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I. INTRODUCTION 
 According to Ibearugbulem et al (2013), the stiffness matrix [k], the geometric matrix [kg] and the 

mass (inertia) matrix [ki] are formulated using the assumed shape function. This shape function is usually 

assumed to approximate the deformed shape of the continuum. If the shape function assumed is the exact one, it 

means the solution will converge to the exact solution. The inertia matrix and the geometric matrix formulated 

using the assumed shape functions are called consistent mass matrix and consistent geometric matrix 
respectively (Paz, 1980 and Geradin, 1980). In the work of Ibearugbulem et al (2013), the dynamic equation in 

structural dynamic as:  

[k] - [ki] = 0                                                     (1) 
For static stability problem, the eigenvalue equation is given as: 

 [k] – Nc[kg] = 0                                                (2)     

Where K is the material stiffness matrix, ki is the matrix of inertia, kg is the geometric matrix  is natural 
frequency parameter and Nc is the critical buckling load parameter. Of note here is that both kg and ki are 

consistent matrices (that is they are non-diagonal matrices). The difficulty posed by this type of eigenvalue 

problem led many researchers to transform the consistent matrices to diagonal matrices as:  

[k] - λ A[I] = 0                                                         (3) 

[k] - Nc A[I] = 0                                                       (4) 

 

 Here, A[I] is the transformed diagonal inertia or geometric matrix. In dynamics, the diagonal inertia 

matrix is often called lumped mass matrix. Many methods are adopted so far by researchers for solutions of 

eigenvalue problems of equation (3) and (4). According to Ibearugbulem et al, (2013), the methods include 
Jacobi method, Polynomial method, Iterative method and Householder’s method were used by (Greenstadt, 

1960; Ortega, 1967; and James, Smith and Wolford, 1977.  Others are Power method, Inverse iterative 

(Wilkinson, 1965), Lanczos method (lanczos, 1950), Arnoldi method (Arnoldi, 1951; Demmel, 1997; Bai et al, 

2000;Chatelin, 1993; and Trefethenand  Bau, 1997), Davidson method, Jacobi-Davidson method (Hochstenback 

and Notay, 2004; and Sleijpen and Vander Vorst, 1996), Minimum residual method, generalized minimum 

residual method were used by Barrett et al, (1994), Multilevel preconditioned iterative eigensolvers (Arbenz and 

Geus, 2005), Block inverse-free preconditioned Krylov subspace method (Quillen and Ye, 2010), Inner-outer 

iterative method (Freitag, 2007),  and adaptive inverse iteration method (Chen, Xu and Zou, 2010), Matrix 

iterative-inversion (Ibearugbulem et al, 2013). Sadly, of all these methods, only polynomial and iterative-

inversion methods can handle the problems of equations (1) and (2). Other methods can only be used for 

equation (3) and (4). However, polynomial method also becomes very difficult to use when the size of the 
matrix exceeds 3x3. In the same way, iterative-inversion method is also difficult when the matrix size is large 

and the speed of computation is very slow. 

The essence of this paper is to present a method that can be used in solving eigenvalue problems of equations 

(1), (2), (3), and (4) for any size of matrix with high speed and good accuracy 

ABSTRACT: 

This paper presents iterative determinant method for solving eigenvalue problems. A matlab program that 

operates iterative to evaluate the determinant of the problem was written. In the program, a trial 
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these data reveals that the present eigensolver has high degree of accuracy in predicting the eigenvalues. 

However, the accuracy depends on the size of iterator. The smaller the iterator, the higher the accuracy 

and slower the speed of computation and vise versa.  
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II. ITERATIVE DETERMINANT 
 In this method, a trial eigenvalue 0 or Nc0 of default value of zero shall be substituted into the 
eigenvalue equation to obtain eigenvalue matrix as: 

[k]- [ki] = [kk]0                                                                        (5) 
 The determinant of the eigenvalue matrix, [kk]0 shall then be computed and the value kept. The value 

of this initial determinant, dt0 may be positive or negative. Now the value of the default eigenvalue shall be 

increased by adding iterator (say 1, 0.1, 0.01, 0.001 etc. as desired) to it to obtain new eigenvalue, 1. This shall 
be substituted into the eigenvalue equation to obtain [kk]1. The determinant, dt1 of [kk]1 shall be computed. If 

dt0 is negative and dt1 is also negative, then the actual eigenvalue has not been obtained and the iterator has to 

be added to 1 to obtain 2. This process has to be continued until we reach a stage where n-1 > 0 and n < 0 or 

n-1 < 0 and n > 0. Note here that the bigger the iterator, the faster the computation and less the accuracy, the 
smaller the iterator, the slower the computation and more the accuracy. To ease the use of this method, a general 

matlab program was written. The user is at will to modify the iterator, f and sub iterators ff (i) in the program, 

where is 1, 2, 3 … n and n is the size of the square matrix involved. For instance, if the order of the expected 

eigenvalue is 100, iterator and sub iterators of 1 or 0.1 can be used. In this case the expected accuracy shall be of 

the order of iterator, 1 or 0.1. In the same way, if the order of expected eigenvalue is 1, iterator of 0.001 can be 

used. The choice of iterator is guided by the speed and accuracy of the computation. In all, for high accuracy, 

iterators of 0.001 and below are advisable but the speed may be very slow. Thus, the level of accuracy and speed 

shall guide you in using your choice iterator in this program. The user is also at liberty to choose the range of 

eigenvalues to compute for by adjusting “for r = 1:3” to say “for r = 1:5” if the size of the matrix is 5x5. The 

stiffness matrix “prs” and the geometric matrix or inertia matrix “pri” in the program are to be entered by the 

user. The iterating count ceiling, “k” in the program can also be raised from 6260 to any higher value to suit the 
user. Number of sub iterators “ff(i) as we have them in the program is 7. The user is at liberty also to introduce 

more sub iterators say ff(8), ff(9) etc. as matches the size of the matrix. Some engineering problems were used 

to ascertain the adequacy of the method and the program. 

