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I. INTRODUCTION 

With the ever-increasing popularity of entity-centric applications, it becomes very important to study the 

interactions between entities, which are captured using edges in the entity relationship (or information) nebula 

networks. Entity-relationship networks with multiple types of entities are usually referred to as heterogeneous 

information networks. For example, bibliographic networks capture associations like „Identification of 

fingerprints for the serine protease Family‟. Similarly, social networks, biological protein-enzyme classification 

Using SVM ((support vector machine), Wikipedia entity network, etc. also capture a variety of rich associations. 

In these applications, it is critical to detect novel connections or associations among objects based on some 

subgraph queries. Two example problems are shown in Figures1 and are described as follows. 

 

 
Fig.1 Attack Localization Problem 

 
P1: query Selection over nebula: Organization Nebula networks consist of two subgraphs and object nodes 

where two graphs are connected if they have worked together on a successful mission in the past, and a 

subgraph is linked to an nebula if the person has a known expertise in using that subgraph. For example, US 

army network which consists of 2-3M nebulas and much more linked objects. A manager in such an 

organization may have a mission which can be defined by a query graph of objects and networks. For example, 

the right half of Figure 1 shows an organization network while the left half of the figure shows a sample mission 
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query graph consisting of two subgraphs. The network has edges with weights such that a high weight implies 

higher compatibility between the nodes connected by the edge. The manager is interested in selecting a 

subgraph to accomplish the mission with the network to network compatibilities as specified in the mission 

query. Using the historical compatibility based organization network, how can we find the best query (selection) 

over the nebula? 

 

P2: Attack Localization: Consider a computer network as shown in the left part of Figure 2. It can consist of a 

large number of components like database servers, hubs, switches, desktops, routers, VOIP phones, etc. 

Consider a simple attack on multiple web servers in such a network where the attack script runs on a 

compromised web server. The script reads a lot of data from the database server (through the network hub) and 

sends out spam emails through the email server. Such an attack leads to an increase in data transfer rate along 

the connections in multiple “attack sub-networks” of the form as shown in the right part of the figure. Many 

such attacks follow the same pattern of increase in data transfer rates. How can a network administrator localize 

such attacks quickly and find the worst affected sub-networks given the observed data transfer rates across all 

the links in the network? 

 
Fig.2 Example of a Network G and a Query Q 

 

Both of these problems share a common underlying problem:  Given a heterogeneous network G, a 

heterogeneous subgraph query Q, and an edge interestingness measure I which defines the edge weight, find the 

top-K matching subgraphs S with the highest interestingness. The two problems can be expressed in terms of the 

underlying problem as follows. P1: G = organization network, Q = mission query, I = historical compatibility, S 

= team. P2: G = computer network, Q = an “attack sub-network” query, I = data transfer rate, S = critical sub-

networks. Besides the two tasks, this proposed problem finds numerous other applications. For example, the 

interesting subgraph matches can be useful in network bottleneck discovery based on link bandwidth on 

computer networks, suspicious relationship discovery in social networks, de-noising the data by identifying 

noisy associations in data integration systems, etc. 

 

Comparison with Previous Work 

 The proposed problem falls into the category of the subgraph matching problems. Subgraph matching has been 

studied in the graph query processing literature with respect to approximate matches [4], [25], [26], [30] and 

exact matches [18], [27], [31]. Subgraph match queries have also been proposed for RDF graphs [15], 

probabilistic graphs [24] and temporal graphs [1]. The proposed problem can be solved by first finding all 

matches for the query using the existing graph matching methods and then ranking the matches. The cost of 

exhaustive enumeration for all the matches can be prohibitive for large graphs. Hence, this paper proposes a 

more efficient solution to the top-K subgraph matching problem which exploits novel graph indexes. Many 

different forms of top-K queries on graphs have been studied in the literature [5], [21], [23], [28], [30]. Gou et 

al. [5] solve the problem only for twig queries while we solve the problem for general subgraphs. Yan et al. [21] 

deal with the problem of finding top-K highest aggregate values over their h-hop neighbors, in which no 

subgraph queries are involved. Zhu et al. [28] aim at finding top-K largest frequent patterns from a graph, which 

does not involve a subgraph query either. Different from existing top-K work, the proposed work deals with a 

novel definition of top-K general subgraph match queries, which have a large number of practical applications 

as discussed above. 
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Brief Overview of Top-K Interesting Subgraph Discovery 

