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I. INTRODUCTION 
          In this paper, we consider the third order linear neutral delay difference equations from 

                         2( ) ( ) ( ) ( ( ))) ( ) ( ( )) 0a n x n p n x n q n x n                                                (1) 

 where  0 0 0 0( ) , 1.., ,n N n n n n   is a nonnegative integer, subject to the following conditions 

 1 ( ), ( ), ( )H a n p n q n  are positive sequences. 
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   We set ( ) ( ) ( ) ( ( ))z n x n p n x n  .  

The oscillation theory of difference equations and their applications have received more attention in the last few 

decades, see [[1]-[4]], and the references cited therein. Especially the study of oscillatory behavior of second 

order equations of various types occupied a great deal of interest. However the study of third order difference 

equations have received considerably less attention even though such equations have wide applications. In [[5]-

[10]] the authors investigated the oscillatory properties of solutions of third order delay difference equations and 

in [[11]-[15]]. Motivated by the above observations, in this paper, we investigate the oscillatory behavior of 

solutions of equation (1). 

  Let  
0

max lim ( ), ( )
x

n n


  


 . By a solution of equation (1) we mean a real sequence x(n) which is 

defined for all 0n n    satisfying (1) for all 0n n . A non-trivial solution x(n) is said to be oscillatory if it 

is neither eventually positive or eventually negative; otherwise, it is nonoscillatory. Equation (1) is said to be 

oscillatory if all its solutions are oscillatory. 

 

II. MAIN RESULTS 

Lemma 2.1. Let x(n) be a positive solution of equation (1) for all 0n n such ( ) 0, ( ) 0,x n x n   and 

2 ( ) 0x n  on 1[ , )n  for some 1 0n n . Then for each k with 0 < k  < 1, there exists  2 1n n  such that 
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Proof.  From the Lagrange’s Mean value theorem, we have for 1n n , for some k 
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such that 
2( ) . ( ) 0n k n x n     and ( )x n is non-increasing, which implies that ( ) ( ( ))x k x n    

and hence, using equation (3) 
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Apply Lagrange’s Mean value theorem once again for x(n) on 1[ , ( )]n n  for 1 ( )n n n  . Now 
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For (0,1),K  we can find 2 1n n    
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From equation (4) and for all 2n n , we have  
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Lemma 2.2 Let x(n) be a  positive  solution of equation (1), then the corresponding sequence z(n) satisfies the 

following condition z(n) > 0,     0,z n    2   0,z n    3   0z n    for some 1 0n n .  Then there 

exits  2 1n n   such that  
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Proof. We define a function H(n) for 2 1n n n  , as  

                                              

2

2
2

( )
( ) ( ) ( ) ( )

2

M n n
H n n n z n z n


                                       (7) 

                                      

2
22

2

( )
( ) ( ) ( ) ( ) ( )

2

M n n
H n z n n n z n z n


                                  (8) 

By Taylor’s Theorem, 
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Theorem 2.3.  Assume that 1( )H  to 2( )H   hold, then equation (1) is oscillatory. 

Proof: Suppose, if possible that the equation (1) has a nonoscillatory solution. Without loss of generality 

suppose that x(n) is a positive solution of equation (1). We shall discuss the following cases for z(n). 

(i) ( ) 0,z n   ( ) 0,z n   
2 ( ) 0,z n   

3 ( ) 0,z n   

(ii) ( ) 0,z n   ( ) 0,z n   
2 ( ) 0,z n   

3 ( ) 0,z n   

Case 1. ( ) 0,z n   ( ) 0,z n   
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This contradicts  2H .  Thus k = 0. Moreover, the inequality, 0 ( ) ( )x n z n   implies lim ( ) 0
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We have x(n) = z(n) -  p(n) ( ( ))x n , we obtain further  
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From equation (13) 
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Taking lim sup in the above inequality, we obtain contradiction with 3H . 
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