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I. INTRODUCTION 
Vapour liquid equilibrium is condition wherein the liquid and vapour state of the components of a system are in 

equilibrium with each other. In other words, it is the state of the system at which rate of condensation is equal to the rate of 

evaporation. Vapour liquid equilibrium data is required for the design, analysis and control of distillation columns. 

Conventionally, the vapour liquid equilibrium data is evaluated using the thermodynamic models, namely the equation of 

state (EOS), and the activity co-efficient models. The models falling under these categories are Peng-Robinson model, 

Margules model, vaanLaar model, Wilson‟s model, NRTL, UNIQUAC and UNIFAC model. 

The  thermodynamic methods mentioned above  use  linear  and  nonlinear regression  techniques  to  represent  

the  relations  among  the variables of  a given  system. The relationship between the physical and thermodynamic properties 

is highly non-linear, and  consequently  an  artificial  neural  network  (ANN)  can  be  a  suitable  alternative  to model and 

develop a non-linear relation between the input and the output parameters.  ANN is an   efficient methodology to 

approximate any function with finite number of discontinuities by learning the relationships between input and output 

vectors. 

VLE data is required in designing distillation columns and any doubt or inaccuracy in the prediction of the VLE 

data leads to design of distillation columns with variation in various parameters. The VLE data predicted by the existing 

thermodynamic models show deviations from the experimental data, though they are adequate for most engineering 

applications.  

Moreover, with the increase in the use of software packages for data evaluations, the use of artificial neural 

networks can be integrated along with the existing software packages. Artificial neural network (ANN) is an evolutionary 

computation or optimization technique. The accuracy of the computed values is said to be better than many other 

mathematical models. In this thesis, it is intended to develop an artificial neural network model to predict the vapour liquid 

equilibrium values for 7 binary systems and compare these predicted values to that predicted by the existing mathematical 

models like the Margules and the van Laar models.   

 

 

 

ABSTRACT: 
 Vapour liquid equilibrium is condition wherein the liquid and vapour state of the components 

of a system are in equilibrium with each other. Conventionally, the vapour liquid equilibrium data is 

evaluated using the thermodynamic models, namely the equation of state (EOS), and the activity co-

efficient models. The models falling under these categories are Peng-Robinson model, Margules 

model, vaanLaar model, Wilson’s model, NRTL, UNIQUAC and UNIFAC model. VLE data is 

required in designing distillation columns and any doubt or inaccuracy in the prediction of the VLE 

data results in variation in design parameters which leads to variations in purity of the distillate, 

number of theoretical plates, reflux ratio and energy consumption which consequently leads to 

variation in cost. The VLE data predicted by the existing thermodynamic models show deviations from 

the experimental data. Hence, an Artificial Neural Network (ANN) model has been developed to 

predict the VLE so as to minimize the deviations from the experimental values. Several binary systems 

(1 simple and 6 azeotropicsystems) have been considered and VLE data has been predicted using the 

ANN, Margules and the van Laar models. The Root Squared Mean Deviation (RSMD) of predicted 

values has been calculated with respect to the experimental values. It has been observed that the data 

predicted by the ANN model is more accurate as compared to the Margules and van Laar models.  

KEYWORDS: vapour liquid equilibrium, ANN, RSMD, binary systems, model. 
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Existing models 

Several empirical models have been developed to estimate the vapour liquid equilibrium data and the 

activity coefficients of various systems. The Margules and the van  Laar  are  two  of  the empirical models that 

have been developed to estimate the activity coefficient. Modern  activity  coefficient  models  are  based  on  

the  local-composition concept,  which  was  introduced  by  Wilson  (1964). Due  to  molecular  size  and 

intermolecular  forces,  local  compositions  are  assumed  to  take  into  account  the  short range orders and 

non-random molecular orientations inside a liquid solution. Two  of  the  most  widely used models  are  the  

Non-Random-Two-Liquid  (NRTL)  developed  by  Renon  and  Prausnitz (1968)  and  the  Universal  QUAsi-

Chemical (UNIQUAC)  developed  by  Abrams  and Prausnitz  (1975). These  models  are  capable  of  

correlating  experimental  activity coefficients  for  a species    in  a  liquid  solution  over  a wide  composition  

and  temperature range. They  are  also  capable  of  interpolating  and/or  extrapolating  the  experimental 

activity coefficients  for a wide  range of  temperatures and compositions based on a  few experimental points. 

In the absence of experimental data, group contribution methods have been devised to predict the 

activity coefficients of a system. In  these methods,  atoms  in  a  chemical  compound  are grouped  to form  

functional  groups  that  are  assumed  to  have  their  own physical  and chemical  identity  (Fredenslundet  al.,  

1975).   Wilson  and  Deal  (1962)  introduced  the Analytical Solutions of Groups (ASOG) method.  

Fredenslund et al. (1975) developed the Universal Functional-group Activity Coefficients (UNIFAC) method  to  

predict  activity coefficients based on molecular  functional groups contribution.  UNIFAC  is one of  the most  

prominent methods  that  uses  a  combinatorial  and  a  residual  part with  functional groups  parameters  such  

as:  group  volume,  group  surface  area,  and  binary  group interactions  to  predict  the  activity  coefficients.  

