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I. INTRODUCTION 
The construction of structures is a regular operation which heavily involves sandcrete blocks for load 

bearing or non-load bearing walls. The cost/stability of this material has been a major issue in the world of 

construction where cost is a major index. Concrete is an indispensable material of construction of civil 

engineering structures, and the ease or cost of its production accounts for the level of success in environmental 

upgrading involving the construction of new roads, buildings, dams, water structures and the renovation of such 

structures.  To produce the sandcrete several primary components such as cement, sand, aggregates and some 

admixtures are to be present in varying quantities and qualities. Unfortunately, the occurrence and availability of 

these components vary very randomly with location and hence the attendant problems of excessive or limited 

quantities of the materials occurring in different areas. Where the scarcity of one component prevails 

exceedingly, the cost of the sandcrete production increases geometrically as such problems obviate the need to 

seek alternative materials for partial or full replacement of the scarce component when it is possible to do so 

without losing the quality of the concrete.   

 

1.1 Optimization Concept  

Every activity that must be successful in human endeavour requires planning. The target of planning is 

the maximization of the desired outcome of the venture. In order to maximize gains or outputs it is often 

necessary to keep inputs or investments at a minimum at the production level. The process involved in this 

planning activity of minimization and maximization is referred to as optimization, (Orie O.U. and Osadebe 

N.N., 2009). In the science of optimization, the desired property or quantity to be optimized is referred to as the 

objective function. The raw materials or quantities whose amount of combinations will produce this objective 

function are referred to as variables.  The variations of these variables produce different combinations and have 

different outputs. Often the space of variability of the variables is not universal as some conditions limit them. 

These conditions are called constraints. For example, money is a factor of production and is known to be limited 

in supply. The constraint at any time is the amount of money available to the entrepreneur at the time of 

investment. Hence or otherwise, an optimization process is one that seeks for the maximum or minimum value 

and at the same time satisfying a number of other imposed requirements (Majid, K.I., 1974). The function is 

called the objective function and the specified requirements are known as the constraints of the problem. 
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Everybody can make concrete but not everybody can make structural concrete. Structural concrete are 

made with specified materials for specified strength. Concrete is heterogeneous as it comprises sub-materials. 

Concrete is made up of fine aggregates, coarse aggregates, cement, water, and sometimes admixtures. David and 

Galliford (2000), report that modern research in concrete seeks to provide greater understanding of its 

constituent materials and the possibilities of improving its qualities. For instance, Portland cement has been 

partially replaced with ground granulated blast furnace slag (GGBS), a by–product of the steel industry that has 

valuable cementitious properties (Ecocem Ireland Ltd, 1993). 

 

1.2 Concrete Mix optimization  

  The task of concrete mix optimization implies selecting the most suitable concrete aggregates from the 

data base (Genadij and Juris, 1998).  Several methods have been applied. Examples are by Mohan (2002), 

Simon (2003), Lech (1999), Czarneki (1994). Nordstrom and Munoz (1994) proposed an approach which adopts 

the equilibrium mineral assemblage concept of geochemical thermodynamics as a basis for establishing mix 

proportions. Bloom and Bentur (1995) reports that optimization of mix designs require detailed knowledge of 

concrete properties. Low water-cement ratios lead to increased strength but will negatively lead to an 

accelerated and higher shrinkage. Apart from the larger deformations, the acceleration of dehydration and 

strength gain will cause cracking at early ages.  

 

1.3 Modeling  

               Modeling means setting up mathematical equation or construction of physical or other systems. Many 

factors of different effects occur in nature in the world simultaneously dependently or independently. When they 

interplay they could inter-affect one another differently at equal, direct, combined or partially combined rates, to 

generate varied natural constants in the form of coefficients and/or exponents. The challenging problem is to 

understand and asses these distinctive constants by which the interplaying factors underscore some unique 

natural phenomenon towards which their natures tend, in a single, double or multi phase systems. For such 

assessment a model could be constructed for a proper observation of response from the interaction of the factors 

through controlled experimentation followed by schematic design where such simplex lattice approach of the 

type of Henry Scheffe (1958) optimization theory could be employed. Also entirely different physical systems 

may correspond to the same mathematical model so that they can be solved by the same methods. This is an 

impressive demonstration of the unifying power of mathematics (Erwin Kreyszig, 2004). 

 

II. LITERATURE REVIEW 
In the past ardent researchers have done works in the behavior of concrete under the influence of its 

components. With given proportions of aggregates the compressive strength of concrete depends primarily upon 

age, cement content, and the cement-water ratio (Reynolds, C. and Steedman, J.C, 1981). Of all the desirable 

properties of hardened concrete such as the tensile, compressive, flexural, bond, shear strengths, etc., the 

compressive strength is the most convenient to measure and is used as the criterion for the overall quality of the 

hardened concrete (Majid, K.I., 1974). Every activity that must be successful in human endeavour requires 

planning whose target is the maximization of the desired outcome of the venture. (Orie O.U. and Osadebe N.N., 

2009). Optimization process is one that seeks for the maximum or minimum value and at the same time 

satisfying a number of other imposed requirements (Majid, K.I., 1974). Modern research in concrete seeks to 

provide greater understanding of its constituent materials and possibilities of improving its qualities (David and 

Galliford, 2000). The task of concrete mix optimization implies selecting the most suitable concrete constituents 

from the data base (Genadij and Juris, 1998). Optimization of mix designs require detailed knowledge of 

concrete properties (Bloom and Bentur, 1995). The task of concrete mix optimization implies selecting the most 

suitable concrete aggregates from a data base (Genadji and Juris, 1998). Mathematical models have been used to 

optimize some mechanical properties of concrete made from Rice Husk Ash (RHA), - a pozolanic waste 

(Scheffe 1958, Obam and Osadebe’s, 2007) . 