Given a heterogeneous network containing entities of various types, and a subgraph query, the aim is to find the 

top-K matching subgraphs from the network. We study the following two aspects of this problem in a tightly 

integrated. 

way: (1) computing all possible matching subgraphs from the network, and (2) computing interestingness score 

for each match by aggregating the weights of each of its edges. To solve these problems, we present an efficient 

solution which exploits two low-cost index structures (a graph topology index and a maximum metapath weight 

(MMW) index) to perform top-K ranking while matching (RWM). Multiple applications of the top-K heuristic, 

a smart ordering of edges for query processing, quick pruning of the edge lists using the topology index and the 

computation of tight upper bound scores using the MMW index contribute to the efficiency of the proposed 

solution in answering the top-K interesting subgraph queries.  

 

Summary 

We make the following contributions in this paper. We propose the problem of top-K interesting subgraph 

discovery in information networks given a heterogeneous edge-weighted network and a heterogeneous 

unweighted query.  To solve this problem, we propose two low-cost indexes (a graph topology index and a 

maximum metapath weight (MMW) index) which summarize the network topology and provide an upper bound 

on maximum metapath weights separately. Using these indexes, we provide a ranking while Matching (RWM) 

algorithm with multiple applications of the top-K heuristic to answer interesting subgraph queries on large 

graphs efficiently. Using extensive experiments on several synthetic datasets, we compare the efficiency of the 

proposed RWM methodology with the simple ranking after matching (RAM) baseline. We also show 

effectiveness of RWM on two real datasets with detailed analysis. Our paper is organized as follows. In Section 

II, we define the top-K interesting subgraph discovery problem. The proposed approach consists of two phases: 

an offline index construction phase and an online query processing phase which are detailed in Sections III and 

IV respectively. In Section V, we discuss various general scenarios in which the proposed approach can be 

applied. We present results with detailed insights on several synthetic and real datasets in Section VI. We 

discuss related work and summarize the paper in Sections VII and VIII respectively. 

 

II. PROBLEM DEFINITION 
In this section, we formalize the problem definition and present an overview of the proposed system. We start 

with an introduction to some preliminary concepts.  

Definition 1 (A Heterogeneous Network). A heterogeneous network is an undirected graph  

G = < VG, EG, typeG, weight G >  where VG is a finite set of vertices (representing entities) and EG is a finite set 

of edges each being an unordered pair of distinct vertices. typeG is a function defined on the vertex set as typeG : 

VG → TG where TG is the set of entity types and |TG| = T. weight G is a function defined on the edge set as 

weightG : EG → R  [0, 1]. WeightG(e) represents the interestingness measure value associated with the edge e. 

 

For example, Figure 3 shows a network G with three types of nodes. TG = {A,B,C}. |VG|=13, and |EG|=18. 

 

Definition 2 (Subgraph Query on a Network). A subgraph query Q on a network G is a graph consisting of 

node set VQ and edge set EQ. Each node could be of any type from TG. 

For example, Figure 2 shows a query Q with four nodes. |VQ|=4, and |EQ|=3. The network G and the query Q 

shown in Figure 2 will be used as a running example throughout this paper. 

 

Definition 3 (Subgraph Isomorphism). A graph g = <Vg, Eg, typeg > is subgraph isomorphic to another graph 

g′ = <Vg′ , Eg′ , typeg′ > if there exists a subgraph isomorphism from g to g′. A subgraph isomorphism is an 

injective function M : Vg →Vg′ such that (1) ∀v ∈ Vg, M(v) ∈ Vg′ and typeg(v)=typeg′ (M(v)), (2) ∀e =(u, v) 

∈ Eg, e′ =(M(u), M(v))∈ Eg′ . 

