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I. INTRODUCTION 
An application of the discrete model developed in the works [1, 2, 3 and 4] is made here to aBernoulli beam 

carrying n concentrated masses at various locations and subject to geometricalnonlinear. This model focuses on 

the known physical phenomenon of the dynamic behavior: the stretching of the beam created nonlinearity.This 

study shows that the developed model is used to study successfully clamped beams with many concentrated 

masses simply by changing the mass matrix, with respect to those of the uniform beam defined in [1].The 

concentrated masses treated here are static that may be poles or benches; there are other specialized works that 

reflect the dynamic forces exerted by cars such traveling at different speeds on a slender bridge. 

 

II. PRESENTATION AND NOMENCLATURE 
The studied model of a beam with nconcentrated massesM1,…..,Mi,….., and Mnis shown in Fig. 1:   

 
Figure1: Clamped beam with nconcentrated masses M1, …., Mi……. and Mn 

Fig. 2 shows the discrete system with N-dof considered in the present application, consists of N masses  m1+ M1, 

..., mi+ Mi , ......, mN+MN connected by N+2 coiled torsion springs and N +2 longitudinal springs, considered in 

its neutral position. 

ABSTRACT 
The discrete model used is an N-Degree of Freedom system made of N masses placed at the ends of 

solid bars connected by springs, presenting the beam flexural rigidity. The large transverse 

displacements of the bar ends induce a variation in their lengths giving rise to axial forces modeled by 

longitudinal springs causing nonlinearity. Nonlinear vibrations of clamped beam carrying n masses at 

various locations are examined in a unified manner.  A method based on Hamilton’s principle and 

spectral analysis has been applied recently to nonlinear transverse vibrations of discrete clamped 

beam, leading to calculation of the nonlinear frequencies. After solution of the corresponding linear 

problem and determination of the linear eigen vectors and eigen values, a change of basis, from the 

initial basis, i.e. the displacement basis (DB) to the modal basis (MB), has been performed using the 

classical matrix transformation. The nonlinear algebraic system has then been solved in the modal 

basis using an explicit method and leading to nonlinear frequency response function in the 

neighborhood of the first mode. If the masses are placed where the amplitudes are maximized, 

stretching in the bars becomes significant causing increased nonlinearity. 
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Figure 2: Discrete system with several degrees of freedom (N -dof), modelling a clamped beam with n 

concentrated masses 

Where the stiffness of the torsional representing the flexural rigidity and the longitudinal springs of the beam are 

[1]: 
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(2) determines the location coordinates of the n masses: 
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The choice of N is very important, it is chosen so that the indices i(locations coordinates of the n masses are 

natural whole numbers). All locations must coincide with one of the nodes of the discrete system. N>n, for 

nodes that do not receive the concentrated masses,Ms= 0. With this consideration N-n concentrated masses (M1, 

M2 ,......, MN) Msare equals to zero.  

 

III. FORMULATION DIMENSIONLESS 
The following equations link the dimensional values for dimensionless values (with an asterisk): 
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Where    is the density of the beam, E Young's modulus, 𝛼𝑖  le ratio of the concentrated mass i to the total mass 

of the beam, and i
 non dimensional location of the concentrated mass i. 

 

IV. FORMULATION IN THE NONLINEAR CASE 
Our method is to apply the Hamilton’s principle in the modal basis [1], we achieve a system of nonlinear (7) 

which can be written as a system of nonlinear differential equations:  
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We solve this equation using the explicit method in the Modal basis: The explicit formulation is based on an 

approximation which consists on assuming, when the first nonlinear mode shape is under examination, that the 
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The contributions  . . .
1 d is c 1 2

a
N

   in the modal basis are calculated by [1]: 
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The nonlinear frequency is calculated by:
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After resolving the equation in modal basis we calculate the amplitudes in displacement basis: 
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The amplitude is the maximum of (A1 A2 …. AN). We plot the dimensionless frequency curve as a function of 

dimensionless amplitude. 

 

V. RESULTS IN FOR FIVE CONCENTRATED MASSES 
5.1 Linear Case 

A computer program has been written, allowing any case of linear or nonlinear vibrations of a N-dof carrying n 

masses to be examined in a systematic and unified manner. 