 

The inclusion of mound soil in mortar matrix resulted in a compressive strength value of up to 

40.08N/mm2, and the addition of 5% of mound soil to a concrete mix of 1:2:4:0.56 (cement: sand: coarse 

aggregate: water) resulted in an increase of up to 20.35% in compressive strength, (Felix et al, Alu and 

Sulaiman, 2000).Simplex is a structural representation (shape) of lines or planes joining assumed positions or 

points of the constituent materials (atoms) of a mixture, and they are equidistant from each other (Jackson N., 

1983). When studying the properties of a q-component mixture, which are dependent on the component ratio 

only the factor space is a regular (q-1)–simplex (S. Akhnazarov and V. Kafarov , 1982). Simplex lattice designs 

are saturated, that is, the proportions used for each factor have m + 1 equally spaced levels from 0 to 1 (xi = 0, 

1/m, 2/m, … 1), and all possible combinations are derived from such values of the component concentrations, 

that is, all possible mixtures, with these proportions are used (S. Akhnazarov and V. Kafarov, 1982).  
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Sandcrete blocks are masonry units used in all types of masonry constructions such as interior and 

exterior load bearing walls, fire walls party walls, curtain walls, panel walls, partition, backings for other 

masonry, facing materials, fire proofing over structured steel members, piers, pilasters columns, retaining walls, 

chimneys, fireplaces, concrete floors, patio paving units, curbs and fences (R.C.Smith, 1973). The block is 

defined by ASIM as hollow block  when the cavity area exceeds 25% of the gross cross-sectional area, 

otherwise it belongs to the solid category (R.C.Smith, 1973). Obodo (1999) stated that methods of compaction 

during moulding has a marked effect on the strength of sandcrete blocks. Hence, it was found that blocks from 

factories achieving compaction by using wooden rammers had higher strength than those compacted by 

mechanical vibration, except when the vibration is carried out with additional surcharge. 

 

III. BACKGROUND THEORY 
This is a theory where a polynomial expression of any degrees, is used to characterize  a simplex lattice 

mixture components. In the theory only a single phase mixture is covered. The theory lends path to a unifying 

equation model capable of taking varying mix component variables to fix equal mixture properties. The 

optimization that follows selects the optimal ratio from the component ratios list that is automatedly generated. 

This theory is the adaptation to this work of formulation of response function for compressive strength of 

sandcrete block.    

 

3.1 Simplex Lattice  

  Simplex is a structural representation (shape) of lines or planes joining assumed positions or points of 

the constituent materials (atoms) of a mixture (Jackson N., 1983), and they are equidistant from each other. 

Mathematically, a simplex lattice is a space of constituent variables of X1, X2, X3,……, and Xi which obey these 

laws: 

 

Xi< 0 

X ≠ negative                    …………………………………………………………………….3.1  

0 ≤ xi ≤ 1 

∑xi = 1 

i=1 

 

That is, a lattice is an abstract space.  

To achieve the desired strength of concrete, one of the essential factors lies on the adequate proportioning of 

ingredients needed to make the concrete. Henry Scheffe, (1958), developed a model whereby if the compressive 

strength desired is specified, possible combinations of needed ingredients to achieve the compressive strength 

can easily be predicted by the aid of computer, and if proportions are specified the compressive strength can 

easily be predicted.  

 

 

3.2 Simplex Lattice Method  

In designing experiment to attack mixture problems involving component property diagrams the 

property studied is assumed to be a continuous function of certain arguments and with a sufficient accuracy it 

can be approximated with a polynomial (Akhnazarova and Kafarov, 1982, pp 242). When investigating multi-

components systems the use of experimental design methodologies substantially reduces the volume of an 

experimental effort. Further, this obviates the need for a special representation of complex surface, as the 

wanted properties can be derived from equations while the possibility to graphically interpret the result is 

retained.  

 

As a rule the response surfaces in multi-component systems are very intricate. To describe such surfaces 

adequately, high degree polynomials are required, and hence a great many experimental trials. A polynomial of 

degree n in q variable has C
n

q+n coefficients. If a mixture has a total of q components and x1 be the proportion of 

the i
th

 component in the mixture such that,  

 

xi>= 0 (i=1,2, ….q),  . . . . . . . . (3.2) 

 

then the sum of the component proportion is a whole unity i.e. 

 

X1 + x2 + x3 + x4 = 1 or ∑xi – 1 = 0  …. ..               ..                      ..                  (3.3) 
 

where i = 1, 2, …., q… Thus the factor space is a regular (q-1) dimensional simplex. In (q-1) dimensional 

simplex if q = 2, we have 2 points of connectivity. This gives a straight line simplex lattice. If q=3, we have a 
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triangular simplex lattice and for q = 4, it is a tetrahedron simplex lattice, etc. Taking a whole factor space in the 

design we have a (q,m) simplex lattice whose properties are defined as follows: 

            i. The factor space has uniformly distributed points, 

            ii.  Simplex lattice designs are saturated (Akhnarova and Kafarov, 1982). That is,    

                 the proportions used for each factor have m + 1 equally spaced levels from 0     

                  to 1 (xi = 0, 1/m, 2/m, … 1), and all possible combinations are derived from  

                  such values of the component concentrations, that is, all possible mixtures,  

                  with these proportions are used. 

