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ABSTRACT
In this paper, we establish some sufficient conditions for the oscillation of solutions of third order
linear neutral delay difference equations of the form

A(amA®(x(n)+ p()x(z(n))) )+ (M x(a(n) =0.

. INTRODUCTION
In this paper, we consider the third order linear neutral delay difference equations from

A(a(n) A% (x(n) + p)X(z()) + A(M)x(o(n) = 0 (1)
where n € N(n,) ={n,,n, +1..,},ny is a nonnegative integer, subject to the following conditions
(H,)a(n), p(n),q(n) are positive sequences.

n-1
0< p(n) < p<L(n) <n,o(n) <n.lime(n) = limo(n) = and R(M= > — >o0as N>

0 0 1 .
(HZ)rg% ;‘;(%thnqﬂ)jzw-

_ 01 KM 2} a(s+1
L S

We set z(n) = x(n) + p(n)x(z(n)) .

The oscillation theory of difference equations and their applications have received more attention in the last few
decades, see [[1]-[4]], and the references cited therein. Especially the study of oscillatory behavior of second
order equations of various types occupied a great deal of interest. However the study of third order difference
equations have received considerably less attention even though such equations have wide applications. In [[5]-
[10]] the authors investigated the oscillatory properties of solutions of third order delay difference equations and
in [[11]-[15]]. Motivated by the above observations, in this paper, we investigate the oscillatory behavior of
solutions of equation (1).

Let &= max{ﬁlimoa(n),r(n)}. By a solution of equation (1) we mean a real sequence x(n) which is
X—>

defined for all N >N, — @ satisfying (1) for all N >N, . A non-trivial solution x(n) is said to be oscillatory if it

is neither eventually positive or eventually negative; otherwise, it is nonoscillatory. Equation (1) is said to be
oscillatory if all its solutions are oscillatory.

1. MAIN RESULTS
Lemma 2.1. Let x(n) be a positive solution of equation (1) for all N >ngsuch x(n)>0,Ax(n) =0, and

A’x(n) <0on [n,, o) for some N, >N, . Then for each k with 0 < k < 1, there exists N, >N, such that
x(n—-o) Sk n-o
x(n) n

Proof. From the Lagrange’s Mean value theorem, we have for N >N, , for some k

,n>n,. )
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AX(k) — X(n) — X(J(n))
n—o(n)
such that o(n) < k < n.A?x(n) <0and AX(n) is non-increasing, which implies that AX(K) < Ax(c(n))
and hence, using equation (3)

: for some k (3)

x(n) < x(a(n)) + Ax(a(n))(n—o(n))
X _ g, AW sy
x(c(n)) x(o(n))
Apply Lagrange’s Mean value theorem once again for x(n) on [ﬂl, o(n)] for n> n, + o(n) . Now
AX(C) — X(O-(n)) — X(nl)

(4)

for some ¢ such that N, < ¢ < o(n) and Ax(c) > AX(a(n)) which implies

o(n)—n,
X(a(n)) = Ax(a(n))(o(n)—n,) . Hence
X)) 4 omy—n
Ax(o(n)) !
For K €(0,1), wecan find n, 2n, + o
x(o(n))
m > Ko(n) for n>n, (5)
From equation (4) and for all n = n, , we have
x(n) 1
X(o(M) <1+ Ko () (n—o(n))
n  o(n
Ko(n) Ko(n)
< n
K (O'(n))
Hence,
x(@(n) | K(a(m) ©
x(n) N

Lemma 2.2 Let x(n) be a positive solution of equation (1), then the corresponding sequence z(n) satisfies the
following condition z(n) > 0, Az(n) > 0, Azz(n) > 0, Asz(n) > 0 forsome N, >N,. Then there
2(n) | Mn
Az(n) 2
Proof. We define a function H(n) for n=>n, =2 n,, as

H(n) = (n—n,)z(n) -

exits N, =N, such that , N=n, foreachM,0<M<1.

2
WAz(n) )

AH(n) = z(n) +(n—n,)Az(n) _I\/I(nT—nz)z

A*z(n) ®)
By Taylor’s Theorem,
(n — n2)2 2
z(n) > z(n,) +(n—n,)Az(n,) +TA z(n)
From (8)

2 A%z(n)

AH(n) = 2(n,) +(n=n,)Az(n,) +%Azz(n) +(n-n,)Az(n) _w

which implies AH(n) >0 and H(n+1) > H(n) > H(n,) =0 for every N> n, from (7)
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(n—n,)z(n) -

M(”T_””zm(n) >0

z(n) _ Mn
= > fornxn,.
Az(n) 2
Theorem 2.3. Assume that (H,) to (H,) hold, then equation (1) is oscillatory.