Definition 4 (Match). The query graph Q can be subgraph isomorphic to multiple subgraphs of G. Each such 

subgraph of G is called a match or a matching subgraph of G. The query Q can be answered by returning all 

exact matching subgraphs from G. For example, the subgraph of G induced by vertices (8, 9, 5, 6) is a match for 

the query Q on network G shown in Figure 2. For sake of brevity, we will use the vertex set (tuple notation) to 

refer to the subgraph induced by the vertex set.  

 

Definition 5 (Interestingness Score). The interestingness score for a match M for a query Q in a graph G is 

defined as the sum of its edge weights. For example, the interestingness score for the occurrence {8,9, 5, 6} is 

2.1. Though we use sum as an aggregation function here, any other monotonic aggregation function could also 

be used. 
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Definition 6 (Top–K Interesting Subgraph Discovery Problem).  

 Given: A heterogeneous information network G, a heterogeneous unweighted query Q, and an edge 

interestingness measure. 

Find: Top-K matching subgraphs with highest interestingness scores. 

 

For example, (3, 4, 5, 6) and (4, 3, 2, 7) are the Top two matching sub-graphs both with the score 2.2 for the 

query Q on network G in Figure 2. 

For example, the metapath corresponding to the path (5, 4,7) is (A,A,B). There are TD distinct metapaths of 

length D where T is the number of types. Each column of a topology index corresponds to a metapath. 

 
Fig-3 Top-K interesting sub graph Discovery System Diagram 

 

Figure 2 shows the graph topology index for the first 4 nodes of the graph shown in Figure 2. For example, for 

node 2, there are two 2-hop neighbors of type A (4 and 8) reachable via the metapath (B,A). Hence the entry 

topology(2, (B,A))=2. A blank entry in the index indicates that there is no node of type t at a distance d from 

node n along the corresponding metapath. As we shall see in Section IV-A, the topology index plays a crucial 

role in reducing the search space by pruning away candidate graph nodes that cannot be instantiated for a given 

query node. 

 

III. TOP-K INTERESTING SUBGRAPH QUERY PROCESSING 
Given a query Q with node set VQ and edge set EQ, top-K matching subgraphs are discovered by traversing the 

sorted edge lists in the top to bottom order with the following speedup heuristics. First for each node in VQ, a set 

of nodes from the graph that could be potential candidates for the query node, is identified using the topology 

index (Algorithm 1). The edges in the sorted edge lists that contain nodes other than the potential candidate 

nodes are marked as invalid. This prunes away many edges and speeds up the edge list traversal. The query Q is 

then processed using these edge lists in a way similar to the top-K join query processing (Section IV-B) adapted 

significantly to handle network queries. The approach discussed in Section IV-B is further made faster by the 

tighter upper bound scores computed using the MMW index (Algorithm 2). We will discuss these in detail in 

this section. 

Algorithm 1 Candidate Node Filtering Algorithm 

---------------------------------------------------------------------------------------------------------------  

Input: (1) Query Node q, (2) Graph Node p, (3)  topology 

         [p], (4) queryTopology[q], 

 (5) Index Parameter D 

Output: Is p a potential candidate node for query node q? 

1: for d = 1 . . .D do 

2:  for mp = 1 . . . T
d
  do 

3:   if queryTopology[q][d][mp] > topology  

                                  [p][d][mp]  

           then 
4:         Return False 

5:  Return True 

--------------------------------------------------------------------------------------------------------------- 

Candidate Node Filtering Algorithm 

The proposed candidate node filtering approach is summarized in Algorithm 1. For each distance value d, all 

possible metapaths of length d are checked. By comparing the topology for all metapaths with the corresponding 

query Topology values (Step 3), it can be inferred whether the candidate p is  valid to be an instantiation of 
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query node q for some match. The time complexity is O(DTD+1). Candidate pruning leads to shortening of the 

edge lists associated with any of the query edges. For example, nodes 2, 8 and 10 get pruned for the query node 

Q2. Thus, the edge list corresponding to the query edge (Q2,Q3) will have the following AA edges marked as 

invalid: (2,3), (8,9) and (10,9). 

