0, B is a derivative point off, then the following inequality 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝 (0,𝐵] ≤ 𝑀𝑝  𝛿𝑚 𝑓 
𝐿2
𝑝  0,𝐵 + 𝜗2,𝑝 𝑓; 𝛿𝑚                            (28) 

 

holds. Where Mp is a positive constant, independent of f and m. 

Proof: For all sufficiently large m, from Lemma 1 we can write 

 𝐵𝑚ℎ − ℎ 𝐿𝑝 (0,𝐵] ≤  
 𝜀 + 𝑀𝛿𝑚𝐵1/𝑝  ℎ 𝐿𝑝  0,𝐵  ; ℎ ∈ 𝐿𝑝(0, 𝐵]

𝐶𝑝   ℎ 𝐿2
𝑝  0,𝐵  𝛿𝑚  ;  ℎ ∈ 𝐿2

𝑝
(0, 𝐵]

  

 

where Cp is positive constant which independent of h,m and where h satisfies (12). When 𝑓 ∈ 𝐿𝑝 0, ∞ and 

𝘨 ∈ 𝐿2
𝑝 0, ∞ the condition (12) is satisfies then 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝 (0,𝐵] ≤  𝐵𝑚  𝑓 − 𝘨 − (𝑓 − 𝘨) 𝐿𝑝 (0,𝐵] +  𝐵𝑚𝘨 − 𝘨 𝐿𝑝 (0,𝐵] 

≤  𝜀 + 𝑀𝛿𝑚𝐵1/𝑝  𝑓 − 𝘨 𝐿𝑝 (0,𝐵] + 𝐶𝑝   𝘨 
𝐿2
𝑝
 0,𝐵  𝛿𝑚  

≤ 𝑀𝜌   𝑓 − 𝘨 𝐿𝑝  0,𝐵 + 𝛿𝑚   𝘨 
𝐿2
𝑝  0,𝐵    

where 𝑀𝜌 = 𝑚𝑎𝑥   𝜀 + 𝑀𝛿𝑚𝐵
1

𝑝 , 𝐶𝑝  

 

Taking infimum over all 𝘨 ∈ 𝐿2
𝑝 0, 𝐵 which satisfies (12) on the right hand side using the definition of the K-

functional we get, 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝 (0,𝐵] ≤ 𝑀𝜌 𝑠𝑢𝑝
𝘨∈𝐿2

𝑝  (0,𝐵] 

  𝑓 − 𝘨 𝐿𝑝  0,𝐵 + 𝛿𝑚   𝘨 
𝐿2
𝑝  0,𝐵    

Since, for a sufficiently large 𝑚, 𝛿𝑚 < 1and from (4), 

𝐾𝑝 𝑓; 𝛿𝑚 ≤ 𝛿𝑚 𝑓 𝐿𝑝 (0,𝐵] + 2𝑐2𝜗2,𝑝(𝑓; 𝛿𝑚
1/2

) 

𝑀𝜌𝐾𝑝 𝑓; 𝛿𝑚 ≤ 𝑀𝜌  𝛿𝑚 𝑓 𝐿𝑝  0,𝐵 + 2𝑐2𝜗2,𝑝  𝑓; 𝛿𝑚

1

2    

We obtain (28), 

 𝐵𝑚𝑓 − 𝑓 𝐿𝑝 (0,𝐵] ≤ 𝑀𝑝  𝛿𝑚 𝑓 𝐿𝑝  0,𝐵 + 𝜗2,𝑝  𝑓; 𝛿𝑚

1

2   . 

Thus the proof of the Theorem 3 is completed. 
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