Proof: Suppose, if possible that the equation (1) has a nonoscillatory solution. Without loss of generality
suppose that x(n) is a positive solution of equation (1). We shall discuss the following cases for z(n).

(i) z(n) >0, Az(n)<0, A%*z(n)>0, A%z(n)<0,
(i) z(n) >0, Az(n)>0, A’z(n)>0, A’z(n)<0,
case 1. z(n) >0, Az(n)<0, A%*z(n) >0, A%z(n)<0,
Since z(n) > 0and Az(n) <0, then there exists finite limits !]ETO]O z(n) =k . We shall prove that k = 0.
k(1—-p)
p

which implies

Assume that k > 0. Then for any >0, we have k+e>2z(n)>k. Let 0<e<

, we have

k+e> x(n) >k — p(n)x(z(n)) .
x(n) >k — p(k+€) =m(k+€)
x(n) > mz(n)
k—p(k+e€)

When m = ————— . Now from the equation (1) we have
(k+¢€)

A(a(ma? ((x()+ p(mx(z(n)))) =—a)x(c(n) —A(a(n)A’z(n) ) = g(n)mz(a(s))

Summing the above inequality from n to co we get,

—iA(a(t)Azz(t)) > miq(s)z(a(s))
a(n)A?z(n) > miq(s)z(a(s))

Using the fact that Z(o(n)) > K we obtain, a(n)A®z(n) > meq(s) which implies

$=n

A? (z(n)) = mk (ﬁgq@)j . Summing from n to oo we have,
@ ® 1 &
;:A z(s)zmkg {%z‘q(t)]

_Az(n) > mki [%iq(t)]

Summing the last inequality N, to oo
0 0 l 0
> mk — t
)=y 3 (30 |
This contradicts (H, ). Thus k = 0. Moreover, the inequality, 0 < x(n) < z(n) implies I|1im x(n)=0.
Case 2. Z(n) >0, Az(n) >0, A%z(n)>0, A’z(n) <0,
We have x(n) = z(n) - p(n) X(z(N)) , we obtain further
X(o(n)) =z(o(n)) - p(a(n))x(o(n) —7)
> 2(o(n)) - p(a(n))x(c(n))
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> (1= p(a(n)z(a(n).

From equation (1) we have,
A(a(n)Aa’z(n)) < -q(n)x(a(n))
A(a(n)a?z(n)) < —q(n)d- p(a(n)z(a(n))
a(n)A%z(n)

=nN————= N>
w(n) =n () ,n>n 9)

AW(n) = a(n+DA%z(n+1) nl A a(n)A%z(n)
- Az(n+1) Az(n)
~w(n+1) o A(a(n)Aa®z(n)) a(n)A’z(n)A*z(n)
~ n+l Az(n+1) Az(n)Az(n +1)

Wn+D) n(A(a(n)Azz(n)) _a(n 4720 +1))22 j
n+1 Az(n) (Az(n+1))
W+ nq(n)d-plo(n)z(a(n)) _ na(n)
T on+l Az(n) (n+1)%a*(n+1)
Also from Lemma (2.1) with x(n) = Az(n)

X(o(n)) S Kao(n) o(n)=n
xn)  n -
Az(o(n)) S Ko(n)
Az(n)  n
1 _Ko(n 1

Az(n) n Az(o(n))

w?(n+1) (10)

(1)

for o(n)>n >n,.

By Lemma (2.2)
2(o(n) . Ko(n) z(o(n))
Az(n) n  Az(o(n))
S Ka(n) Mo(n)
. n 2
2(a(n) _ KM (o(n))’
Azn) 2 n

(12)

Using (11) and (12) in (10)

Aw(n) < —-q(n)(1- D(U(n)))(

Using the inequality

w'(n+1)  (13)

KM a?(n) +W(n+1)_ na(n)
2 n+1 (n+1)%a’(n+1)

2
Vx—UxZSEV—,U >0
4U
1 U na(n)

And put X=w(n+1),V = U= > , we have
n+1 (n+D°a“(n+1)
2
w(n+1) nza(?) W (n+1) < a‘(n+1) 14)
(n+1) (n+D°a*(n+1) 4na(n)

From equation (13)
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KM (o(n))? N a’(n+1)
2 n 4na(n)

Aw(n) < -nq(n)(1- p(c(n))) (15)

Summing the last inequality from N, to N—1 we obtain

<w(n,)

= B KM (o(s))? ) a’(s+1)
mZn‘,zq(s)(l p(o(s))) > 2a0)

Taking lim sup in the above inequality, we obtain contradiction with H,.
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