 

Hence, for the quadratic lattice (q,2), approximating the response surface with the second degree polynomials  

(m=2), the following levels of every  factor must be used 0, ½ and 1; for the fourth order (m=4) polynomials, the 

levels are 0, 1/4, 2/4, 3/4 and 1, etc; Scheffe, (1958), showed that the number of points in a (q,m) lattice is given 

by  

 

 Cq+m-1 = q(q+1) … (q+m-1)/m! …………….. .. .. .. .. (3.4) 

 

3.2.1The (4,2) Lattice Model  

The properties studied in the assumed polynomial are real-valued functions on the simplex and are 

termed responses. The mixture properties were described using polynomials assuming a polynomial function of 

degree m in the q-variable x1, x2 ……, xq, subject to equation 3.1, and will be called a (q,m) polynomial having 

a general form: 

 

Ŷ= b0 +∑biXi + ∑bijXiXij + … + ∑bijk + ∑bi1i2…inXi1Xi2…Xin …… .. .. (3.5) 

           
i≤1≤q         i≤1<j≤q                        i≤1<j<k≤q 

Ŷ = b0 +b1X1 + b2X2 + b3X3 + b4X4 + b12X1X2 + b13X1X3 + b14X1X4 + b24X2X4 + b23X2X3+ b34X3X4 

 b11X
2
1 + b22X

2
2+ b33X

2
3 + b44X

2
4      …  …    (3.6)  

 

     where b is a constant coefficient. 

The relationship obtainable from Eqn (3.6) is subjected to the normalization condition of Eqn. (3.3) for a sum of 

independent variables. For a ternary mixture, the reduced second degree polynomial can be obtained as follows: 

From Eqn. (3.3)  

 X1+X2 +X3 +X4=1    ………………………………….(3.7) 

i.e  

 b0 X2 + b0X2+ b0 X3+ b0X4 = b0 …………………………….. (3.8) 

 

Multiplying Eqn. (3.7) by X1, X2, x3, x4, in succession gives 

            X1
2
 = X1 - X1X2 - X1X3 - X1X4 

            X2
2
 = X2 - X1X2 - X2X3 - X2X4                ……………………….. (3.9) 

            X3
2
 = X3 - X1X3 - X2X3 - X3X4 

            X4
2
 = X4 - X1X4 - X2X4 - X3X4 

 

Substituting Eqn. (3.8) into Eqn. (3.9), we obtain after necessary  transformation  that    

 Ŷ =   (b0 + b1 + b11 )X1   +   (b0 + b2 + b22 )X2 + (b0 +  b3 + b33)X3 + (b0 +  b4 + b44)X4 +   

           (b12 - b11 - b22)X1X2 + (b13 - b11 - b33)X1X3 + (b14 - b11 - b44)X1X4 + (b23 - b22 -      

           b33)X2X3  + (b24 - b22 - b44)X2X4 + (b34 - b33 - b44)X3X4                      …  .. ... ( 3.10)  

 

 If we denote 

                    βi   = b0 + bi + bii 

     and         βij  = bij  - bii - bjj, 

 

 then we arrive at the reduced second degree polynomial in 6 variables:  

                  Ŷ = β1X1+ β2X2 + β3X3 + β4X4 + β12X1X2+ β13X1X3 + β14X1X4+ β23X2X23+ β24X2X4 +  

                          β34X3X4 

          . .      ( 3.11 )  

Thus, the number of coefficients has reduced from 15 in Eqn 3.6 to 10 in Eqn 3.11. That is, the reduced second 

degree polynomial in q variables is  

 

Ŷ = ∑ βiXi +∑βijXi .. .. .. .. .. ..   ( 3.12 )  
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q X=1

q 

3.2.2 Construction of Experimental/Design Matrix  

From the coordinates of points in the simplex lattice, we can obtain the design matrix. We recall that 

the principal coordinates of the lattice, only a component is 1 (Table 3.1) zero. 
 

Table 3.1 Design matrix for (4,2) Lattice 

N X1 X2 X3 X4 Yexp 

1 1 0 0 0 Y1  

2 0 1 0 0 Y2 

3 0 0 1 0 Y3 

4 0 0 0 1 Y4 

5 ½ 1/2 0 0 Y12 

6 ½ 0 1/2 0 Y13 

7 1//2 0 0 1/2 Y14 

8 0 1/2 1/2 0 Y23 

9 0 1/2 0 1/2 Y24 

10 0 0 1/2 1/2 Y34 
 
 

Hence if we substitute in Eqn. (3.11), the coordinates of the first point (X1=1, X2=0, X3=0,and X4=0, Fig (3.1), 

we get that Y1= β1.  

And doing so in succession for the other three points in the tetrahedron, we obtain  

 Y2= β2, Y3= β3, Y4= β4            . . . . . . . (3.13) 

The substitution of the coordinates of the fifth point yields 

 Y12 = ½ X1 + ½X2 + ½X1.
1
/2X2 

       =  ½ β1 + ½ β 2 + 
1
/4 β12 

But as βi = Yi then 

 Y12 = ½ β1 - ½ β 2 - 
1
/4 β12 

Thus 

 β12   = 4 Y12 - 2Y1 - 2Y2   . . . . . (3.14)  

And similarly, 

 β13   = 4 Y13 - 2Y1 - 2Y2 

 β23   = 4 Y23 - 2Y2 - 2Y3 

 etc. 