The group-contribution  methods mentioned above use  linear  and  non-linear regression  techniques  

to  represent  the  relations  among  the variables of  a given  system.  The relationship between the physical and 

thermodynamic properties in a system is highly non-linear. Hence, an  artificial  neural  network(ANN)  can  be  

a  suitable  alternative  to model or to predict the vapour liquid equilibrium data. 

Research so far  

 Maria Iliutaet al (1999), proposed artificial neural network correlations for the prediction of vapour-

liquid equilibrium for mixed dual-solvent single electrolyte systems, and validated over an extensive VLE 

database (2900 data points, 16 binary solvents, 24 salts, 11 cations, 6 anions)
[7]

. Performance of these 

correlations to predict the vapour phase mole fraction, equilibrium temperature and total pressures was 

compared with the experimental data and the data generated by the UNIFAC model. The mean absolute 

deviations in the predicted data were found to be minimized. 

 Bilginet.al (2003), employed a neural network model to predict VLE data for six different binary 

systems having different chemical structures and solution types in various conditions
[1]

. The VLE data was also 

predicted by the UNIFAC model. It was observed that the values predicted by the ANN model show close 

agreement with the experimental values. 

 Mehmet Bilgin (2004), employed a neural network model to calculate the isobaric vapour-liquid 

equilibrium of binary systems composed of different chemical structures, which do not show azeotropic 

behaviour
[2]

. Results generated by the ANN model were compared to those generated by the UNIFAC and the 

Margules model. In all cases, the deviations between the experimental activity co-efficients and those calculated 

by the neural network were less than those obtained by those obtained by the Margules and the UNIFAC 

models. 

 Govindarajan and Sabarathinam (2006), used the radial basis neural networks, a type of artificial neural 

networks to predict the VLE data for 4 binary systems and 1 ternary system
[8]

. A neural network based on the 

equation of state was use to predict the liquid phase composition and vapour phase compositions at the given 

conditions of temperature and pressure. Theperformance of the network was evaluated on the basis of an overall 

absolute error and root mean square error specified by the difference in the desired and the actual outputs. It was 

concluded that this technique to predict VLE data is efficient, reliable and robust.In 2006, Rajesh et.al, used 

ANN for the prediction of the prediction of equilibrium solubility of CO2 in aqueous alkanolamines. An ANN 

model was employed to predict the VLE data of two systems, viz:- CO2 – N-methyldiethanolamine(MDEA) – 

H2O system and CO2 – 2-amino-2-methyl-1-propanol(AMP)-H2O system. The predictions made by the ANN 

model were found to be in the accuracy of 5% for 95% of the data
[11]

. 

 Ghaemiet.al (2008), developed an ANN model for the prediction of VLE data in aqueous solutions of 

electrolytes
[5]

. VLE data for ternary system of NH3- CO2 – H2O were predicted using the ANN model which 

was compared with the predictions of some thermodynamic models.  
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Moghadassiet.al (2009), developed an ANN model to predict the VLE data of high pressure systems
[3]

. 

Moghadassiet.al (2011), developed a model for predicting the VLE data for binary systems containing propane
 

[4]
. Four binary refrigerant systems containing propane were considered. Results generated by the ANN model 

were compared with those generated by Margules and vaanLaar models. The ANN model showed superiority 

over the other thermodynamic models. 

 Pandharipandeet.al (2012) developed a model for the evaluation of VLE data for ten binary systems, 

results obtained indicated minimum error is obtained in the case of ANN models
 [9]

. Pandharipandeet.al (2012), 

modeled combined VLE of four quaternary mixtures using artificial neural network. It was observed that in the 

ANN model, the error difference between the predefined value and output calculated is minimized
[6]

.Nasri  et al 

(2012) developed an ANN model to predict the VLE of a carbon dioxide methanol system at high pressure. 

Predicted values using ANN are satisfactory. 

 

Inference from literature review  

 A general overview of the literature shows that the experimental data or a set data points 

(experimental) available in literature are fed to the neural network for pattern recognition. Pattern recognition or 

the relation between the input and output is generated by the ANN. Thus, in other words, the ANN generates a 

mathematical model. Once this model is generated, it is tested for its accuracy with a set of new data points 

which have not been fed earlier to the ANN for pattern recognition. By entering a new set of data points for 

testing, the efficiency of prediction of the developed ANN model can be known. 

 As per the literary review, it was inferred that only a few azeotropic systems have been considered, 

hence in this report, six azeotropic systems have been considered to show the versatility of ANN in predicting 

VLE data. Systems considered in this report have not been considered so far. If ANN model is proved to be 

better than the existing thermodynamics models then, it can be easily integrated with the design and simulation 

softwares which are generally used for the VLE data estimation. 

 

II. THEORETICAL BACKGROUND 
Thermodynamic models 

 Basically two kinds of thermodynamic models are used to evaluate the VLE data. 

They are: 

1.Activity co-efficient models (Excess Gibbs Free Energy Models) 

2.Equation of state models 

Activity co-efficient models have been widely used for the evaluation of VLE data. In this thesis also, the values 

predicted by the ANN model will be compared with the values computed using the activity co-efficient models, 

viz: Margules and the van Laar models. 

Basic equation for Vapour-liquid Equilibrium 

 Consider a closed system consisting of co-existing vapour and liquid phases, each phase containing „c‟ 

each components in a state of equilibrium at constant temperature (T) and pressure (P). The criterion for 

equilibrium between the two phases is given by 

fi
l
 = fi

v
    i  = [i = 1,2,3,…..,c]                          (1) 

where, fi
l
 , fi

v
 are the fugacities of the pure components of the liquid and vapour. 

