

Welding Studies on WB36 for Feed Water Piping

Sathish Kumar R¹, Dr. T Ramesh², Dr. K Asokkumar³

¹ Senior Engineer, Bharat Heavy Electricals Limited - Tiruchirapalli,
 ² Assistant Professor, National Institute of Technology- Tiruchirapalli,
 ³ Additional General Manager, Bharat Heavy Electricals Limited- Tiruchirapalli,

ABSTRACT

To increase efficiency, reduce emissions, cost and to reduce weight of boiler per MW, the power manufacturing sectors are going towards the once through technology (super critical boiler) instead of sub- critical. Once through supercritical (OTSC) technology has become a focal point for effective utilization of coal-based thermal power generation sector in India. Another main advantage of moving towards OTSC technology is reducing the weight of the boiler per MW, which can be done by going for material capable of handling higher pressure and temperature than the conventional material. So, in order to keep pace with these technologies, research on newer materials for every boilers line, which can operate at both higher pressure and temperature, has been initiated. So, in this article, we have taken one such feed water system and headers, where WB 36 steel (15 MiCuMoNiNb5) can be used instead conventional standard carbon steel like A106 grade B or C, which are usually used. For super critical, ultra super critical power plants this conventional materials like A106 grade B or C, leads to very thick piping system. V&M has developed WB 36 steel (15 MiCuMoNiNb5) for high pressure piping of boiler feed water system. This heat-resistant, copperalloyed ferritic steel 15MiCuMoNiNb5 has been widely used in European nuclear and conventional power plants for decades for feed water system. This widespread application is due to the toughness and strength, caused by the precipitation of copper, that are exhibited even at elevated temperatures which other fine-grained structural steels have at room temperature. The aim of this project "Welding Studies on WB36 Steel for Feed Water Piping" was taken to understand the metallurgy and the behavior of the new materials under different manufacturing operations.

Keywords: Ageing, Hardness, Mechanical properties, Preheating, Post Weld Heat Treatment, Toughness, WB36, Welding, etc.

INTRODUCTION

I.

Studies on the performance of power plant indicated that there is an optimum plant efficiency using feed water at higher temperature of around 300°C. Using conventional standard carbon steel like A106 grade B or C for feed water system results in high wall thickness. This necessitate to go for material which can retain higher strength and toughness even at 300°C. It has found that in some countries like Europe, Australia and China, it is common practice to use WB 36 for this purpose and been operating for more than 20,000 hours without any problem. This material was devolped by Vallourec & Mannesmann (V&M). WB36 is low-alloy, heat-resistant steel 15 NiCu- MoNb 5 (WB 36, material number 1.6368) is used as piping and vessel material in boiling water reactor (BWR) and pressurized water reactor (PWR) nuclear power plants in Germany. One reason for its wide application is the improved 0.2% yield strength at elevated temperatures. Conventional power plants use this material at operating temperatures of up to 450°C, whereas German nuclear power plants use the material mainly for pipelines at operating temperatures below 300°C and in some rare cases in pressure vessels up to 340°C (e.g. a pressurizer in a PWR).

The main advantages of this material is the possibility of reducing of wall thicknesses between 15 to 35% compared with for example, SA106grade C. Using thinner pipes allows in time and cost savings in material, Welding /bending operations and weight of structure and reduces problem due to thermal fatigue. As an example, Table 1 gives the results of calculation of wall thickness according to the steel grade for pipes for an application at 370 bar 320° C with an inner diameter of 480 mm.

Tuble If comparison of war anemicss requirement for anterent grade steels							
Operating conditions of 370 bar /320 °C							
Minimum Wall thickness (mm)							
58.9							
55.1							
109.3							
90.2							

Table 1. Comparison of wall thickness requirement for diffe	erent grade steels

This paper outlines welding studies carried out on the WB36 pipe material and its weldability testing and also studies on ageing and its effect on mechanical properties of WB36 steel and its weldments. Therefore, it mainly has three topics

- Steel properties and evaluation of test material.
- Weldability analysis and welding studies carried out on the pipe material
- Studies on heat treatment and its effect on mechanical properties of wb36 steel and its weldments

II. STEEL PROPERTIES

2.1. Chemical Composition.

The chemical composition of WB36 according to ASME is given in Table 2 along with SA 106 Gr C for comparison. Grade C belongs to the group of carbon manganese steels. The composition of WB36 differs in nickel, copper and niobium content.

	1 able 2. Chemical requirements of WB 36(%) in comparison with SA106 GrC											
	WB 36											
С	Si	Mn	Р	S	Cr	Мо	Ni	Ν	Cu	V	Nb	
0.10-	0.25-	0.81-	0.030	0.025	0.30		1.0-	0.02	0.50-	0.02	0.015	
0.17	0.50	2.0	0.050 0.0	0.025	0.50	0.250.50	1.3	0.02	0.80	0.02		
					SA 10	6 Gr C						
		0.29-										
0.35	0.10	1.06	0.035	0.035	0.40	0.15	0.40	-	0.40	0.08		

Table 2. Chemical requirements of WB 36(%) in comparison with SA106 GrC

*ASME CC 2353 - Single values shown are maximum

2.2. Mechanical properties

The pipe material has been included in ASTM standard "Specification for seamless ferritic alloy steel pipe for high temperature service" under A335 P36. The specified properties for the pipe material as per ASTM (2005) are given in Table 3. WB36 composition has been optimized to achieve high yield and tensile strength values. The strengthening effect is obtained by means of grain refinement through the addition of Nb. A second effect is partial hardening by Cu- precipitates. During the development of WB36, it was found that a Cu/Ni-roughly 0.5 is needed in order to avoid red shortness during hot forming.