Or generalizing, 

 βi   =  Yiand βij  = 4 Yij - 2Yi - 2Yj . . . . . . .(3.15)  

which are the coefficients of the reduced second degree polynomial for a q-component mixture, since the four 

points defining the coefficients βij lie on the edge. The subscripts of the mixture property symbols indicate the 

relative content of each component Xi alone and the property of the mixture is denoted by Yi.  

 

3.2.3 Actual and Pseudo Components 

The requirements of the simplex that 

 

       ∑ Xi = 1  

 

makes it impossible to use the normal mix ratios such as 1:3, 1:5, etc, at a given water/cement ratio. Hence a 

transformation of the actual components (ingredient proportions) to meet the above criterion is unavoidable. 

Such transformed ratios say X1
(i)

, X2
(i)

, and X3
(i)

 and X4
(i)

for the i
th 

experimental points are called pseudo 

components. Since X1, X2 and X3 are subject to ∑ Xi = 1, the transformation of cement:sand:quarry dust :water 

at say 0.30 water/cement ratio cannot easily be computed because X1, X2, X3 and X4 are in pseudo expressions 

X1
(i)

, X2
(i)

,  X3
(i) 

 and X4
(i)

.For  the i
th 

experimental point, the transformation computations are to be done. 
 

The arbitrary vertices chosen on the triangle are A1(1:6.25:3.75:0.32), A2(1:5.64:3.36:30) A3(1:4.88:2.92:0.29), 

and  A4(1:6.26:3.74:0.37), based on experience and earlier research reports. 

 

Fig 3.1 Tetrahedral Simplex 
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3.2.4 Transformation Matrix 

If Z denotes the actual matrix of the i
th

 experimental points, observing from Table 3.2 (points 1 to 3), 

BZ = X =1 . . . . . . . . . .(3.16) 

  where B is the transformed matrix. 

Therefore,     B = I.Z
-1 

Or  B=Z
-1

 . . . . . . . . (3.17) 

For instance, for the chosen ratios A1, A2 , A3 and A4 (fig. 3.6), 

 

          1     6.25  3.75   0.32 

Z =     1    5.64   3.36   0.30     . . .  . . . (3.18) 

          1    4.88   2.92   0.29           

          1    6.26   3.74   0.37   

 

 

 

From Eqn 3.17, 

 

 

B =Z
-1    

 
 

            -0.55        1.00         4.09    -3.55 

Z
-1

 =   -17.53      27.14      -12.79     3.18 

           30.52     -44.29        19.68   -5.91 

          -10.39     -14.29          6.49  18.18 

 

 

Hence, 

                 

 B Z
-1

 =   Z. Z
-1

   

 

 

          1     6.25  3.75   0.32      -0.55        1.00       4.09   -3.55 

   =     1    5.64   3.36   0.30    -17.53      27.14    -12.79    3.18  

          1    4.88   2.92   0.29      30.52     -44.29    19.68   -5.91     

          1    6.26   3.74   0.37    -10.39     -14.29       6.49  18.18 

 

 

                        1        0        0      0 

                            =           0       1        0      0  

                                         0       0        1      0      

                                         0       0        0      1  

 

 

Thus, for actual component Z, the pseudo component X is given by  

 

    X1
(i)

              -0.55        1.00        4.09   -3.55      Z1
(i)

 

X  X2
(i)

   =  B   -17.53      27.14    -12.79    3.18   Z Z2
(i)

 

     X3
(i)

             30.52     -44.29     19.68   -5.91      Z3
(i)

 

     X4
(i)

     
           

-10.39     -14.29       6.49  18.18
 
     Z4

(i)
      

 

                   

which gives the Xi(i=1,2,3,4) values in Table 3.2. 

 

The inverse transformation from pseudo component to actual component is expressed as  

 AX  = Z . . . . . . . . . (3.19)  

   where A  = inverse matrix 

    A  =  Z X
-1

. 

From Eqn 3.16, X = BZ, therefore, 
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 A = Z. (BZ)
-1 

 
A = Z.Z

-1
B

-1 

 
A =  IB

-1 

     
 = B

-1 
. . . . . . . . . (3.20) 

This implies that for any pseudo component X, the actual component is given by  

 

    Z1
(i)

           1     6.25  3.75   0.32       X1
(i)

 

Z  Z2
(i)

   =  B 1    5.64   3.36   0.30   X  X2
(i) 

.  . . . .

 (3.21) 

     Z3
(i)                

1    4.88   2.92   0.29 
        

X3
(i) 

        
Z4

(i)                
1    6.26   3.74   0.37       X4

(i) 

 

Eqn 3.21 is used to determine the actual components from points 5 to 10 , and the control values from points 11 

to 13 (Table 3.2). 

 

Table 3.2 Values for Experiment 

N X1 X2 X3 X4 RESPONSE Z1 Z2 Z3 Z4 

1 1 0 0 0 Y1 1.00 6.25 3.75 0.32 

2 0 1 0 0 Y2 1.00 5.64 3.36 0.3 

3 0 0 1 0 Y3 1.00 4.88 2.92 0.29 

4 0 0 0 1 Y4 1.00 6.26 3.74 0.37 

5 ½ 1/2 0 0 Y12 1.00 5.945 3.555 0.31 

6 ½ 0 1/2 0 Y13 1.00 5.565 3.335 0.305 

7 1/2 0 0 1/2 Y14 1.00 6.255 3.745 0.345 

8 0 1/2 1/2 0 Y23 1.00 5.26 3.14 0.295 

9 0 1/2 0 1/2 Y24 1.00 5.95 3.55 0.335 

10 0 0 1/2 1/2 Y34 1.00 5.57 3.33 0.33 

Control points 

11 0.25 0.25 0.25 0.25 Y1234 1.00 5.76 3.44 0.32 

12 0.5 0.25 0.25 0 Y1123 1.00 5.76 3.45 0.31 

13 0.25 0.5 0 0.25 Y1224 1.00 5.95 3.55 0.32 

 

3.2.5 Use of Values in Experiment 

During the laboratory experiment, the actual components were used to measure out the appropriate 

proportions of the ingredients: cement, sand, aggregate dust and water were for casting the samples. The values 

obtained are presented in Tables in section 5. 