Equation (1) can be rewritten as 

γixifi
*
  = Φi

v
yiP                                               (2) 

The standard state fugacity is given by 

fi* = Pi
s
Φi

s
exp{ }                  (3) 

where, Pi
s
 = saturation pressure of component i at temperature T 

vi
l
 = molar volume of liquid for component i 

Φi
s
= fugacity coefficient of component i at saturation pressure 

Substituting (3) in (2) 

γixiPi
s
  =  exp { }-- -                 (4)  

The above equation is the basic equation for vapour liquid equilibrium. It provides a relation between among the 

variables T, P, xi‟s and yi‟s. 

  At low pressures (uptoatleast 1 bar), the vapour phase can be assumed to behave like an ideal 

gas and hence , and . At low pressures the Poynting correction factor exp{ } is negligibly 

small and it is approximately equal to unity. At low to moderate pressures (upto 10 bar),  and  are equal to 

each other and hence it is reasonable to assume = 1. 
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Thus at low to moderate pressures 

 γixiPi
s
 = yiP   (5) 

or γi= (I = 1,2,3,…..,c) 

 The value of γi is evaluated by the thermodynamic models like Margules, van Laar, etc. 

For a binary system, the activity coefficients can be evaluated as 

Margules equation 

ln γ1 =  { A12 + 2 *( A21 – A12 ) * } (6) 

ln γ2 = { A21 + 2 *(A12 – A21) *  } (7) 

where, A12,A21 are the Margules interaction parameters for the binary system consisting of components 1 and 2. 

vanLaar equation 

ln γ1 =     (8) 

ln γ2 =     (9) 

where,  A and B are van Laar constants and subscripts 1 and 2 stand for components 1 and 2 respectively in the 

binary system.  

Artificial neural networks (ANN): General Overview 

Artificial neural networks (ANN) are non-linear information processing paradigm, which are built from 

interconnected elementary processing devices called neurons. They are inspired by the way the human brain 

processes information. ANNs like people, learn by an example. ANN is configured for a specific application, 

such as pattern recognition or data classification, through a learning process. Learning in biological systems 

involves adjustments to the synaptic connections/weights that exist between the neurons, which is applied to 

ANNs as well. ANNs can also be defined as parameterized computational nonlinear algorithms for 

data/signal/image processing. These algorithms are either implemented on a general purpose computer or built 

on a dedicated hardware. 

 An efficient way of solving a complex problem is to divide or decompose it into simpler elements in 

order to be able to understand it. Also, simple elements may be gathered to produce a complex system. Use of 

networks is one of the approaches to achieve this. There are a large number of networks of different types. They 

are all characterized by the following components: a set of nodes, and connections between the nodes. 

 The nodes, which are analogous to the neurons in the biological nervous system are computational 

units. They receive inputs and process them to obtain an output. This processing may be simple (summing of 

input) or complex (a node contains another network). The connections determine the flow of information 

between the nodes. The interactions of the nodes through the connections lead to a global behaviour of the 

network which cannot be observed in the elements of the network. In other words, abilities of the network 

supercede the ones of its elements. 

 Elements called neurons (nodes), process the information. The signals are transmitted by means of 

connection links. The links possess an associated weight, which is multiplied along with the input signal(net 

input) for any typical neural net. The output signal is obtained by applying activations to the net input. 

 
Figure 3.1 – General representation of an artificial neural network 

[iv]
 

The figure above represents a simple structure of an artificial neural network. It has „n‟ input neurons (x1, 

x2,……xn), w stands for the interconnected weights. The suffix „ij‟ is added to the weights where, i stands for 

the corresponding input neuron number, j stands for the number corresponding to the weighted connections. In 

the above figure, there is only a single layer, there can be as many layers as the user defines.  When there are 

more than one layers, the neural network is called a multilayer net. The value oj stands for the output which is 

processed by the net. 
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The transfer function is the summation of the weighted inputs or also called as the net input. It can be 

represented mathematically as 

netj  =   + bias; 

The output is obtained by the activation of the net input. It is given by, 

 oj= f(netj) ; 

The activation functions are of several types. In this case, two activation functions have been used 

namely the log-sigmoid and the linear activation functions. The mathematical representations of these functions 

are,  

Log-sigmoid function: 

f(x) =    , where x is any variable. 

Linear function: 

f(x) = x, where x is any variable. 

  

The arrangement of neurons into the layers and the pattern of connection within and in-between layer 

are generally called as the architecture of the net. The neurons within a layer are found to be fully 

interconnected or not interconnected. The number of layers in the net can be defined to be the number of layers 

of weighted interconnected links between particular slabs of neurons. If two layers of interconnected weights are 

present, then it is found to have hidden layers. The various types of network architecture are feed-forward, 

feedback, fully interconnected net, competitive net etc.The feed-forward network architecture has been used to 

evaluate the network. It can be represented as: 

 
Figure 3.2 – General representation of a feed forward neural network architecture 

Feed forward networks may have a single layer of weights where the inputs are directly connected to 

the outputs or it may consist of multiple layers with intervening sets of hidden unit units. Neural networks use 

hidden units to create internal representations of the input patterns. The figure 3.2, represents a multi-layer feed-

forward network consisting of an input layer, two hidden layers and an output layer. In multilayer nets, signal 

flow from input units to output units in a forward direction. It can be used to solve complex problems. 