Standard	dard *UTS (MPa) *YS (MPa) *Elon		*Elong. (%)	Hardness HB	CVN impact energy J				
Class 1, N & T	620	440	15	265 Hv					
Class 2. O & T	660	460	15	265 Hv	_				
EN10216-2 WB 36	610-	440	19 long.		40 long.				
EIN10210-2 WD 30	780	440	17 trans.	-	27 trans				
SA106 GR C	485	275	16.5	-	-				

 Table 3. Specified mechanical properties of WB36 steel

* Specified minimum

2.3. Metallurgy of steel

The specified heat treated condition leads to structure of bainite and ferrite. The proportion of both constituents depends on cooling rate from normalization temperature. Normally the bainite content lies between 40 and 60%. In the case of air cooling the bainite content varies with wall thickness. Large wall thickness therefore require water quenching in order obtain enough bainite. Since higher bainite content can increase strength, water quenching is also used to obtain class 2 material according to ASME. Transformation temperatures are determined by dilatometer measurement. Ac1 temperature was found to be approximately 725 °C and Ac3 around 870°C.

Figure 1 shows the CCT diagram of WB36. The steel WB 36 is used in normalized and tempered condition. For high strength or large wall thickness, water quenching is also used. The normal microstructure consists of bainite and ferrite. During tempering, copper precipitates as hardening element in from of fine particles.

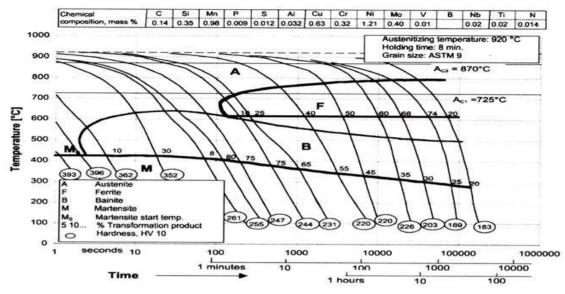


Figure 1 CCT drawing for the steel

2.4. Evaluation of material

Before we are going for weldabilty test it is necessitate to evaluate the test specimen, which was taken for consideration to conformity, whether both mechanical and chemical property as per literature and also select the welding consumable. The steel composition and mechanical properties of test specimen were tested to check the conformity to specification. The test results are shown in Table 4, 5& 6. The chemical composition of steel but for Cu, is meeting the specification requirement. With respect to Cu, Lab value was 0.35% against the specified range of 0.5 to 1.8%. The tensile properties are meeting the specification requirements. Impact toughness of the pipe material was also tested at room temp, 0°C and -25°C. ASTM has not specified the toughness value for the steel grade but EN standard require 27 J toughness at room temperature. It can be seen that the base metal has excellent toughness at room temperature. The toughness rapidly decreased at 0 and -25°C. But the values are much above the minimum required by EN standard. The toughness behavior of the material at different temperature is shown in Fig. 2.

С	0.15	Ni	1.21
Mn	1.00	Мо	0.31
Si	0.39	V	< 0.05
S	0.010	Cu	0.35
Р	0.017	Nb	0.03
Cr	0.22	W	

 Table 4. Chemical composition test values for the pipe steel (wt. %)

YS (MPa)	UTS (MPa)	% Elong.	% RA	Hardness HV10
579	654	27	64	212
587	658	28	64	209

Table 5. Tensile test values of the pipe material

Table 6. Test values of Impact toughness for pipe material

Toughness energy (J)

Toughness energy (J)								
Room Temperature(RT)	0 °C	− 25 °C						
142	127	49						
179	121	89						
137	118	62						

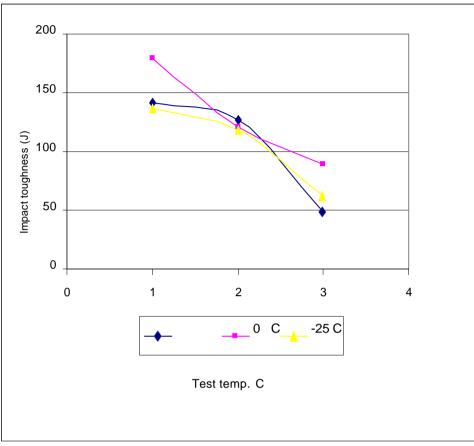


Figure 2 Toughness behavior of steel at different temperature

III. WELDABILTY OF WB36.

3.1 Welding consumables

Welding consumables for GTAW, SMAW and SAW process are supplied by number of consumable manufacturers like M/s Bohler Thyssen/ Germany, Oerlikon. M/s V & M has recommended and used the welding consumable listed in Table 7. The typical properties of the weld metal for the recommended fillers are also given in Table 8&9.

