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1.1 NEWTONIAN COSMOLOGY: THEORETICALMODELS 

Cosmologists have preferred using relativity as the basis of cosmology. Indeed, pioneering work in theoretical 

cosmology by Einstein, de Siter, Friedman, Lemaitre, Eddington, etc. was done with in relativistic framework. 
However, the level at which this text is aimed precludes the use of general relativity. We will therefore revert to 

Newtonian gravity on grounds of simplicity. Moreover, in 1935, E.A. Milne and W.H. McCrea showed that 

with suitable reinterpretation, Newtonian gravity does yield models very similar to those of relativistic 

cosmology. We will follow the treatment of Milne andMcCrea. 

 

1.2 SIMPLIFYING POSTULATE 

We shall use two postulates to simplify the above model construction. The first is known as the Weyl postulate 

and the second, the cosmological principle. 

 

1.2.1 THE WEYLPOSTULATE 

Proposed by Hermann Weyl in the early days of relativistic cosmology, this postulate states that the trajectories 

of a special class of observers, to be identified with galaxies, form a bundle of non-intersecting lines in space-
time so that there is a unique line passing through each point in space at any giventime. 

Figure:1 illustrates the special kind of motion implied by Weyl‟s postulate. In the space-time diagram shown in 

fig. 1(b), we see the trajectories distributed in a streamlined fashion. No two members intersect. Thus, there is a 

unique member of the set passing through any given point in space-time. In Fig.1(a) on the other hand, the 

trajectories are in disordered with intersections permitted. In this case, it is not possible to identify a unique 

trajectory through each point. Galactic motion approximates to the idealized case of Fig. 1(b). We may identify 

a unique observer for each galaxy. Such observers are called fundamental observers. 

 

 
Figure: 1 shows the special kind of motion implied by Weyl‟s postulate. 

 

Thus, we may have a continuum of such trajectories of fundamental observers given in the space-time plot with 

Cartesian coordinates (r,t) as 

 

r = F(t, r0) (1) 
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That is, at any given epoch t, a galaxy identified by the triplet of coordinates r0is at r given by (1). The vector 

function F is still to be determined, but it satisfies the non-intersection condition, i.e., 

 

F(t, r0) = F(t, r0') => r0 = r0' (2) 

 

1.2.2 THE COSMOLOGICALPRINCIPLE 

This principle states that at any epoch t, the universe is homogenous and isotropic. That is, given any position in 

the universe and any direction in which it is viewed form that position, the large-scale aspect of the universe is 

the same for all fundamental observers. Let us explore one immediate consequences of this principle. At ant 

position r, the fundamental observer located there moves with a defined velocity givenby 

 

V= dr/dt| r0 = ∂F (t, r0)/∂t = G(t, r),say (3) 

At any epoch, v can be a function of r only because, at each point of space there is a unique fundamental 

observe. Now imagine three observers at r1, r2 and at r=0. The observer at r=0 finds that the velocities of the 

first two observersare 

 

v1 = G (t, r1), v2 = G (t, r2) (4) 

Hence, viewed by the first of these observers, the second has the velocity 

 

v2 – v1 = G(t, r2) – G(t,r1) (5) 

 

with respect to him. However, by the cosmological principle, the observer at r=0 has no  special status. Thus 

seen by the observer at r1, the velocity of the second observer should be the same function of their relative 

vector (r2- r1) as in (1). Thatis, 

 

v2 – v1 = G(t, r2 - r1) (6) 

 

Combining (5) and (6) we get 

 

G(t, r2 - r1) = G(t, r2) – G(t,r1) (7) 

 

We see that the most form of G(t, r) is given by the tensor relation 

 

Gμν(t, r) = ΣνAμνrν ; λ, μ = 1,2,3 (8) 

Where r = (rμ) is the triple of Cartesian coordinates describing the position vector of a typical fundamental 

observer. The magnitude of r will be denoted by r. The tensor Aμν is of second rank tensor it depends on t only. 

Since the universe looks isotropic from any point, Aμνcan‟thave any fundamental direction associated with it. It 

can therefore only have the isotropic form 
 

Aμν = H(t)δμν (9) 

 

Where H(t) is so far an undetermined function of t. From (3) we therefore get 
 

v =H(t)r (10) 
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This is nothing but the velocity-distance relation obtained by Hubble! Thus Hubble‟s law is consistent with our 

postulate of homogeneity and isotropy : we do not enjoy any „special status‟ by being at r =0, say . 

We can use (10) complete the integration of the differential equation(3) by writing 
 

r = S(t) r0 (11) 

with 

 

 /S = H(t) (12) 

The overhead dot differentiates the quantity with respect to t. We denote thee present epoch by t0 and write H0 

= H(t0). The factor S is often called the scale factor as it scales the distances with epoch. Imagine a triangle with 

vertex coordinates a0, as S(t) a0, S(t)b0 and S(t)c0with  S(t0) =1. If S(t) increases with t, our triangle is 

expanding. As we shall discover shortly, this happens to be thesituation. 
 