 The neural net learns or recognises a pattern by the process of learning or training. In the 

learning/training process, the network is presented with a set of values of the input and its corresponding output. 

In this process, the network learns or establishes a relation between the input and the output by setting weights 

and biases accordingly. This process is also called as supervised learning as for each input value, the value of 

the desired input is provided by the user and the network establishes a non-linear relation between the input and 

the output. 

 A training algorithm and function is employed for the training of the values. The back-propagation 

training algorithm and the resilient back-propagation training function is used. Input vectors and the 

corresponding target vectors are used to train a network until it can approximate a function, associate input 

vectors with specific output vectors, or classify input vectors in an appropriate way as defined by the user. 

Networks with biases, a sigmoid layer, and a linear output layer are capable of approximating any function with 

a finite number of discontinuities.  

Properly trained back-propagation networks tend to give reasonable answers when presented with inputs that 

they have never seen. Typically, a new input leads to an output similar to the correct output for input vectors 

used in training that are similar to the new input being presented. This generalization property makes it possible 

to train a network on a representative set of input/target pairs and get good results without training the network 

on all possible input/output pairs.  
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There are four steps in the process of predicting the VLE data using neural networks:  

1.Assemble the training data.  

2.Create the network object.  

3.Train the network.  

4.Simulate the network response to new inputs 

 

In this learning pattern, the back-propagation of errors takes place. Initially the random values of 

weights are assumed. The evaluation of the network takes place which is compared with the predefined mean 

squared error (MSE) value or error difference between the output and the target. MSE is given by the equation: 

MSE  =  

i.e. Error (E) = F(weighted inputs, target output) 

If the desired value of MSE is reached then the evaluation of the network is stopped,   else the weights are 

updated to new values to evaluate the network and check the value of MSE. If MSE is reached the evaluation 

stops or else the weights are updated and the cycle continues till the predefined MSE is reached or till the 

maximum limit of predefined iterations (epochs) are reached. 

The updation of weights takes place by the method of resilient propagation
[16][17]

. Resilient propagation is an 

effective learning scheme. It performs a direct adaption of weight step based on local gradient information. For 

each weight an individual update value Δij is used which determines the size of the weight update. An adaptive 

update-value evolves during the training process based on local sight of the error function. 

Every time the partial derivative of the corresponding weight wijchanges its sign, which indicates that the last 

update was too big and the algorithm has jumped over a local minimum, the update-value Δijis decreased by the 

factor η-. If the derivative retains its sign, the update-value is slightly increased in order to accelerate 

convergence in shallow regions. Given as: 

 

η
+
 * Δij

(t-1)
 ,   if  * > 0 

Δij
(t)

 =        η
-
 * Δij

(t-1)
 ,   if  * < 0  

Δij
(t-1) 

      , else. 

Once the update-value for each weight is adapted, the weight-update itself follows a very simple rule:  

• if the derivative is positive (increasing error), the weight is decreased by its update-value 

•  if the derivative is negative, the update-value is added 

                -Δij
(t)        

, if  > 0 

Δwij =      +Δij
(t)        

, if  < 0 

0 , else 

Updation is carried out by the formula, 

wij
(t+1)

 = wij
(t)

 + Δwij
(t)

.               

There is one exception: If the partial derivative changes sign, i.e. the previous step was too large and the 

minimum was missed, the previous weight-update is reverted. 

wij
(t+1)

 = -Δwij
(t-1)

  ,   if  * < 0 

Due to that 'backtracking' weight-step, the derivative is supposed to change its sign once again in the following 

step. In order to avoid a double punishment of the update value, there should be no adaptation of the update-

value in the succeeding step. In practice this can be done by setting the differential of the error w.r.t the weights 

to zero in the Δijadaptation rule. The update-values and the weights are changed every time the whole pattern set 

has been presented once to the network (learning by epoch/iteration). In other words, the update values and 

weights are changed after every epoch/iteration till the maximum number of iterations or till the error between 

the computed and the target output reach the predefined MSE value. 

 

III. METHODOLOGY 
 The main aim of this project was to predict the VLE data based on the non-linear correlation generated 

by the artificial neural network. The artificial neural network model was developed with the help of a code using 

Matlab 7.0. Firstly, a basic code was executed and it was tested for a binary system of Methanol(1) – Acetone(2) 

at 101.325 kPa. There were modifications made in the basic code to obtain a suitable code which has been used 

to evaluate VLE data of all the systems considered in this report. 
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As mentioned in the previous chapter, the neural network learns the patterns for a set of values and it 

applies it for a new set values. Hence, an input data is provided with its corresponding target or desired target 

value. The neural network studies the set of input and its corresponding output and it generates a non-linear 

model relating the input to the output. 

Steps in developing the model 

 The development of the ANN model consists of the following steps which have been written as a 

Matlab code 

1.Identification of the number of inputs and outputs 

2.Designing an architecture for the neural network 

3.Training the neural network with a set of data points 

4.Simulating the trained neural network with a new set of data points which have not been used in the training 

stage. 

The data simulated by the neural network for the new set of data points is compared with the data 

obtained by solving this set using the Margules and the van Laar models. The comparison of the data is reported 

in the form of a graph. 