V & M has used both matching and under matched strength class fillers for welding the WB 36 steel. SH Schwarz 3K is designated under E7015Gand that of FOX EV65 under E8018GH4. For the other consumables of SMAW, the tensile properties of specified minimum matches that of base metal. The chemical compositions of the weld metals were matching /near matching to that of base metal but for Cu.

The above consumables are proprietary in nature. The ASME Sec IIC standard consumables listed in Table 10 & 11. are closer to the base metal chemical and tensile properties. Considering the base metal tensile properties, E9018 - M electrode was identified and used for welding of pipe butt joints.

Process	Producer	Trade Name
SMAW	Bohler Thyssen Welding	SH Schwarz 3K E 7015 G SH Schwarz 3KNi E 9018 G FOXDMOKb FOXEV60 FOXEV65 E8018GH4
SMAW	Oerlikon	Tenacito 65R E9018G-H4
SAW	Bohler Thyssen Welding	Bohler 3NiMo1-UP/BB24 Union S3NiMo1/UV 420TT (R)
GTAW	Bohler Thyssen Welding	DMO-1G Union 1 Mo

Table 7.	Welding	consumable used	bv	M/s V	& M
I upic / i	,, craine	consumable usea	~ J	111/0 1	

Table 6. Typical Chemical composition of weld for recommended inters by 1475 V & M									
Brand Name	С	Mn	SI	Cr	Cu	Ni	Мо	Nb	Ν
Base metal	< 0.012	0.80 1.20	0.25 0.50	-	0.50 0.80	1.0 1.30	0.25 0.50	0.015 0.045	< 0.020
SH Schwarz 3K	0.06	0.90	0.35	-	-	-	0.45	-	-
Fox DMO kb	0.07	0.80	0.40	-	-	-	0.50	-	-
SH Schwarz 3k Ni	0.06	1.25	0.30	0.20	0.08	1.0	0.40	-	-
Fox EV 65	0.06	1.20	0.30	-	-	0.80	0.35	-	-
Union S3NIMo1/UV 420	0.08	1.55	0.25	-	-	0.90	0.55	-	-
Union 1 Mo	0.10	1.15	0.60	-	-	-	0.50	-	-

Table 8. Typical Chemical composition of weld for recommended fillers by M/s V & M

Table 9. Typical mechanical properties of weld joint for recommended fillers by V & M

Brand Name	YS (MPa)	UTS (MPa)	Elong. (%)	Toughness (J)
Base metal	410 440	590 780	>16	O °C / 27
SH Schwarz	U- 490	U-570	U-20	RT – 120
3K	S- 480	S-550	S-21	RT-120
Fox DMO kb	U - 480	U-560	U-22	RT > 120
	S - 470	S-560	S-22	RT > 120
SH Schwarz	U - 540	U-620	U-20	RT > 140
3k Ni	S - 500	S-590	S-21	RT > 140
Fox EV 65	U - 550 S - 530	U-630 S-620	U-20 S-20	RT > 130 RT > 130
Union	U - 560	U-680	U-22	RT -140
S3NIMo1/UV	S - 550	S-660	S-22	RT - 140
Union 1 Mo	U -480	U-570	U-23	RT -81

U- As welded; S- After PWHT 580- 560 °C

Table 10. Chemical Composition of Weld metal for identified fillers

Electrode	С	Mn	Si	Р	S	Ni	Cr	Мо	V
E8016C4	0.10	1.25	0.60	0.03	0.03	1.10 2.00	-	-	-
E9018M	0.10	0.60 1.25	0.80	0.03	0.03	1.40 1.80	0.15	0.35	0.05
E8016C3	0.12	0.40 1.25	0.80	0.03	0.03	0.80 1.10	0.15	0.35	0.05

Table 11. Specified mechanical properties of weld metal for identified fillers

Filler	YS (MPa)	UTS (MPa) Min.	Elongation (%) Min.	PWHT condition
	470-550	550	24	
E8016C4	460	550	19	AW
E9018M	540-620	620	24	AW

AW- ASWELD

3.2 Preheating.

In order to evaluate hydrogen cracking susceptibility of steel and to determine the optimum preheat temperature for welding, implant method of hydrogen cracking test was employed. Cracking test was planned at nil preheat, 100, 150, 200°C preheats at two stress levels of 500 & 570 MPa. Fracture has not occurred at a stress level of 570 MPa for 100 °C and at a stress level of 500 MPa even for nil preheat, indicating extremely high resistant of

the steel to HAZ hydrogen cracking. The test results are presented in the Table 12. A conservative preheat of 100 °C can be used for safe welding of the steel.