 

3.3 Adequacy of Tests 

This is carried out by testing the fit of a second degree polynomial (Akhnarova and Kafarov 1982). 

After the coefficients of the regression equation has been derived, the statistical analysis is considered 

necessary, that is, the equation should be tested for goodness of fit, and the equation and surface values bound 

into the confidence intervals. In experimentation following simplex-lattice designs there are no degrees of 

freedom to test the equation for adequacy, so, the experiments are run at additional so-called control points. 

The number of control points and their coordinates are conditioned by the problem formulation and experiment 

nature. Besides, the control points are sought so as to improve the model in case of inadequacy. The accuracy of 

response prediction is dissimilar at different points of the simplex. The variance of the predicted response, SY
2
, 

is obtained from the error accumulation law. To illustrate this by the second degree polynomial for a ternary 

mixture, the following points are assumed: 

Xi can be observed without errors (Akhanarova and Kafarov, 1982). 

The replication variance, SY
2
, is similar at all design points, and  

Response values are the average of ni and nij replicate observations at appropriate points of the simplex 

Then the variance SŶi and  SŶij  will be 

 (SŶ
2
)i=SY

2
/ni . . . . . . . . (3.22)  

 (SŶ
2
)ij=SY

2
/nij. . . . . . . . . (3.23)  

In the reduced polynomial, 

Ŷ = β1X1+ β2X2 + β3X3 + β4X4 + β12X1X2+ β13X1X3 + β14X1X4+ β23X2X23+ β24X2X4 +  

                          β34X3X4     . . . .(3.24) 

If we replace coefficients by their expressions in terms of responses, 
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1≤i<j≤q 1≤i≤q 

1≤i≤q 1≤i<j≤q 

βi = Yi and βij = 4Yij – 2Yi – 2Yj 

Ŷ  = Y1X1 + Y 2X2 + Y 3X3++ Y4X4 +(4Y12 – 2Y1 – 2Y2 )X1X2  + (4Y13 – 2Y1 – 2Y3)X1X3  + (4Y14 – 2Y1 – 

2Y4)X1X4  + (4Y23 – 2Y2 - 2Y3 )X2X3 + (4Y24 – 2Y2 - 2Y4 )X2X4+ (4Y34 – 2Y3 - 2Y4 )X3X4 

 

    = Y1(X1 – 2X1X2 –2X1X3 -2X1X4  )+ Y2(X2  - 2X1X2 - 2X2X3 -2X2X4)+ Y3(X3 - 2X1X3  + 2X2X3 +2X3X4) + 

Y4(X4 - 2X1X4  + 2X2X4 +2X3X4) + 4Y12X1X2 + 4Y13X1X3 + 4Y14X1X4 + 4Y23X2X3  + 4Y24X2X4  + 4Y34X3X4     .

 . . . . . .(3.25) 

Using the condition X1+X2 +X3 =1, we transform the coefficients at Yi 

 X1 – 2X1X2 – 2X1X3 =X1 – 2X1(X2 + X3) 

          = X1 – 2X1(1 - X1) = X1(2X1 – 1) and so on. . (3.26)  

Thus  

Ŷ = X1(2X1 – 1)Y1 + X2(2X2 – 1)Y2 + X3(2X3 – 1)Y3+ X4(2X4 – 1)Y4+ 4Y12X1X2+ 4Y13X1X3+ 4Y14X1X4+ 

4Y23X2X3   + 4Y24X2X4   + 4Y34X3X4    . . . . . (3.27) 

Introducing the designation 

 ai = Xi(2X1 – 1) and aij = 4XiXj  . . . . .                (3.27a) 

and using Eqns (3.22) and (3.230) give the expression for the variance SY
2
. 

 SŶ
2 =

 SY
2
 (∑aii/ni  + ∑ajj/nij) . . . . ..  (3.28) 

  

If the number of replicate observations at all the points of the design are equal, i.e. ni=nij= n, then all the 

relations for SŶ
2
 will take the form 

SŶ
2 =

 SY
2
ξ/n . . . . . . . . . .(3.29) 

where, for the second degree polynomial,  

 

      ξ  =  ∑ai
2
 +   ∑aij

2
      .  . (3.30)  

  

As in Eqn (3.30), ξ is only dependent on the mixture composition. Given the replication Variance and the 

number of parallel observations n, the error for the predicted values of the response is readily calculated at any 

point of the composition-property diagram using an appropriate value of ξ taken from the curve. 

Adequacy is tested at each control point, for which purpose the statistic is built: 

t = ∆Y/(SŶ
2 
+ SY

2
) = ∆Yn

1/2
 /(SY(1 + ξ)

1/2
 . . . . . .(3.31) 

where ∆Y = Yexp – Ytheory  .  . . . . . . .(3.32) 

and  n = number of parallel observations at every point. 