1.3 COSMOLOGOCAL MODELS 

We now introduce dynamics into our framework to calculate the form of S(t). The first and simplest class of 

models involves “dust” as the main component of the universe. By dust we mean pressure less fluid, no random 

component built into it. Thus we have a typical fluid element containing density ρ of matter with a bulk velocity 

v, given by the Hubble law 

 

v=H(t)r, H(t)=  /S (13) 

 

the continuity equation of fluid mechanics then gives 

∂ρ/∂t + div (ρv) = 0 

 

But, from (13), div v = 3H(t) while  ρ = 0; which leadsto 

∂ρ/∂t +3( /S)ρ = 0 

 

3 

i.e., ρS
3
 = constant = ρ0 S0(say) 

(14) 

 

This is the density dilution during adiabatic expansion. Next we consider the Euler equations for fluid dynamics 

: 
 

ρ [∂v/∂t + (v.  )v] = -   p + ρF (15) 

where p is the pressure and F is the external force per unit mass on the fluid element. In our case it is 

gravitational and satisfies the relation 

 

 .F = - 4пGρ (16) 

 

Substituting (13) in (15) with p =0, we get 

 

{   +    }= F 
(17) 

Taking the divergence of this relation and using the fact that ∇.r= 3, 
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This give us a one-parameter family of differential equation, the parameter k being a positive, zero or negative 

number (k is dimensionless since we have used the constant c to match the velocity dimension of  ). The three 
kinds of solutions arising out of (19) are shown in the fig: 

2. We will briefly discuss these cases. 

 

 
Figure: 2 The three classes of cosmological solutions are denoted by three typical S(t) curves labelled I, II and 

III. 
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For a unit sphere (r0 = 1), the radius R = r0S = S and 1/2 2 
= 1/2 2 

is the kinetic energy of outward 

motion of a particle of unit mass comoving with the surface of the sphere. Similarly - 4пGρ/3S = -
4пGρ/3R is the potential energy of that particle. Thus, -kc

2
/2 is the total energy of the particle. The 

particle „escape‟ to infinity if k < 0, is trapped if k>0 and is on the borderline for k =0. The 
expanding universe behaves likewise! 

The three types of models described here are commonly known as Friedman models as they 
were first obtained in 1922-24 by Alexander Friedmann. Friedman's work was, however, in 

relativistic cosmology. Despite the differences between the Newtonian and  relativistic theory of 
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gravity, it is something of a surprise that formally the models derived here by Newtonian methods are 
the same as the Friedmann models. Even the redshift formula of Newtonian methods agrees with the 

relativisticformula! 

 
1.4 THE COSMOLOGICALCONSTANT 

IN 1917 Einstein had attemped to obtain within the framework of general relativity the 

theoretical model of a static universe. In this he, at first, did not succeed. The reason is appaent from 

our dynamical equation (18) which does not admit a solution with  =0,  =0, S 

=constamt. To get round the diifficulty, Einstein added an extra term called the „λ –term‟ to his 

equations, where λ is the constant known commonly as a cosmological constant. 
In 1917, nebular redshift not regarded as universally established (remember Hubble‟s 

constant came in 1929); soEinstein‟s desire to have a static model is understandable. The aditional 

term he introduced had negligible ffect on terrestial; or even galactic gravity: it became significant 
only at the cosmological level. We shall shortly see why. Later, when the expanding universe concept 

gained currency and the 1922 models of Friedmann became relevant, Einstien realized that the λ-term 

was not necessary after all. He therforeretrcted it as 

„the gretest blunder‟ in his life. Nevertheless the term has survived largely because several 

astronomers and physicist have found it attractive for various reasons. We will therefore briefly 

discuss it here even though we are using Newtonian framework. 
The λ –term corresponds to a radial force of repulsion between two masses that varies in 

proportion to the distance between them. Thus, fortwo particle A and B separatede by two vector r, B 
will be repelled by a force 1/3λr per unit mass form A and vice versa. Therefore 

(14) gets modifiedto 
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Figure 3(c) shows the interesting case advocated by Eddington and Lemaitre. In Lemaitre‟s version, λ 

is very close to but slightly greater than the critical value for the Einstein universe. The model has the 

universe expanding form S=0, coasting along close to S= SE for a considerable period and then 
expanding away. During the coasting period, the universe in the pseudo-Einstein state while for the 

asymptotic future it is in the De Sitter State. Eddington felt that an Einstein universe would be 

unstable and expand, being so triggered by the process for forming galaxies. Fro, if galaxies form by 
gravitational condensation of matter, the process is helped if the universe is static or near static rather 

than expanding. 