Material		WB36		Electr	Electrode		Е 9018 -М		
Dia. of electroo	Dia. of electrode 4.0 mm			Electrode baking			300 °C/hr		
Process		SMAW		Prehe	ating	_	As given be	elow	
Pre heat (°C)	I max (amps)	V (Volts)	Hi max (kJ/mm)	Load (kg)	Spmn. dia (mm)	Stress (MPa)	*Test result	Rupture time	
RT	110	22	0.75	1250	4.89	653	В	8 mts	
RT	110	22	0.75	1280	4.94	655	В	15 mts	
75	110	22	0.74	1210	4.81	653	В	50 mts	
75	110	22	0.73	1210	4.82	650	NB	24 hrs	
125	110	22	0.74	1230	4.85	653	NB	24 hrs	
125	110	22	0.75	1230	4.85	653	NB	24 hrs	
175	110	22	0.74	1340	5.07	651	NB	24 hrs	
100	110	22	0.94	1350	5.08	653	NB	24 hrs	
100	110	22	0.75	1130	4.66	650	NB	24 hr:	

Table 12. HAZ hydrogen cracking test by Implant test

*B-- Specimen ruptured; NB -- Specimen not ruptured during test duration, RT- Room temp.

3.3 Hot cracking test

The steel susceptibility to hot cracking was evaluated. Various test methods are available in the literature: among them, varestraint test developed by Lundin was more popular for evaluating fusion zone cracking susceptibility of the steel. The hot cracking test was performed using a moving torch TIG-A-MAG model LT 1100 varestraint-testing machine. Here a TIG welding torch was used to deposit a melting run on the specimen surface. In all cases, at a specific instant a pneumatically actuated ram applies a bending moment on the specimen and the movement of the torch is also arrested. As the bending strain is applied on the solidifying weld metal, hot cracks develop in the latter. The strain applied is controlled by the diameter of the ram and is given by Percentage strain= (t/2R) x 100, Where t is specimen thickness and R is Radius of the Die or ram. The batches of P 36 grade materials were tested at two different strain levels viz 2% and 4%.

Sl No.	Sample ID	Strain %	Total No. of crack	Length of cracks (mm)		TCL	
		70	of crack	Min	Max	Total (TCL)	Ave. (mm)
1	WB36B arrested	2%	8	0.08	0.40	1.66	1.36
2	WB36 arrested	2%	6	0.08	0.42	1.06	
3	WB36 through	4%	18	0.12	0.62	6.10	
4	WB36 arrested	4%	16	0.06	0.46	3.56	4.83
5	WB36 through	4%	12	0.14	0.44	2.59	2.44
6	WB36 through	4%	13	0.10	0.36	2.28	
7	P91 Base metal	2%	12 11	0.10 0.12	0.42 0.46	3.02 2.60	2.86
8	P91Base metal	4%	27 18	0.08 0.20	0.33 0.70	5.20 6.28	5.74

 Table 13. Varestraint test results

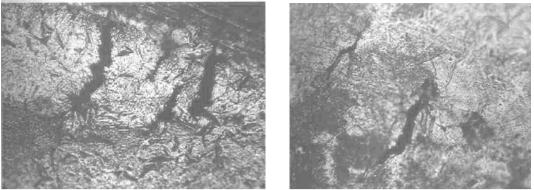


Figure 3 & 4 Varestraint test showing crack at 2% strain in fusion zone

After removal from the test jig, the specimen surfaces were examined under a microscope and the length of individual cracks (Fig. 3 & 4) was measured. These data are given in Table 13. The table shows the length of the shortest and the longest cracks and also the total length of all the cracks for each specimen. The average values of total cracks length and the maximum crack length for each strain level of an individual batches are also given. The behavior of the fusion zone under strain and resistance to cracking is better to P91 steel which is used currently in fabrication of high temperature components.

3.4 Pipe butt welding tests

Pipe butt joints were made with the welding conditions shown in Table 14. Preheat of 100 °C was used for welding the steel. After welding pipe butt joints were given PWHT. V & M has recommended PWHT of 570 °C/ 2.5h. Heating rate of 35 and cooling rate of 50 °C /h maximum is recommended. Two pipes joint were welded and post weld heat treated at 570 °C. The heating and cooling rate was varied. In one case it was 50 °C/h maximum and in the other 100 °C /h was maximum. Soaking time of 2.5 hr was maintained for the pipe size of 273 X 32 mm.

	Table 14. Welding conditions for pipe butt welding							
Pro	cess	SMA	W	Consumable	300/2	hrs		
Consu	mables	E9018	BM	Preheat	150 °	°С		
layer	pass	I max (Amps)	V max (Volts)	Time (minutes)	Heat input Max .(J/mm)	Interpass temperat ure (°C)		
1	1	110	24	10.0	2368	220		
2	2	110	24	9.78	2243	190		
3	3	110	24	9.0	1991	200		
4	4a	110	24	8.0	1710	220		
	4b	110	24	8.3	1774	200		
5	5a	110	24	8.0	1654	180		
	5b	110	24	10.0	2067	210		
6	ба	110	24	8.0	1601	190		
	6b	110	24	10.0	2002	190		
7	7a	110	24	9.0	1746	170		
	7b	110	24	12.0	2328	170		

Table 14. Welding conditions for pipe butt welding

After completion of above process, pipe weld joint properties were tested as required in ASME Sec IX. The tensile strength of the weld joint was 670 and 675 and the values are higher than that specified for the base metal. All the bend samples could be bent to 180 ° without fissures or opening out. The tensile and bend test results are shown in Table 15. Hardness measurements show a maximum of 264HV in the HAZ and 236 Hv in weld metal. The weld and HAZ hardness ranges are in order and the results are shown in Table 16. Impact toughness of weld and HAZ of the weld joint was tested at 0 & 25 °C. and test results are shown in Table 17. Both the weld and HAZ have shown good toughness properties.