The t-statistic has the student distribution, and it is compared with the tabulated value of tα/L(V) at a level of 

significance α, where L = the number of control points, and V = the number for the degrees of freedom for the 

replication variance. 

The null hypothesis is that the equation is adequate is accepted if tcal< tTable for all the control points. 

The confidence interval for the response value is  

 Ŷ - ∆ ≤  Y ≤ Ŷ + ∆ . . . . . . . .

 (3.33) 

∆ = tα/L,k SŶ . . . . . . . . . (3.34) 

   where k is the number of polynomial coefficients determined. 

Using Eqn (3.29) in Eqn (3.34)    

∆ = tα/L,k SY(ξ/n)
1/2

 . . . . . . . . (3.35) 

 

IV. METHODOLOGY 
4. Introduction 

To be a good structural material, the material should be homogeneous and isotropic. The Portland 

cement, sandcrete or concrete are none of these, nevertheless they are popular construction materials (Wilby, 

1963).The necessary materials required in the manufacture of the sandcrete in the study are cement, sand, 

aggregate dust and water. 

 

4.1 Materials  

The sand material were collected at the Iyioku River sand basin in Enugu State and conformed to BS 

882and belongs to zone 2 of of the ASHTO classification.  

The water for use is pure drinking water which is free from any contamination i.e. nil Chloride content, pH =6.9, 

and Dissolved Solids < 2000ppm. Ordinary Portland cement is the hydraulic binder used in this project and 

sourced from the Dangote Cement Factory, and assumed to comply with the Standard Institute of Nigeria (NIS) 

1974, and kept in an air-tight bag. The aggregate dust was got from the Ishiagu quarry site and conformed to a 

maximum size of 2mm. 
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i 

 
i 

 

   n 

4.2 Preparation of Samples 

The sourced materials for the experiment were transferred to the laboratory. The pseudo components of 

the mixes were designed following the background theory from where the actual variables were developed. The 

component materials were mixed at ambient temperature according to the specified proportions of the actual 

components generated in Table 3.2. In all, two solid blocks of 450mm x225 x150mm for each of ten 

experimental points and three control points were cast for the compressive strength test, cured for 28 days after 

setting and hardening. 
 

4.3  Strength Test   

After 28 day of curing, the blocks were crushed to determine the sandcrete block strength, using the 

compressive testing machine to the requirements of BS 1881:Part 115 of 1986.   

 

V. RESULT AND ANALYSIS 
5.1 Determination of Replication Error And Variance of Response  

To raise the experimental design equation models by the lattice theory approach, two replicate 

experimental observations were conducted for each of the ten design points. Below is the table which contain 

the results of two repetitions each of the 10 design points plus three Control Points of the (4,2) simplex lattice, 

and show the mean and variance values per test of the observed response, using the following mean and 

variance equations below: 

 

 Ÿ =∑(Yr)/r .  . . . . . .    5.1 

 

     where Ŷ is the mean of the response values and  

r =1,2. 

  

SY
2
  = ∑[(Yi  -  Ÿi)

2
]/(n-1) . . . .    . .    5.2  

where n =13. 

      

Table 5.1 Result of the Replication Variance of the Compressive Strength Response for 450mm x225 x150mm 

Block 
Experiment 

No (n) 

Repetit

ion 

Response 

fc (N/mm2) 

Response 

Symbol ∑Yr 

 

Ÿr 

∑(Yr - Ÿr)
2 

 

    Si
2 

1 1A 

1B 

3.03 

1.93 

Y1 

 

4.96 2.48 0.61 0.05 

2 2A 

2B 

2.52 

2.89 

Y2 5.41 2.71 0.07 0.01 

3 3A 

3B 

2.46 

2.49 

Y3 4.95 2.48 0.00 0.00 

4 4A 

4B 

3.01 

2.95 

Y4 5.36 2.68 0.22 0.02 

5 5A 

5B 

2.91 

2.33 

Y12 5.24 2.62 0.17 0.01 

6 6A 

6B 

3.25 

2.46 

Y13 5.71 2.86 0.31 0.03 

7 7A 

7B 

3.30 

3.80 

Y14 7.10 3.55 0.13 0.01 

 

8 

8A 

8B 

2.68 

2.24 

Y23 4.92 2.46 0.10 0.01 

9 9A 3.63 Y24 5.98 2.99 0.82 0.07 
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9B 2.35 

10 10A 

10B 

3.14 

2.78 

Y34 5.92 2.96 0.06 0.01 

 

Control Points 

 

11 

11A 

11B 

2.73 

3.51 

C1234 

 

6.24 3.12 0.30 0.03 

12 12A 

12B 

2.59 

3.88 

C1123 

 

6.47 3.24 0.83 0.07 

13 13A 

130B 

3.68 

4.10 

C1224 

 

7.78 3.89 0.09 0.01 

                                3.37            0.31

   

 Replication Variance 
,  
SY

2 
= ∑Si

2
 =  0.31 

 

That’s  

Replication error SY
 
= (0.31)

1/2
=0.56 

 
 

5.2  Determination of Regression Equation for the Compressive Strength. From Eqns 3.15 and Table 5.1 the 

coefficients of the reduced second degree polynomial is determined as follows: 

  

Β1=2.48 

β2=2.71  

β3=2.48 

β4=2.68 

β12=0.11 

β13=1.51 

β14 =3.88 

β23 = -0.52 

β24= 1.19 

β34 =1.53 

Thus, from Eqn (3.11),  

Ŷc = 2.48X1+ 2.71X2 + 2.48X3  + 2.68X4 + 0.11X1X2 + 1.51X1X3 +3.88X1X4 - 0.52X2X3 + 

        1.19X2X4 + 1.53X3X4         . . . . . . . (5.3) 

 

Eqn 5.3 is the mathematical model of the compressive strength of hollow sandcrete block based on 28-day 

strength. 