1.Identifying the number of inputs and outputs 

In this step, the number of inputs and outputs are decided. For eg: in this work, binary systems have been 

considered and according to the phase rule, the number of degrees of freedom is given as : 

F = C – π + 2  

Where, F = number of degrees of freedom, C = number of components, π = number of phases. For a binary 

system in vapour liquid equilibrium conditions, C = 2, π = 2, so number of degrees of freedom is F = 2. 

 Thus two known parameters are taken as the input to the neural networks. There can be one or two 

outputs considered. Thus, the input to the ANN can be either T, x1 data or P, x1 data and y1 data is the desired 

output. 

2. Designing an architecture for the neural network 

Optimum network architecture has to be designed such that the convergence of the values or the training of the 

network is fast and the output obtained does not show much deviations from the experimental values. The 

number of layers, the number of neurons in each layer and the activation function for each layer is to be set to 

form a neural network. 

3. Training of the neural networks for a set of data points 

The set of data points used for training the neural network serves as the input to the system. The data points are 

trained using the following steps 

a) Input data – the input set and the corresponding target output set is fed to the ANN. 

b).Initialize training – the network structure is defined and the training function is defined. The parameter 

associated with the training function like the maximum number of epochs, minimum gradient, mean squared 

errors (MSE) limit is defined. 

c).Epoch is set as 1 and the training is started. 

d).Weights and bias of the network are initialized to random values 

e).With the entered input value and the value of weights and bias the output values are calculated. 

f).Deviation of the calculated output and the desired target output is calculated using MSE. 

g).If MSE  MSEminimum evaluation is stopped else do step (h). 

f) If number epochs  epochsmaximum go to step (i), else stop. 

g) Weights are updated on the basis of the training function and the number of epoch is increased by 1 and the 

steps are repeated from step (e). 

Once, the training is stopped, a model is generated with fixed values of weights and    biases forming a 

numerical non-linear model (relation) between the input and output. 

1. Simulating the trained neural network with a new set of data points which have not been used in the training 

stage. 

A new set of data input is provided to the trained network to evaluate the output value or the value of the mole 

fraction of the components in the vapour phase. This simulated data has been compared with the experimental 

values and the values of the mole fraction of the vapour phase computed by the Margules and the van Laar‟s 

model. 

The VLE data required for training and testing has been taken from the explorer edition of the Dortmund Data 

Bank (DDBST) online. For each system, considered, a number of data points have been used for training and a 

different set has been used for simulation and testing. 
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Systems considered: 

The systems considered and number of data sets used for training and testing are as given below 

i.Chloroform(1) – Ethanol(2) system (308.15 K)   (Data sets: Training – 23, Testing – 5)  

ii. Methanol(1) – Acetone(2) system (101.325 kPa)(Data sets: Training – 18, Testing – 6)  

iii.Methanol(1) – Hexane(2) system (333.15 K)(Data sets: Training – 25, Testing – 5) 

iv.Methanol(1) – Benzene (2) system (101.33 kPa)Data sets: Training – 36, Testing – 6) 

v.Benzene(1) – Acetonitrile(2) system (293.15 K)(Data sets: Training – 38, Testing – 7) 

vi.Water(1) – m-Xylene(2) system (101.3 kPa) 

(Data sets: Training – 15, Testing – 5)  

vii.Hexane(1) – Cyclohexane(2) system (101.33 kPa)(Data sets: Training – 28, Testing – 6) 

All the data sets considered have been mentioned in the appendices 

Example  

Considering the Methanol (1) – Acetone (2) system (101.325 kPa). The neural network is trained by 

the input and target data. The Matlab code given in appendix (A1) is executed, the neural network architecture is 

a feed-forward architecture consisting of input T-x1 data and output y1 data. The neural net architecture is as 

given in figure (4.1). The net consists of 1 input layer, 2 hidden layers with 2 and 4 neurons respectively and the 

output layer with one neuron. The activation function in the hidden layers is logsig and in the output layer is 

purelin. MSE set is 1e-6. Minimum gradient set is 1e-6, maximum weight change is set as 100.  The maximum 

number of epochs is set as 100000. After the training the relational bias and weights obtained can be represented 

in the net as given below.   

 
Figure 4.1 – Basic model developed by ANN for Methanol(1) – Acetone (2) system 

 

 With a new set of input values, the output is simulated and it is compared with the values given in 

literature and those calculated using a thermodynamic model. It is represented in the form of a graph as shown 

in appendix. 

The training of the data takes 41656 epochs or iterations.But since the number of epochs taken is more, 

a neural network has to be designed in such a way that it predicts data with better accuracy and the epochs taken 

are less. 

After designing and testing many neural network models, a neural network model was optimized to 

give accurate and faster convergence of results. The code written in Matlab 7.0 is as given in Appendix(A.2). 

For all the 7 systems considered, the neural network has been trained and the values are simulated using the 

trained network in each of the cases. The values have been calculated by the neural network, Margules and the 

van Laar models and a graph has been plotted to represent the result. The graphical representation of the 

calculated parameters has been presented in Appendix(B). For each system, the deviation between the calculated 

and the experimental values has been evaluated by the Root Mean Squared Deviation(RSMD) formula which is 

given by the expression. 