The short term tests have shown that the joint welded using E 9018M consumables could meet the procedure qualification requirements. In order to check the matching of weld and base metal properties at operating temperatures, tensile tests at high temperatures were also carried out. The results (Table 18.) show that the weld metal tensile strengths at 300, 400 & 500 °C are much above that of the base metal at the corresponding temperatures.

Tuble 101 Temble una bena test results						
ID	UTS (MPa)	ID	Bend test results			
JA	732	JA1	No open discontinuity observed			
JB	670	JA2	No open discontinuity observed			
JB	675	JA3	No open discontinuity observed			
		JA4	No open discontinuity observed			

Table 15. Tensile and bend test results

Table 16. Hardness measurements (HV) on WB36 weld joint						
Identification*	Base metal	HAZ	Weld metal.			
	215	228	227			
	215	264	221			
JA	215	251	221			
	218	224	215			
	215	251	236			
	221	258	233			
JB	215	254	224			
	215	233	221			

Table 16. Hardness measurements (Hv) on WB36 weld joint

*JA PWHT 570 °C; rate of heating 50 °C/h, JB PWHT 570 °C; rate of heating 100 °C/h

S	Specimens tested at RT(25C)			Specimens tested at RT(0 °C)			
Identification *	Impact energy (J)	Identification *	Impact energy (J)	Identification *	Impact energy (J)	Identificati on*.	Impact energy (J)
JA	164	JB	139	JA	142	JB	134
JA	160	JB	164	JA	127	JB	133
JA	173	JB	138	JA	173	JB	135

* JA toughness at HAZ, JB toughness at weld

Temp (°C)	UTS (MPa)	Elongation (%)
300	604	17
300	609	12
400	611	19
400	629	16
500	601	18
500	563	19

Table 18. Tensile properties at high temperature

3.5 Hot bending of pipes

To check the forming characteristics of the pipe material, hot bending of pipe was carried out. Hot ductility testing was carried out at different temperature to check if there is any ductility dip at the hot bending temperature range. The test results are shown in Table 19. Percentage reduction in area is more reliable indicator of high temperature ductility. As seen from RA values, the steel has good ductility at elevated temperature. Generally hot bending is carried out above the critical temperature. Based on the test results, the bending temperature was fixed at 930 - 950 °C.

Sl.No.	Temp °C	YS N/mm²	TS N/mm ²	%E on 5d	%RA
T2	700	144	167	28	90
T3	750	109	125	50	80
T4	800	93	146	48	76
Т5	850	86	147	48	78
T6	900	69	145	45	81
T7	950	60	108	48	88

Table 19. Hot ductility of P36 Pipe material

After fixing the temperature range, sample specimen of WB36 pipe having diameter 273mm and 32 thick is bended to 90° having bend radius of 381mm in the hot bending temperature range 930 - 950 ° C in PB 600 incremental bending machine, the facility available in shop as shown in figure 5. After completion of bend, it is subjected to normalizing in furnace at 900°C; 1mm/min air cool and tempering in furnace at 630°C; 2mm/min air cool.

Following checks were done for conformity of our Post Bend Heat Treatment temperatures (PBHT). Dimension measurements of the pipe were taken before and after bending. It is found that the minimum thickness measured on the outer surface of the bend was 27.77 mm and the corresponding maximum thinning was 10.42 %. The wall thickness on the intrados has increased to a maximum of 26.19 %. In order to check the microstructure development at different stages of processing as shown in figure 6, two spots on the pipes were polished using field polishing kits and microstructure was replicated on cellulose acetate tapes. The spots were located such that they come on the extrados of the pipe bend. Hardness measurements on bend after PBHT were also performed using portable equo-tip hardness tester found that it was in the range of 173- 178 Hv. LPI and ultrasonic testing was carried out on bend portion to check for any macro cracks. Replica examination was also performed to check for any micro fissures. No macro, micro fissures were seen in NDT and Metallography examinations.

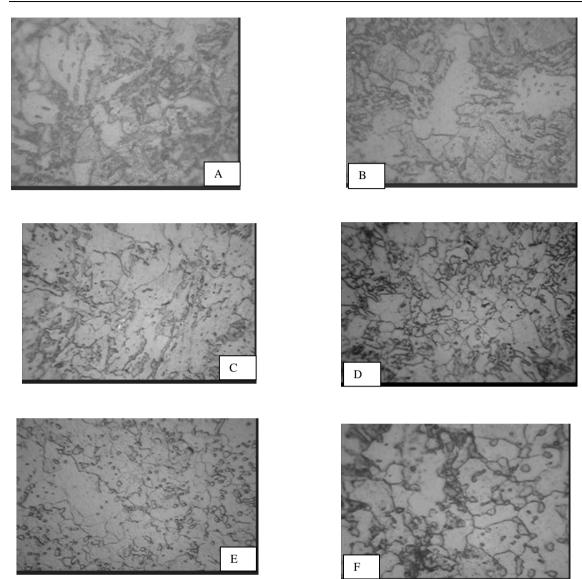


Figure 6. Microstructures of pipe material Mag 500X. A & B - before bending, C & D- after bending, E & F- after PBHT