 

5.3 Test of Adequacy of the Compressive strength Model 

Eqn 5.4, the equation model, will be tested for adequacy against the controlled experimental results. 
 

We recall our statistical hypothesis as follows: 

1. Null Hypothesis (H0): There is no significant difference between the experimental  

    values and the theoretical expected results of the compressive strength. 

2.Alternative Hypothesis (H1): There is a significant difference between the experimental   

   values and the theoretical expected results of the compressive strength. 

 

5.3.1  t-Test for the Compressive strength  Model  

If we substitute for Xi in Eqn 5.4 from Table 3.3, the theoretical predictions of the response (Ŷ) can be 

obtained. These values can be compared with the experimental results (Table 5.1). For the t-test (Table 5.2), a, ξ, 

t and ∆y are evaluated using Eqns 3.31, 3.32, 3.35, 3.27a and 3.30 respectively. 
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Table 5.2   t-Test for the Test Control Points 
N CN I J ai aij ai

2 aij
2 ξ Ÿ Ŷ ∆y t 

1 C1 

1 2 -0.125 0.250 0.016 0.063 

0.15 

3.12 

 

3.07 0.05 0.12 

1 3 -0.125 0.250 0.016 0.063 

1 4 -0.125 0.250 0.016 0.063 

  2 3 -0.125 0.250 0.016 0.063 

  2 4 -0.125 0.250 0.016 0.063 

  3 4 -0.125 0.250 0.016 0.063 

      0.094 0.375 

2 C2 

1 2 0.000 0.500 0.000 0.250 

0.32 

3.24 

 

2.71 0.53 1.16 

1 3 0.000 0.500 0.000 0.250 

1 4 0.000 0.000 0.000 0.000 

  2 3 0.000 0.250 0.000 0.063 

  2 4 0.000 0.000 0.000 0.000 

  3 4 0.000 0.000 0.000 0.000 

      0.000 0.563 

3 C3 

1 2 -0.125 0.500 0.016 0.250 

0.33 

3.89 3.05 0.84 1.84 

1 3 -0.125 0.000 0.016 0.000 

1 4 -0.125 0.250 0.016 0.063 

2 3 -0.125 0.000 0.016 0.000 

2 4 -0.125 0.500 0.016 0.250 

3 4 -0.125 0.000 0.016 0.000 

    0.094 0.563 

  

Significance level α = 0.05, 

i.e.          tα/L(V) =t0.05/3(13), where L=number of control  points. 

 

From the Student’s t-table, the tabulated value of tα/L(V) = t0.05/3(13) is found to be 2.450 which is greater than 

the calculated t-values in Table 5.2. Hence we can accept the Null Hypothesis. 

 

 

From Eqn 3.35, with k=10 and tα/k,v =t0.05/k(13) = 3.01, 

∆   =   0.46 for C1234, 0.67 for C1124 =0.26, and 0.68 for C1224, 

 which satisfies the confidence interval equation of 

                                Eqn 3.33 when viewed against most response values in Table 5.2. 

 

5.2  Computer Program  

The computer program is developed for the model. In the program any Compressive Strength  can be 

specified as an input and the computer processes and prints out possible combinations of mixes that match the 

property, to the following tolerance: 

Compressive Strength  -    0.001 N/mm
2
, 

     

Interestingly, should there be no matching combination, the computer informs the user of this. It also checks the 

maximum value obtainable with the model.    

 

 5.2.1 Choosing a Combination  

It can be observed that the strength of 3.55 N/sq mm yielded 4 combinations. To accept any particular 

proportions depends on the factors such as workability, cost and honeycombing of the resultant lateritic 

concrete.  

 

VI  CONCLUSION 
Henry Scheffe’s simplex design was applied successfully to prove that the Compressive Strength of 

sandcrete is a function of the proportion of the ingredients (cement, quarry dust,sand and water), but not the 

quantities of the materials. The maximum compressive strength obtainable with the compressive strength model 

is 3.55N/sq mm. See the computer run outs which show all the possible lateritic concrete mix options for the 

desired Compressive Strength property, and the choice of any of the mixes is the user’s. One can also draw the 

conclusion that the maximum values achievable, within the limits of experimental errors, is quite below that 

obtainable using sand as aggregate. This is due to the predominantly high silt content of quarry dust. It can be 

observed that the task of selecting a particular mix proportion out of many options is not easy, if workability and 

other demands of the resulting sandcrete have to be satisfied. This is an important area for further research work. 

The project work is a great advancement in the search for the applicability of sandcrete in sandcrete mortar 

production in regions where sand is extremely scarce with the ubiquity of quarry dust.  
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Recommendations : From the foregoing study, the following could be recommended: 

i) The model can be used for the optimization of the strength of concrete made from cement, quarry dust,sand 

and water.  

ii) Quarry dust aggregates cannot adequately substitute sharp sand aggregates for heavy  

    construction. 

iii) More research work need to be done in order to match the computer recommended mixes with the 

workability of the resulting concrete.  

iii) The accuracy of the model can be improved by taking higher order polynomials of the simplex. 