 RSMD =  

 RSMD =   

 For all the systems, the model has been developed as per the Matlab code given in Appendix (A.2) 

(Optimized model). The model consists of four layers viz : an input layer with two inputs, two hidden layer with 

30 neurons each and an output layer with one neurons. The activation function used in all the layers is the log-

sigmoid (logsig) and the Resilient Propagation (trainrp) training algorithm is used. The parameters set for this 

training this network are:  

1) Maximum number of epochs/ iterations = 100000 
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2) Minimum gradient = 1e-10 

3) Mean squared error = 1e-9 

4)  Maximum weight change = 100 

Using these parameters the systems have been trained to recognise the input patterns and to develop a non-

relation between the input and output values. This relation developed is used to simulate the test data sets. 

 

IV. RESULTS AND DISCUSSIONS 
 In this study, 7 binary systems have been considered. Out of these 7 systems, 6 systems are azeotropes 

and 1 is a binary mixture. The values of the output (y1) data has been calculated  using the different models 

(ANN, Margules, van Laar).  The values of Root Mean Squared Deviation (RSMD) have been calculated for 

various systems. It is obtained as shown in the table given below. 

Table 5.1. Root Squared Mean Deviation from experimental values 

 

The Root Squared Mean Deviation (RSMD) calculated for all the systems considered have been 

represented in the table above. The comparison of the RSMD values of all the models, shows that the deviations 

shown by the ANN model is lesser as compared to the Margules and van Laar models. In other words, for all the 

systems considered, the values of mole fraction of the vapour phase predicted by the ANN model show lesser 

deviations from the experimental values as compared to the thermodynamic models. The graphical 

representation (Appendix) of the mole fractions in the liquid phase versus the mole fractions in the vapour phase 

shows the closer proximity of ANN values to the experimental values as compared to those of thermodynamic 

models considered.  

In the Methanol (1) – Acetone (2) system, the RSMD value obtained for the mole fractions of vapour 

phase calculated by the ANN model is the least.  Also in the Chloroform(1) – Ethanol(2) system, Methanol(1) – 

Hexane(2) system, Methanol(1) – Benzene (2) system, Benzene(1) – Acetonitrile(2) system, Water(1) – m-

Xylene(2) system, the values of the RSMD obtained for ANN values is considerably lesser than the van Laar 

and the Margules model values. Hence, the VLE data prediction by ANN for these systems is much accurate as 

compared to the thermodynamic models considered. While, for Hexane(1) – Cyclohexane(2) system the 

accuracy of prediction of ANN model is as much as the thermodynamic models. 

V. CONCLUSIONS 
 An artificial neural network (ANN) model has been developed and used for the prediction of Vapour 

Liquid Equilibrium (VLE) data. This model developed is a non-linear, non-thermodynamic model. The results 

of VLE data prediction using this model for various systems show satisfactory results. For all the systems 

considered the data predicted by the ANN shows closer agreement with the experimental literature as compared 

to the Margules and vaanLaar models, especially for the azeotropic systems considered, the VLE data prediction 

by the ANN model is better than that predicted by the Margules and van Laar models. 

APPENDICES 

APPENDIX A: MATLAB CODE 

I) BASIC MATLAB CODE FOR METHANOL (1) – ACETONE (2) SYSTEM 

clc, clear; 

% asking the user the Excel file name containing the data 

R=input('training set file name:','s'); 

T=input('target file name: ','s'); 

S=input('input set file name: ','s'); 

NAME OF THE SYSTEM ROOT SQUARED MEAN DEVIATION (RSMD) 

  MARGULES 

VAN 

LAAR ANN 

        

 Chloroform(1) – Ethanol(2) system (308.15 K) 0.00790 0.02862 0.00500 

 Methanol(1) – Acetone(2) system (101.325 kPa) 0.00847 0.00885 0.00099 

 Methanol(1) – Hexane(2) system (333.15 K) 0.06728 0.05852 0.00569 

 Methanol(1) – Benzene (2) system (101.33 kPa) 0.06879 0.05889 0.00699 

 Benzene(1) – Acetonitrile(2) system (293.15 K) 0.01811 0.01981 0.00607 

 Water(1) – m-Xylene(2) system (101.3 kPa) 0.17764 0.19103 0.01671 

 Hexane(1) – Cyclohexane(2) system (101.33 kPa) 0.00563 0.00865 0.00201 



Modelling of Vapour Liquid Equilibrium By  Artificial Neural Networks 

www.ijceronline.com                                    Open Access Journal                                              Page 47 

%Reading the Excel file 

RR=xlsread(R); 

TT=xlsread(T); 

SS=xlsread(S); 

 % Taking transpose of the input matrix 

RR1 = RR'; 

TT1 = TT'; 

SS1 =SS'; 

 % Defining function and parameters for the creation of the ANN 

net = newff(minmax(RR1),[2 4 1], {'logsig'  'logsig'      'purelin'},‟ trainrp'; net.trainParam.epochs =100000; 

net.trainParam.show=5000; 

net.trainParam.lr=0.1; 

net.trainParam.lr_inc = 1.05; 

net.trainParam.deltamax=100.0; 

net.trainParam.goal = 1e-6; 

%training the network 

net = train(net,RR1,TT1); 

%saving the net 

save(['m1.mat'],'net'); 

% Simulation of new sets of data 

y=sim(net,SS1) 

 

 

II) MATLAB CODE USED FOR ALL THE SYSTEMS 

clc,  

clear; 

R=input('training set file name:','s'); 