 

B. Top-K Match Computation 

In this sub-section, we describe the top-K algorithm to perform interestingness scoring and matching 

simultaneously. The algorithm is based on the following key idea. A top-K heap is maintained which stores the 

best K answers seen so far. The sorted edge lists are traversed from top to bottom. Each time an edge with 

maximum edge weight from any of the lists is picked and all possible size-1 matches in which that edge can 

occur are computed. Candidate size-1 matches are grown one edge at a time till they grow to the size of the 

query. Partially grown candidate matches can be discarded if the upper bound score of these matches falls below 

the minimum element in the top-K heap. The algorithm terminates when no subgraph using the remaining edges 

can result into a candidate match with upper bound score greater than the minimum element in the top-K heap. 

We discuss the details below. 

Definition 7 (Valid Edge).  A valid edge e with respect to a query edge qE is a graph edge such that both of its 

endpoints are contained in the potential candidate set for the correspond ing query nodes in qE. Recall that the 

potential candidate set for each query node is computed using Algorithm 1. 

The sorted edge lists are quite similar to the lists in Fagin‟s TA [4]. To traverse the edge lists in the top to 

bottom order, a pointer is maintained with every edge list. The pointers are initialized to point to the topmost 

graph edge in the sorted edge list, which is valid for at least one query edge. As the pointers move down the 

lists, they move to the next valid edge rather than moving to the next edge in the list (as in Fagin‟s TA). 

Definition 8 (Size-c candidate match). A size-c candidate match is a partially grown match such that c of its 

edges have been instantiated using the matching graph edges. 

 

VI. EXPERIMENTS 
We perform experiments on multiple synthetic datasets each of which simulates power law graphs. We evaluate 

the results on the real datasets using case studies. We perform a comprehensive analysis of the objects in the top 

subgraphs returned by the proposed algorithm to justify their interestingness. Data and  

code is available at http://dais.cs.uiuc.edu/manish/RWM/. 

 

A. Synthetic Datasets 

We construct 4 synthetic graphs using the R-MAT graph generator in GT-Graph software [2]: G1, G2, G3 and 

G4 with 103, 104, 105, and 106 nodes respectively. Each graph has a number of edges equal to 10 times the 

number of nodes. Thus, we consider graphs with exponential increase in graph size. Each node is assigned a 

random type from 1 to 5. Also, each edge is assigned a weight chosen uniformly randomly between 0 and 1. All 

the experiments were performed on an Intel Xeon CPU X5650 4-Core 2.67GHz machine with 24GB memory 

running Linux 3.2.0. The code is written in Java. The distance parameter D for the indexes is set to 2 for both 

the proposed approach RWM (Ranking While Matching) and the baseline RAM (Ranking After Matching), 

unless specified explicitly. Also unless specified explicitly, we are interested in computing top 10 interesting 

subgraphs (K=10) and the execution times mentioned in the tables and the plots are obtained by repeating the 

experiments 10 times. 

 

Baseline: Ranking After Matching (RAM) 

The problem of finding the matches of a query Q in a  heterogeneous network G has been studied earlier [20], 

[27]. In [27], the authors present an index structure called SPath. SPath stores for every node,a list of its typed 

neighbors at a distance d for 1≤d≤ D. SPath index is then used to efficiently find matches for a query in a path-

at-a-time way: the query is first decomposed into a set of shortest paths and then the matches are generated one 

path at a time. This method is used as a baseline. 

 

Index Construction Time 

Figure 4 shows the index construction times for the various indexes. Generating the sorted edge lists is very fast. 

Even for the largest graph with a million nodes, the sorted edge lists creation takes around 40 seconds. The 

Topology+MMW (D=2) and SPath (D=2) curves show the time required for construction of these indexes, for 

various graph sizes. The X axis denotes the number of nodes in the synthetic graphs and the Y axis shows the 

index construction time  in seconds. Note the Y axis is plotted using a log scale. 

The index construction time rises linearly as the graph size grows. Also, as expected the index construction time 

rises as D increases. 
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Index Size 

Figure 4 shows the size of each index for different values of D. The X axis plots the number of nodes in the 

synthetic graphs and the Y axis plots the size of the index (in KBs) using a logarithmic scale. Different curves 

plot the sizes of various indexes, and the graph. Note that the size of the topology index and the MMW index for 

D=2 is actually smaller than the size of the graph. Even when the index parameter is increased to D=3, the 

topology and the MMW indexes remain much smaller than the SPath index for D=2. For D=3, the SPath index 

grows very fast as the size of the graph increases. As expected as the graph size increases, the size of each index 

increases. While the increase is manageable for the Edge lists, the MMW index and the topology index, the 

increase in SPath index size is humongous. 