     'QBASIC BASIC PROGRAM THAT OPTIMIZES THE PROPORTIONS OF SANDCRETE MIXES 

     'USING THE SCHEFFE'S MODEL FOR CONCRETE COMPRESSIVE STRENGTH 

     CLS 

     C1$ = "(ONUAMAH.HP) RESULT OUTPUT ": C2$ = "A COMPUTER PROGRAM " 

     C3$ = "ON THE OPTIMIZATION OF A 4-COMPONENT SANDCRETE MIX" 

     PRINT C2$ + C1$ + C3$ 

     PRINT 

     'VARIABLES USED ARE 

     'X1, X2, X3,X4, Z1, Z2, Z3,Z4, Z$,YT, YTMAX, DS 

 

     'INITIALISE I AND YTMAX 
      

     I = 0: YTMAX = 0 

          FOR MX1 = 0 TO 1 STEP .01 

        FOR MX2 = 0 TO 1 - MX1 STEP .01 

          FOR MX3 = 0 TO 1 - MX1 - MX2 STEP .01 

             MX4 = 1 - MX1 - MX2 - MX3 

             YTM = 2.48 * MX1 + 2.71 * MX2 + 2.48 * MX3 + 2.68 * MX4 + .11 * MX1 * MX2 + 1.51 * MX1 * 

MX3 + 3.88 * MX1 * MX4 - .52 * MX2 * MX3 + 1.19 * MX2 * MX4 + 1.53 * MX3 * MX4 

             IF YTM >= YTMAX THEN YTMAX = YTM 

          NEXT MX3 

        NEXT MX2 

      NEXT MX1 

     INPUT "ENTER DESIRED STRENGTH, DS = "; DS 

     

     'PRINT OUTPUT HEADING 

     PRINT 

     PRINT TAB(1); "No"; TAB(10); "X1"; TAB(18); "X2"; TAB(26); "X3"; TAB(34); "X4"; TAB(40); 

"YTHEORY"; TAB(50); "Z1"; TAB(58); "Z2"; TAB(64); "Z3"; TAB(72); "Z4" 

     PRINT 

     'COMPUTE THEORETICAL STRENGTH, YT 

      FOR X1 = 0 TO 1 STEP .01 

        FOR X2 = 0 TO 1 - X1 STEP .01 

          FOR X3 = 0 TO 1 - X1 - X2 STEP .01 

            X4 = 1 - X1 - X2 - X3 

            YT = 2.48 * X1 + 2.71 * X2 + 2.48 * X3 + 2.68 * X4 + .11 * X1 * X2 + 1.51 * X1 * X3 + 3.68 * X1 * 

X4 - .52 * X2 * X3 + 1.19 * X2 * X4 + 1.53 * X3 * X4 

            IF ABS(YT - DS) <= .001 THEN 

            'PRINT MIX PROPORTION RESULTS 

            Z1 = X1 + X2 + X3 + X4: Z2 = 6.25 * X1 + 5.64 * X2 + 4.88 * X3 + 6.26 * Z4: Z3 = 3.75 * X1 + 3.36 

* X2 + 2.92 * X3 + 3.74 * X4: Z4 = .32 * X1 + .3 * X2 + .29 * X3 + .37 * X4 

            I = I + 1 

            PRINT TAB(1); I; USING "##.###"; TAB(7); X1; TAB(15); X2; TAB(23); X3; TAB(32); X4; 

TAB(40); YT; TAB(48); Z1; TAB(56); Z2; TAB(62); Z3; TAB(70); Z4 

            PRINT 

            PRINT 

            IF (X1 = 1) THEN 550 

          ELSE 

            IF (X1 < 1) THEN GOTO 150 

          END IF 
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150       NEXT X3 

        NEXT X2 

      NEXT X1 

    IF I > 0 THEN 550 

    PRINT 

    PRINT "SORRY, THE DESIRED STRENGTH IS OUT OF RANGE OF MODEL" 

    GOTO 600 

 

550 PRINT TAB(5); "THE MAXIMUM VALUE PREDICTABLE BY THE MODEL IS "; YTMAX; "N / Sq 

mm " 

600 END 

 

 

A COMPUTER PROGRAM (ONUAMAH.HP) RESULT OUTPUT ON THE OPTIMIZATION OF A 4-

COMPONE 

NT SANDCRETE MIX 

 

ENTER DESIRED STRENGTH, DS = ? 2.4511 

 

No       X1      X2      X3      X4    YTHEORY   Z1      Z2    Z3      Z4 

 

 1     0.000   0.130   0.870    0.000   2.451   1.000   4.979 2.977   0.291 

 

 

 2     0.000   0.430   0.570    0.000   2.451   1.000   7.030 3.109   0.294 

 

 

 3     0.010   0.280   0.710    0.000   2.452   1.000   6.949 3.052   0.293 

 

 

 4     0.010   0.290   0.700    0.000   2.452   1.000   6.949 3.056   0.293 

 

 

    THE MAXIMUM VALUE PREDICTABLE BY THE MODEL IS  3.552508 N / Sq mm 

 

 

 

 

Press any key to continue 

   

                   A COMPUTER PROGRAM (ONUAMAH.HP) RESULT OUTPUT ON THE OPTIMIZATION OF A 4-

COMPONE 

NT SANDCRETE MIX 

 

ENTER DESIRED STRENGTH, DS = ? 3.6 

 

No       X1      X2      X3      X4    YTHEORY   Z1      Z2    Z3      Z4 

 

 

SORRY, THE DESIRED STRENGTH IS OUT OF RANGE OF MODEL 

 

Press any key to continue 
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