T=input('target file name: ','s'); 

S=input('input set file name: ','s'); 

RR=xlsread(R); 

TT=xlsread(T); 

SS=xlsread(S); 

RR1=RR'; 

TT1=TT'; 

SS1=SS'; 

% new network with 1 input layer, 2 hidden layer with 30 neurons each  

% output layer with one neuron 

% training function „trainrp‟ Resilient Propagation 

%activation function in each layer Log-sigmoid (logsig) 

net = newff(minmax(RR1),[30 30 1], {'logsig' 'logsig' 'logsig'},'trainrp'); 

net.trainParam.epochs =100000; % maximum epochs/iterations 

net.trainParam.show=5000; %parameters shown on matlab screen 

net.trainParam.lr=0.1;% learning rate 

net.trainParam.min_grad = 1e-10; %minimum gradient 

net.trainParam.lr_inc = 1.05; %learning rate increment 

net.trainParam.deltamax=100.0; %maximum weight increase 

net.trainParam.goal = 1e-9; % goal to be achieved (MSE) 

net = train(net,RR1,TT1); %network training command 

save(['NETNAME.mat'],'net'); % saving the neural network developed 

y=sim(net,SS1)  % simulating values using the developed network 
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APPENDIX B: TRAINING DATA FOR ALL THE SYSTEMS 

These sets of data points have been obtained from the Explorer edition of the Dortmund Data Bank (DDBST). 

The y1 data is the target output for network. And P, x1 or T, x1data  is the input. 

TABLE B.1 

CHLOROFORM(1) -

ETHANOL (2) SYSTEM  

(308.15 K) – TRAINING 

DATA 

 TABLE B.2         

METHANOL (1) – 

ACETONE (2) 

SYSTEM 

(101.325kPa) – 

TRAINING DATA 

 

TABLE B.3                                    
METHANOL (1) – 

HEXANE (2) SYSTEM  

(333.15 K) – 

TRAINING DATA 

 

TABLE B.4                                           

METHANOL(1) –

BENZENE(2) SYSTEM  

(101.33 kPa) – 

TRAINING DATA 

P 

[kPa] 
x1 y1 

 
T(K) x1 y1 

 

P [kPa] x1 y1 

 

T [K] x1 y1 

13.703 0 0 
 

328.82 0.07 0.082 

 

76.047 0 0 

 

351.76 0.002 0.041 

13.982 0.0062 0.0254 
 

328.46 0.181 0.188 

 

107.484 0.005 0.285 

 

350.8 0.0028 0.066 

14.84 0.0241 0.0991 
 

328.39 0.217 0.218 

 

130.869 0.016 0.407 

 

350.67 0.003 0.0684 

15.147 0.0297 0.121 
 

328.45 0.265 0.255 

 

138.002 0.033 0.438 

 

350.43 0.003 0.0812 

16.775 0.0594 0.2343 
 

328.54 0.34 0.311 

 

141.868 0.06 0.463 

 

350.37 0.0041 0.082 

19.766 0.1109 0.3885 
 

328.89 0.406 0.356 

 

145.108 0.098 0.482 

 

348.45 0.0058 0.1386 

23.678 0.173 0.5304 
 

329.3 0.481 0.406 

 

147.148 0.145 0.488 

 

346.92 0.0134 0.1924 

27.422 0.2361 0.6207 
 

330.05 0.593 0.486 

 

148.308 0.175 0.496 

 

346.21 0.019 0.206 

30.563 0.3014 0.687 
 

330.2 0.606 0.496 

 

148.988 0.218 0.499 

 

344.11 0.0276 0.2658 

31.531 0.3227 0.7009 
 

330.44 0.631 0.515 

 

149.348 0.399 0.512 

 

341.1 0.046 0.3392 

33.783 0.3845 0.737 
 

331.47 0.719 0.59 

 

149.641 0.522 0.517 

 

340.9 0.048 0.344 

34.035 0.3922 0.7412 
 

331.64 0.737 0.608 

 

149.494 0.57 0.52 

 

334.23 0.1437 0.4998 

35.684 0.4384 0.7646 
 

332.12 0.771 0.643 

 

149.388 0.613 0.521 

 

334.19 0.17 0.518 

38.923 0.6185 0.8181 
 

332.72 0.805 0.681 

 

149.308 0.657 0.522 

 

333.07 0.1858 0.5212 

39.587 0.6783 0.8327 
 

334.68 0.9 0.809 

 

148.961 0.79 0.524 

 

332.55 0.276 0.5442 

40.403 0.7746 0.8554 
 

335.36 0.926 0.852 

 

147.761 0.828 0.533 

 

331.58 0.364 0.5736 

40.715 0.8265 0.8698 
 

335.94 0.947 0.89 

 

145.028 0.877 0.54 

 

331.3 0.4558 0.587 

40.83 0.8483 0.8783 
 

336.84 0.976 0.947 

 

144.241 0.883 0.543 

 

331.19 0.524 0.5981 

40.803 0.9315 0.9161 
  

   

138.495 0.919 0.574 

 

331.12 0.637 0.62 

40.646 0.956 0.9363 
 

    

131.603 0.938 0.616 

 

331.13 0.6739 0.629 

40.553 0.9586 0.9385 
 

    

126.47 0.951 0.645 

 

331.14 0.68 0.6322 

40.489 0.96 0.9403 
 

    