Fig.3 shows beam loaded uniformly with five equal concentrated masses and equidistant(see numerical 

valuesfor linear vibrations  in Table 1 case 2,  and Fig.9 for nonlinear vibrations). 

 
Figure 3: Beam loaded uniformly with five equal and equidistant concentrated masses. 

 

 
Figure 4: First mode of beam loaded with all concentrated masses grouped in the middle of the beam 

 

In this case of charging, the first linear frequency changes a lot and the nonlinearity increasesseenumerical 

values for linear vibrations inTable 1 case 3, andFig.10 for non linear vibrations. In this same caseof chargingthe 

second linear frequency don’t changes (Fig.5).  

 

 
Figure 5: Second modeof beam loadedwith all concentrated masses grouped in the middle of the beam. 

 

If we charged the beam in maximum of amplitude like illustred in Fig.6, the second linear frequency changes a 

lot see Table 1 case 4. 
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Figure 6: Second mode of beam loaded in maximum of amplitude. 

 

Table 1 case 5 showsthat if we chargethe beam in maximum of amplitude (Fig.7), the third linear frequency 

changes a lot. 

 
Figure 7: Third mode of beamloadedchargedinmaximum of amplitude see Table 1 case 5. 

 

 
Figure8: Beam loaded in the nodes of the third mode. 

 

In this caseof charging (Fig.8), the third linear frequency doesn’t changes: it is equal of the beam without 

concentrated masses (Table 1 case 6).  

Table 1: The first three natural frequencies of the discrete system (N=49), for
1 / 2

i
 

and different cases of 

loading (different values of i


) 
 Case1 Case2 Case3 Case4 Case5 Case6 

αi 0 1/2 1/2 1/2 1/2 1/2 

1
  0 0.166 0.5 0.25 0.166 0.333 

2
  0 0.333 0.5 0.25 0.166 0.333 

3


 
0 0.5 0.5 0.5 0.5 0.5 

4


 
0 0.666 0.5 0.75 0.833 0.5 

5
  0 0.833 0.5 0.75 0.833 0.666 

c c n l

d is c  1  
  

23.3 11.52 6.16 11.77 11.62 9.51 

c c n l

d isc  2  
  

64.182 32.06 64.18 27.42 35.80 31.58 

c c n l

d is c  3  
  

125.64 62.17 94.41 53.40 48.47 68.71 

 

5.2 Nonlinear Case 

Fig.9 shows the nonlinear frequenciesof a beam loaded uniformly.We note that in this case, the resonance 

frequencies and the effect of the nonlinearity decrease. 
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Figure 9: Frequency curves according to the amplitude corresponding to the discrete systems with N = 49 dof, 

1= 1/6, 2 = 1/3, 3 = 1/2,4 =2/3, 5=5/6 and (1:i = 0; 2:i =1/10;3: i = 1/2;  4: i = 1) 

 

 

Fig. 10 shows the nonlinear frequencies of a beam where the masses are placed at the bellies. We notethat in this 

case, the first nonlinear frequency changes much. This is due to the mass inertia effect which increases the 

stretching in the bars causing increased nonlinearity. 

 
Figure10: Frequency curves according to the amplitude corresponding to the discrete systems with N = 49 dof, 

1= 1/6, 2 = 1/3, 3 = 1/2,4 =2/3, 5=5/6 and (1:i = 1/5; 2:1 =5=0, 2 =4=2/5, 3 =1/5;3: 1 =5=0, 2 

=4=1/5, 3 =3/5;  4: 1=2 =4 =5=0,  3 =1) 

 

VI. CONCLUSION 
The discrete model developed and validated in the case of a continuous beam presented in [1 and 2]was applied 

to the beams with n concentrated masses. Linear and nonlinear vibrations were examined. This shows the 

effectiveness of this discrete model, its formulation and the associated program for the study of linear and 

nonlinear vibrations of a beam with discontinuities in the distribution of masses. The linear frequency change 

much when installing the masses at the bellies. This is due to the mass inertia effect which increases if the 

masses are placed where the amplitudes are maximized. Stretching in the bars become significant causing 

increased nonlinearity. 
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