 

1.5 SPACE-TIME SINGULARITY 
The Friedmann models and the λ- cosmologies in general have the common feature that S becomes 

zero at some epoch. In Newtonian cosmology this implies a state of infinite density and possibly 
infinite temperature if we could extend our dust model to those where in pressure also matters. This is 

an unphysical state of affairs but it gets worse in the corresponding relativistic models wherein also 

the S=0. Space-time was singular at this epoch. 
It is usual to call this singular epoch the of big bang, a phrase coined by Fred Hoyle, and these models 

are often referred to as the „big bang models‟ . Some general theorems tell us that under normal 

physical conditions the big bang-type singular situation is unavoidable in relativity. In Newtonian 

cosmology, the state of infinite density does not imply space-time singularity because the close 
relationship between physics and geometry is not resentthere. 
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The creaion process in the model is preodic, with a stop-go character which causes the universe to oscillate 

around an average that increase exponentialy with time. The characterstic period P of exponentialy is very large 

(say P ≈ 20Q) compared to the periodic Q of oscillation. Since |α| < 1, the universe is non-singular. Figure 4(a) 
gives the long term scale factor of this cosmology. Notice that in Fig. 4(b) we have the he possibility of some 

sources being blueshifted. 

 

 
Figure: 4(b) The scalar factor for the quasi-steady state cosmology. Here we see a typical oscillation. If the 

present epoch is denoted by P, the thick part of the previous oscillaton denotes the blueshifted sources. 

 

 

REFERENCES: 
[1]. D.N. Spergel, et al., “First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of cosmological 

parameters,” Astrophys. J., Suppl.Ser.148, 175–194 (2003). 

[2]. B. Ryden, Introduction to Cosmology, Addison Wesley(2003). 

[3]. P.J.E. Peebles, Principles of Physical Cosmology, Princeton U. P. (1993). 

[4]. D. Hogg, “Distance measures in cosmology,” <arxiv.org/abs/astro-ph/9905116v4>(1999). 

[5]. E.Hawkins, et al., “The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the 

Universe, "on. Not. R. Astron. Soc. 346, 78–96(2003). 

[6]. S. Perlmutter, B.P. Schmidt, and A.G. Riess, “The Nobel Prize in Physics2011,” 

<www.nobelprize.org/nobel_prizes/physics/laureates/2011/> . 

[7]. R.J. Nemiroff and B. Patla, “Adventures in Friedmann Cosmology: A detailed expansion of the cosmological Friedmann 

equations,” Am. J. Phys. 76, 265–276(2008). 

[8]. W.H. Press, et al., Numerical Recipes, Cambridge University Press(1992). 

[9]. <en.wikipedia.org/wiki/Trapezoidal_rule>. 

[10]. Jarosik, N., et.al., “Seven-Year Wilkinson Microwave Anisotropy Probe Observations: SkyMaps, Systematic Errors, and Basic 

Results,” Astrophys. J., Suppl. Ser. 192,14 (15pp)(2011). 

[11]. W.J. Percival, et al., “Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample,” Mon. Not.  R. 

Astron. Soc. 401, 2148–2168(2010). 

[12]. A.G. Riess, et al. “A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance 

Ladder,” Astrophys. J. 699, 539–563(2009) 

[13]. J. Mather et al., “Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS),” Astrophys. J.512, 511–

520(1999). 

[14]. K. Nakamura et al. “Particle Data Group,” J. Phys. G 37,075021 (2010),<pdg.lbl.gov>.  

[15]. E. Komatsu, et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” 

Astrophys. J., Suppl. Ser. 192, 18 (47 pp)(2011). 

[16]. D. Larson, et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-

Derived Parameters,” Astrophys. J.,Suppl. Ser. 192, 16 (19pp) (2011). 

[17]. C.J. Lintott, et al., “Galaxy Zoo: Morphologies derived from visual inspection of galaxies from the 

SloanDigitalSkySurvey,”Mon.Not.R.Astron.Soc.3891179-1189,(2008),<www.galazyzoo.org>, 

<www.sdss.org>. 

[18]. A. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J 

116, 1009–1038(1998). 

[19]. S. Perlmutter et al., “Measurements of and _ from 42 High-Redshift Supernovae,” Astrophys. J. 517, 565–586(1999). 

[20]. R. Amanullah, et al., “Spectra and HST light curves of six Type IA supernovae at 0.511 < z < 1.12 and the Union2 Compilation,” 

Astrophys. J.716, 712–738(2010). 

[21]. WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe Observations: Sky Maps, Systematic Errors, and Basic 

Results, Jarosik, et.al., (2011) ApJS, 192, 14;http://arxiv.org/abs/1001.4744. 

http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/
http://www.galazyzoo.org/
http://www.sdss.org/
http://www.sdss.org/
http://arxiv.org/abs/1001.4744