IV. HEAT TREATMENT

4.1 Effect of Aging heat treatment on hardness and toughness of the base metal and HAZ of the weld joint Base metal and HAZ of weld joint samples were subjected to ageing treatment at 350 °C for 550 and 1000 hours of duration. Hardness and toughness tests were carried out after ageing. The average hardness of base metal in the as received condition was 198Hv. After ageing at 350 °C for 550 and 1000 hours of duration, the average hardness increased to 210Hv and 221Hv respectively as shown in table 20. and same is shown pictographically in figure 6. Welded samples that were post weld heat treated at 570 °C for 2 hrs were also aged at 350 °C and hardness of HAZ was tested as shown in table 21. and same is shown pictographically in figure 7. The average hardness of HAZ in the post weld heat treated condition was 230 Hv. After ageing at 350 °C, the average hardness increased to 235 Hv and 251 Hv for 550 hours and 1000 hours of duration respectively. Ageing at a slightly higher temperature of 400 °C was also carried out on base metal for 10 hours and 100 hours .The hardness averages were 200 Hv and 209Hv respectively.

Base metal in "as received condition"	Base metal aged at 350°C for 550 hrs	* KIVI 90ed 91 350°C TAF TUUU DES	
199	217	226	223
214	208	226	229
214	198	218	229
221	215	221	223
208	203	229	227
208	195	227	220
198	221	230	200
203	217	226	209
203	218	220	215
195		229	215
205		221	212
203		226	203
198		230	217
195		226	211
175		227	204
198		224	
194			
Avg=198 Hv	Avg = 210 Hv	Avg = 221 Hv	· · · ·

Table 21. Hardness of HAZ of weld joints subjected to ageing at 350°C for 550 & 1000 hours

Table 21. Hardness of HAZ of weld je		
	HAZ of weld joint aged at	HAZ of weld joint aged at
HAZ not aged	350°C for 550 hours	350°C for 1000hours
224		243
242		272
187		243 274
215		232
253		258
226		230
220		262
218		
229		
236		
226		
233		
227		
260		
233		
260		
Avg = 230 Hv	Avg = 235 Hv	Avg = 251 Hv

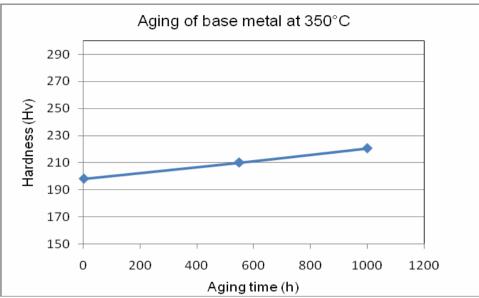


Figure 6. Hardness of base metal after ageing at 350°C

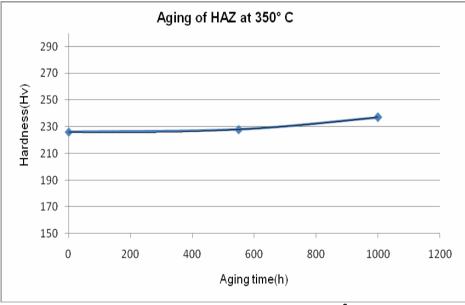


Figure 7. Hardness of HAZ after ageing at 350°C

In their data book on WB 36 steel, V & M reported increase in hardness on ageing at 350 °C. The data points were read from the graph and re-plotted as shown in Figure 8 and the trend equation given below was obtained. $Y = 6.164\ln(x) + 172.0 - 1$, where X is ageing time in hours, Y is hardness.

Using the above equation, the hardness of the steel estimated for 100,000 hours of operation was found to be 243Hv.

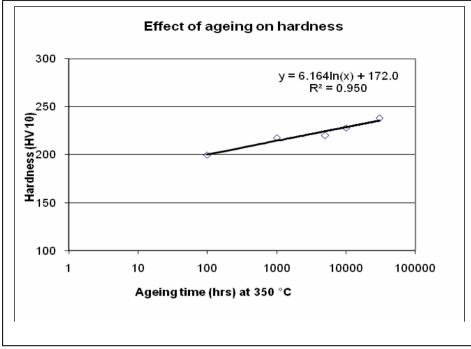


Figure 8. Hardness after ageing – V & M data

The trend equation obtained on our tests is $Y = 3.027 \ln(x) + 196 - 2$ and the estimated hardness after 100,000 hours of operation is 230 Hv. From the above, it is seen that the final hardness of the steel at the end of 100,000 hours of operation is not very high.