Query Execution Time 

We experiment with three types of queries: path, clique and general subgraphs, of sizes from 2 to 5. We present 

a comparison of different techniques for the graph G2 using the indexes with D=2. 

  |VQ |= 2 |VQ |= 3 |VQ |= 4 |VQ |= 5 

RAM 245 2004 14628 169328 

RWM0 15 32 43 122 

RWM1 19 36 98 178 

RWM2 20 40 442 6887 

RWM3 218 1733 2337 3933 

RWM4 18 34 42 118 

Table I 

Query Execution time (MESC) for Path queries 

(Graph G2 and Indexes with D=2) 
 

     

  |VQ |= 2 |VQ |= 3 |VQ |= 4 |VQ |= 5 

RAM 144 8698 34639 174992 

RWM0 11 376 14789 229236 

RWM1 14 448 16789 200075 

RWM2 13 567 19089 201709 

RWM3 157 2279 17184 161545 

RWM4 12 347 13567 198617 
 

The tables I- II show the average execution times for an average of 10 queries per experimental setting each 

repeated 10 times. The six different techniques are as follows: RAM (the ranking after matching baseline), 

RWM0 (without using the candidate node filtering), RWM1 (without using the MMW index), RWM2 (same as 

RWM1 without the pruning any partially grown candidates), RWM3 (same as RWM1 without the global Top-K 

quit check), RWM4 (same as RWM1 with the MMW index). Clearly, RAM takes muchlonger execution times 

for all types of queries. We observed that the larger the number of candidate matches, the more the execution 

time gap between the RAM method and the RWM methods. An interesting case is |VQ|=5 for the clique queries. 

Actually there are very few (less than 10) cliques of size 5 of a particular type in the graph. Hence, we can see 

that almost all the approaches take almost the same time. In this case, the Top-K computation overheads 

associated with the RWM approaches and lack of pruning result in relatively lower execution time for RAM. 

Next, note that RWM4 usually performs faster than RWM1. The time savings are higher for the path queries 

compared to the subgraph or clique queries. This is expected because the upper bound scores computed in 

RWM4 are tighter only if most of the query structure can be covered by the non overlapping paths. Also, 

RWM0 performs slightly better than RWM4 for smaller query sizes, but candidate node filtering helps 

significantly as query size increases. 
 

Table-III shows the time split between the candidate filtering step and the actual Top–K execution. Note that the 

candidate filtering takes a very small fraction of the total query execution time. 

  |VQ|=2 |VQ|=3 |VQ|=4 |VQ|=5 

RAM 158 3186 39294 469962 

RWM0 10 165 824 4660 

RWM1 12 195 1022 5891 

RWM2 12 212 3135 27363 

RWM3 111 1486 3978 9972 

RWM4 12 165 791 4518 
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Table –III 

Query Execution Time (Msec) for Subgraph Queries (Graph G2 and Indexes With D=2) 

Query 
size 
Query 
Type  

|VQ| = 2 |VQ| = 3 |VQ| = 4 |VQ| = 5 

CFT TET CFT TET CFT TET CFT TET 

                  

Path 8 10 10 24 10 32 12 106 

Clique 5 6 8 ## 9 13538 9 2E+05 

Subgraph 6 6 9 ## 10 781 12 4506 

Table –IV 

1

10

100

1000

10000

|Q| |Q| |Q| |Q|  
Fig. 5 Query Execution Time for Different Values of K 

 

Scalability Results 

We run the 20 path and general subgraph queries (each 10 times) over all the 4 synthetic graphs using RWM4 

and present the results in Table IV. The table shows that the execution time increases linearly with the graph 

size, and exponentially with the query size. Even though the execution time is exponential in query size, (1) that 

is the case with most subgraph matching algorithms, and (2) intuitive user queries are limited in size by limits of 

human interpretability for most applications. Effect of Varying the K Figure-5 shows the effect of varying K on 

20 path and general subgraph queries on graph G2 using RWM4. As expected, the query execution time 

increases as K increases. However, the increase in execution time is reasonably small enough making the system 

usable even for larger values of K. 