 

III. NUMERICAL EIGENVALUE PROBLEMS 
The program will be used to test the following problems. 

1.   
2 0 1

−1 4 −1
−1 2 0

 − 𝜆  
1 0 0
0 1 0
0 0 1

  = 0 (Stroud, 1982) 

  

2.   
0.1 0.1 0.1
0.1 0.2 0.2
0.1 0.2 0.3

 − 𝜆  
1 0 0
0 1 0
0 0 1

  = 0 (James, Smith and Wolford, 1977) 

3.   
204.8 −102.4 25.6

−102.4 63.2 −18.8
25.6 −18.8 7.2

 −𝜆  
4.8762 −2.438 0.0762
−2.438 2.419048 −0.1381
0.0762 −0.1381 0.0762

  = 0 

4.   
7.2 −25.6 −1.2

−25.6 204.8 25.6
−1.2 25.6 7.2

 −𝜆  
0.07619 −0.076 0.02381

−0.07619 4.8762 0.07619
0.02381 0.0762 0.07619

  = 0 

 

5.   
204.8 −102.4 25.6

−102.4 63.2 −18.8
25.6 −18.8 7.2

 −𝜆  
0.406349 0.0635 −0.00635
0.0635 0.2063 −0.01587

−0.00635 −0.016 0.001587
  = 0 

 

 

6. 

126.4 18.8 18.8 -102.4 0 -102.4 

- 

2.419048 0.138095 0.138095 -2.4381 0 

= 0 

18.8 14.4 -1.2 -25.6 -25.6 0 0.138095 0.15238 0.02381 -0.07619 -0.07619 

18.8 -1.2 14.4 0 25.6 -25.6 0.138095 0.02381 0.15238 0 0.07619 

-102.4 -25.6 0 204.8 0 0 -2.4381 -0.07619 0 4.87619 0 

0 -25.6 25.6 0 204.8 0 0 -0.07619 0.07619 0 4.87619 

-102.4 0 -25.6 0 0 204.8 -2.4381 0 -0.07619 0 0 
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IV. RESULT AND DISCUSSION 
Table 1 shows result data from eigenvalue problems herein. Eigenvalues obtained from the program were 

compared with the exact eigenvalues. The exact eigenvalues were obtained by trial and error means using 
Microsoft excel worksheet. Any eigenvalue that made the determinant of the eigenvalue matrix [kk] to become 

zero is the exact eigenvalue. The data from the program compared very well with the values from Microsoft 

excel worksheet with high degree of accuracy. As said earlier, it was observed that with small iterators say 0.01, 

we obtained more accurate eigenvalues with slow computing speed. We also confirmed that with big iterators 

say 1.0 we obtained less accurate eigenvalues with fast computing speed.  

 

Table 1: Result data from the Eigenvalue Problems 

 

Problems 

Eigenvalues 

From iterative Determinant method Exact Eigenvalues 

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 

1 1 2 3 
  

1 2 3 
  

2 0.0308 0.0644 0.5049 
  

0.0308 0.0644 0.5049 
  

3 2.468 23.392 109.143 
  

2.4678 23.3912 109.1422 
  

4 9.876 60.001 170.128 
  

9.875124 60 170.1276 
  

5 12.37 494.266 
   

12.3695 494.2658 
   

6 15.1 27 42.1 83.1 133.8 15.075832 26.95929142 42 
83.07804

248 
133.72546 

 

 

V. APPENDIX A (MATLAB PROGRAM) 
nn = input('enter size of matrix');nn = nn*1; 

p=0;m=1;k=6260;j=1;f=0.1;ff(1)=0.1;ff(2)=0.01;ff(3)=0.001;ff(4)=0.001;ff(5)=0.001;ff(6)=0.001;ff(7)=0.001; 

for r = 1 : 3 

while p < k    

prs = [43.2 0   0   ;0  6.400093    0   ;0  0   6.4]; 

pri = [0.54824  0   0   ;0  0.01268 0   ;0  0   0.01268]; 

a = prs - p*pri;  

for x = 1:nn 

for y = 1:nn 
c(x,y)= a(x,y) ; 

end 

end 

d = det(c); 

if (m < 1.1); t1 = d;end 

m = m + 1; 

if (j >nn); break; end 

if ((d >= 0)&& (t1 <= 0));py(j) = p;j = j + 1;t1 = d;end 

if ((d <= 0)&& (t1 >= 0));py(j) = p;j = j + 1;t1 = d; end 

p = p + f; 

end 
p = p-f; f =ff(r);m=1; 

end 
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