Toughness of base metal and HAZ after ageing at 350° C for 550 hours was tested at 50,25, 0, -25 & -50°C and the same is shown in Table 22 & 23 and Figure 8. Toughness of base metal after 1000 hours of ageing was checked at room temperature and the results are shown in Table 24 along with that for 400°C aged condition. The base metal has not shown any degradation of toughness after ageing for 1000 hours. In the case of HAZ after the ageing for 1000 hours, the CVN energy reduced from 161 J to 128 J.

Test temperature 50 °C		Test temperature 25°C		Test temperature 0°C		-		Test temperature - 25°C	
Identifi cation	0.	Identificati	Impact energy Joules	Identificati	Impact energy Joules	Identificati	Impact energy Joules	Identificati	Impact energy Joules
7	161	4	125	5	93	2	36	3	89
9	159	8	136	10	109	6	29	1	50
Avg	g = 160	Avg =	: 131	Avg =	101	Avg	= 32.5	Avg	= 70

Table 22. Charpy toughness of Base Metal subjected to ageing at 350 °C for	r 550 hours
--	-------------

Table 23. (Charpy toughness	of HAZ aged at 350°	C for 550 hours
-------------	------------------	---------------------	-----------------

	Test temperature									
50°C		25°C		(0°C		-50°C		-25°C	
	Impact		Impact	Identificati	Impact		Impact		Impact	
Identification	energy	Identification	energy			Identification	energy	Identification	energy	
Identification	Joules	Identification	Joules	on	energy sources	Identification	Joules		Joules	
20	138	22	139	23	185	24	27	21	193	
28	233	25	222	25	145	26	140	27	171	
Avg = 185		Avg =	181	Avg	= 165	Avg =	84	Avg =	182	

Avg - Average

Base metal not aged	Base metal aged at 350°C /1000h	Base metal aged at 400°C /10h	Base metal aged at 400°C /100h	HAL	HAZ aged at 350°C /1000h
142,179,137	184,136,180, 131,136,137	124,148	137,135,129	251,177,182, 138,185,128, 143,134,111	147,157,118, 114,104
Avg.153	, ,	Avg.136	Avg.134	Avg.161	Avg.128

Table 24. Toughness of base metal and HAZ aged at 350°C and 400°C

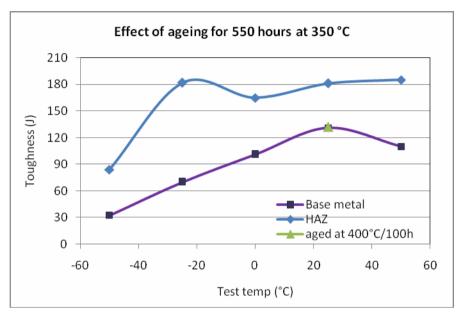
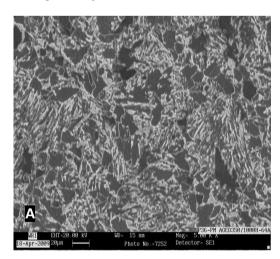



Figure 8. Toughness of base metal and HAZ after ageing at 350°C

Micro structure of the base metal was also checked after the above ageing treatments. With the optical microscope, no significant differences have been noted in the microstructure as shown in Fig.8 & 9.

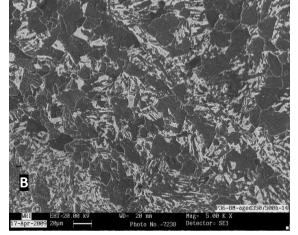


Figure 8 A- Microstructure of base metal aged at 350°C-550h; B- Base metal aged at 350°C-1000h

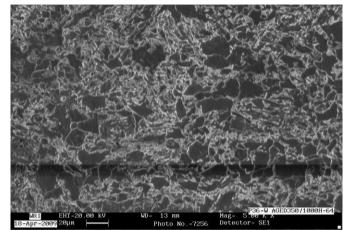


Figure 9. Weld metal ageing condition

4.2 Effect of PWHT temperatures on mechanical properties of weld joints

Mechanical properties of weld joints made with E9018-M electrodes were evaluated for one post weld heat treatment temperature. Viz 570 °C. In the literature, PWHT of weld joints at 540 and 600 °C was also reported. Hence the same was included in the scope of this project. Joints were made and subjected to the above PWHT temperatures. The test results of tensile, impact hardness and bend test results are shown in Table 25 to 27. The tensile strengths of the weld joints for the three PWHT temperatures are 679, 697 and 698 MPa and meet the specified minimum of ASME Sec IX. The average CVN energy values for the weld metal for the PWHT temperatures of 540°C, 570°C and 600 °C were 95, 101 and 98 J respectively. Toughness of HAZ was slightly higher for PWHT temperatures of 540°C and 570 °C. In general, the hardness averages of HAZ and weld metal are slightly more than the base metal. Hardness ranges of 215-223, 211-229 Hv were observed respectively for HAZ and weld metal. The differences in hardness values of weld and HAZ between the three PWHT temperatures were not significant. The bend ductility of weld joints post weld heat treated at 540°C,570°C and 600°C was satisfactory. The test samples could be bent without any fissures and meet the requirements of ASME sec IX.