  

|VQ |= 

2 

|VQ |= 

3 

|VQ |= 

4 

|VQ 

|= 5 

# SIZE-1 

Candidates  9.55 7.87 4.38 1.63 

# SIZE-2 

Candidates    29.28 19.31 8.94 

# SIZE-3 

Candidates      24.42 24.5 

# SIZE-4 

Candidates        14.61 

TABLE V 

                                Number of candidates as percentage of total matches for different query sizes and candidates sizes 
 

Table-V shows the percentage of candidates of different sizes with respect to the total number of matches. The 

results shown in this table are obtained by running the algorithm for the 20 path and subgraph queries on graph 

G2. We removed the clique queries because the number of cliques of size 5 matching such queries is less than 

10 and hence no pruning occurs. Note that on an average, the number of candidates is around 14% of the total 

number of matches. Clearly, for subgraph queries there are candidates of higher sizes also, but the number of 

such candidates is much smaller (< 1%) compared to the number of matches, and so we do not show them here. 
 

V. RELATED WORK 
The network (graph) query problem can be formulated as a selection operator on graph databases and has been 

studied first in the theory literature as the subgraph isomorphism problem [3], [14], [20]. One way of answering 

network queries  is to store the underlying graph structure in relational tables and then use join operations. 

However, joins are expensive, and so fast algorithms have been proposed for approximate  
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  DBLP Wikipedia 

Nmber of Nodes 138 K 670K 

number of edges 1.6M 4.1M 

number of types 3 10 

Sorted Edge List Index Size 50 MB 261 MB 

Topology Index Size 5.8 MB 148 MB 

MMW Index Size 

11.4 

MB 249 MB 

Spath Index Size 4.3 GB 13.7 GB 

Sorted Edge List Construction 

Time 12 sec 23 sec 

Topology + MMW Construction 

Time 461 min 1094 min 

Average Query Time 100 sec 42 sec 

 

graph matching as well as for exact graph matching. A problem related to the proposed problem is: given a 

subgraph query, find graphs from a graph database which contain the subgraph [16], [22], [29]. All top-K 

processing algorithms are based on the Fagin et al.‟s classic TA algorithm [4]. Growing a candidate solution 

edge-by-edge in a network can be considered to be similar to performing a join in relational 

databases. The candidates are thus grown one edge at a time much like the processing of a top-K join query [11] 

and as detailed in Section IV-B. However, we make the top-K join processing faster by tighter upper bounds 

computed using the MMW index and list pruning using the topology index. The top-K joins on networks with 

the support of such graph indexes is our novel contribution. The proposed problem is 

also related to the team selection literature. However, most of such literature following the work of Lappas et al. 

[13] focuses on clique (or set) queries [10], unlike the general subgraph queries handled by the proposed 

approach. Top- K matching subgraphs can also be considered as statistical outliers. Compared to our previous 

work on outlier detection from network data [6], [7], [8], [9], we focus on query based 

outlier detection in this work. For more  comparisons with previous work, please refer to Section I. 

 

VI. CONCLUSION 
In this paper, we studied the problem of finding top-K interesting subgraphs corresponding to a typed 

unweighted query aplied on a heterogeneous edge-weighted information network. The problem has many 

practical applications. The baseline ranking after matching solution is very inefficient for large graphs where the 

number of matches is humongous. We proposed a solution consisting of an offline index construction phase and 

an online query processing phase. The low cost indexes built in the offline phase capture the topology and the 

upper bound on the interestingness of the metapaths in the network. Further, we proposed efficient top-K 
heuristics that exploit these indexes for answering subgraph queries very efficiently in an online manner. 

Besides showing the efficiency and scalability of the proposed approach on synthetic datasets, we also showed 

interesting subgraphs discovered from real datasets like Wikipedia and DBLP. In the future, we plan to study 

this problem in a temporal setting. 
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