		toughness of were joint subjected to unterent 1 (111			
Identification **U.T.S (MPa)		HAZ toughness* (J)	Weld metal toughness* (J)		
AIB (540°C)	698	104,118,130 /avg. 117	94,104,97 /avg.98		
AJA (570°C)	697	143,137,111/ avg. 130	75,96,113 /avg.95		
AIA (600 °C)	679	120,63,111 /avg. 98	102,98,104/ avg.101		

Table 25 Tensile strength and notch *toughness of weld joint subjected to different PWHT

*at room temp. ** Fracture in base metal

Table 26 Bend test results of weld joints subjected to different PWHT

Identification	Side Bend	Remarks
AIA	1mm open discontinuity observed	Passed
AIA	No open discontinuity observed	Passed
AIA	No open discontinuity observed	Passed
AIA	No open discontinuity observed	Passed
AIB	No open discontinuity observed	Passed
AIB	No open discontinuity observed	Passed
AIB	No open discontinuity observed	Passed
AIB	No open discontinuity observed	Passed
AJA	No open discontinuity observed	Passed
AJA	No open discontinuity observed	Passed
AJA	No open discontinuity observed Passed	
AJA	No open discontinuity observed	Passed

	Table 27 Hardness of pipe joint subjected to different P wH1							
Location	AIB (540°C)	AJA (570°C)	AIA (600°C)					
Base Metal	198,203,199,205 Hv	199,214,221,208 Hv	212,212,192,212 Hv,					
	avg. 201 Hv	avg. 210 Hv	avg- 207 Hv					
HAZ	198,218,189,212,	224,242,187,215,	227,221,214,209,					
	251, 230,233,240 Hv	253,226,220,218 Hv	251,240,220,202 Hv					
	avg. 221 Hv	avg. 215 Hv	avg. 223 Hv					
Weld metal	224,212,206,203 Hv	209,209,223,215 Hv	233,238,206,212 Hv					
	avg 211 Hv	avg. 229 Hv	avg. 222 Hv					

Table 27 Hardness of pipe joint subjected to different PWHT

V. CONCLUSION

From this paper it is found that

- The steel has adequate resistance to HAZ hydrogen cracking at preheat of 100 °C.
- The steel has excellent toughness properties at room temperature.
- Toughness of steel decreases at lower temperatures. However at -25°C, the toughness level of base metal is much higher than that specified for base metal in EN standard.
- Welding consumables of both under matched and matched strength were used by the steel supplier. However, in this work, matching strength filler was used for pipe butt welding and joint properties were tested.
- Weld joint tensile and bend test properties are meeting the specification requirements.
- Weld and HAZ toughness properties are good and comparable to base metal.
- The pipe material could be hot bent in incremental bender to R/D ratio of 2.19 without any problem of cracking.
- The pipe material P36 has been welded in SMAW process, using the recommended welding materials and post weld heat treated at the temperatures of 570°C and 600°C meets the requirements for weld procedure qualification.
- The hardness and toughness tests carried out on the base metal subjected to ageing treatment at 350°C for limited duration of 1000 hours has not shown any embrittlement.
- The differences in hardness values of weld and HAZ between the three PWHT temperatures were not significant. The bend ductility of weld joints post weld heat treated at 540°C, 570°C and 600°C was satisfactory. The weld joints can be post weld heat treated at temperature between 540°C-600°C.

From the above we can formulate Guidelines for welding and bending of WB36.

Guidelines for Welding and bending of	WB36 to WB36 pipes		
Welding joint design	Single V groove		
Welding fillers TIG & SMAW	UNION I MO & E 9018M		
Electrode baking	300-350 °C / 2hrs		
Purging for root welding	Not required		
Preheat	100-150°C		
Interpass temperature control	300°C max.		
Bead technique	Stringer and Weave		
Preheat maintenance	Nil		
Thermal treatment immediately after welding	Can be cooled to room temp.		
Time duration between welding completion and PWHT	Not critical		
PWHT	570°C / 2.5 hr,		
Bending temp.	930-950 °C		
Time duration between bending and PWHT	Not critical		
Post bending Heat treatment Normalizing & Tempering	900 ° C, 1 mm/ min & 630 ° C, 2.5 mm/ min		

VI. ACKNOWLEDGEMENT

The authors are grateful for the encouragement, support, guidance and facilities extended for the research by National Institute of Technology (NIT), Tiruchirappalli, India and Bharat Heavy Electricals Ltd (BHEL), Tiruchirappalli, India.

REFERENCES

- [1]. Hahn, B.; Vandenberghe, B.; Vaillant, J.C.; Bendick.W.: The WB 36 Book, 2002; Vallourec & Mannesmann Tubes.
- [2]. ASME BPVC IX (2010), Boiler & Pressure Vessel Code, Section IX, Welding and Brazing Qualifications, as required by the States of Colorado, Connecticut, Delaware, Indiana, Minnesota, Nevada, North Carolina, Oklahoma, Rhode Island, Tennessee, et. alia.
- [3]. Indian Boiler Regulation-2010 guide
- [4]. Welding Engineering, 2012; Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli.
- [5]. Schick, M., 1996. Veroffentlichte Untersuchungen zum Werkstoff WB36, MPA Stuttgart, 1990 bis 1996.