121.59 0.962 0.681 

 

331.2 0.7024 0.6408 

39.345 1 1 
 

    

111.484 0.979 0.752 

 

331.21 0.7071 0.6416 

        

110.471 0.98 0.763 

 

331.37 0.744 0.6531 

        

83.9 1 1 

 

331.6 0.7768 0.6691 

            

331.8 0.8031 0.6838 

            

332.14 0.838 0.709 

            

332.75 0.8754 0.748 

            

333.75 0.9178 0.8002 

            

334.05 0.925 0.8118 

            

334.79 0.9424 0.851 

            

335.75 0.9652 0.8998 

            

336.72 0.9849 0.9492 

            

336.87 0.988 0.9572 

            

337.1 0.9918 0.9684 

            

337.36 0.9949 0.9799 
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TABLE B.5                                            

BENZENE(1) – 

ACETONITRILE(2) 

SYSTEM (293.15 K) – 

TRAINING DATA       

 

TABLE B.6                           

WATER(1) - m-

XYLENE(2) SYSTEM 

(101.3 kPa) – 

TRAINING DATA  

 

TABLE B.7                                     

HEXANE (1) – 

CYCLOHEXANE(2) 

SYSTEM (101.33 kPa) 

–TRAINING DATA 

P 

[kPa] 
x1 y1 

 

T [K] x1 y1 

 

T [K] x1 y1 

9.799 0.018 0.054 

 

408.15 0.0022 0.1216 

 

353.95 0 0 

10.106 0.033 0.096 

 

407.59 0.0029 0.1396 

 

353.75 0.008 0.018 

10.599 0.063 0.161 

 

399.85 0.0082 0.3082 

 

353.5 0.019 0.032 

11.106 0.098 0.221 

 

395.63 0.0122 0.4013 

 

352.9 0.063 0.0975 

11.386 0.128 0.256 

 

391.15 0.0163 0.4807 

 

352.45 0.094 0.135 

11.719 0.168 0.3 

 

382.35 0.0231 0.6023 

 

351.8 0.133 0.187 

11.852 0.187 0.321 

 

377.35 0.0349 0.6704 

 

350.3 0.239 0.316 

11.932 0.198 0.33 

 

374.89 0.0864 0.6921 

 

349.65 0.287 0.373 

12.226 0.256 0.376 

 

372.65 0.1294 0.7126 

 

349.2 0.318 0.4 

12.359 0.284 0.395 

 

369.87 0.2435 0.7378 

 

348.5 0.369 0.4575 

12.439 0.31 0.412 

 

367.16 0.9992 0.7924 

 

347.65 0.443 0.5335 

12.466 0.32 0.417 

 

367.46 0.9994 0.8138 

 

347.4 0.462 0.553 

12.612 0.368 0.442 

 

368.06 0.9996 0.8313 

 

346.9 0.498 0.5835 

12.666 0.424 0.473 

 

369.32 0.9998 0.8723 

 

346.55 0.536 0.6175 

12.679 0.446 0.484 

 

372.84 1 0.9897 

 

346.4 0.549 0.63 

12.692 0.446 0.486 

     

345.9 0.596 0.673 

12.719 0.47 0.498 

     

345.25 0.655 0.724 

12.692 0.481 0.501 

     

344.85 0.693 0.7575 

12.746 0.511 0.518 

     

344.1 0.757 0.808 

12.746 0.535 0.532 

     

344.05 0.769 0.818 

12.719 0.572 0.551 

     

343.95 0.777 0.8295 

12.719 0.607 0.571 

     

343.7 0.807 0.852 

12.666 0.648 0.593 

     

343.5 0.831 0.8715 

12.639 0.657 0.597 

     

343.3 0.85 0.883 

12.612 0.679 0.612 

     

343.1 0.874 0.902 

12.519 0.71 0.632 

     

342.5 0.935 0.95 

12.186 0.793 0.695 

     

342.2 0.969 0.976 

12.119 0.815 0.709 

     

341.95 1 1 

12.012 0.841 0.734 

        11.866 0.857 0.757 

        11.706 0.874 0.767 

        11.252 0.92 0.829 

        11.106 0.933 0.849 

        11.026 0.939 0.86 

        10.879 0.953 0.883 

        10.506 0.975 0.93 

        10.319 0.983 0.95 

        10.186 0.991 0.972 
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APPENDIX B: GRAPHS (x1 v/s y1) 

 

GRAPHICAL REPRESENTATION OF OUTPUT 

 

The calculated vapour mole fraction obtained from the various models is plotted against the liquid mole 

fractions to compare between the values calculated by the different models. 

       
 

 

      

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       FIGURE B.1: Chloroform (1) -Ethanol (2) System (308.15 K) – (x-y Graph) 

       
 

  

      

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       FIGURE B.2 : Methanol (1) – Acetone (2) System (101.325 kPa) – (x-y Graph) 
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FIGURE B.3: Methanol (1) – Hexane (2) System (333.15 K) – (x-y Graph) 

 

         

         

         

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

FIGURE B.4: Methanol (1) –Benzene (2) System (333.15 K) – (x-y Graph) 
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FIGURE B.5:Benzene (1) – Acetonitrile (2) System (293.15 K) – (x-y Graph) 

 

 
       

 

 
       

 

         

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

FIGURE B.6: Water (1) – m-Xylene (2) System (101.3 kPa) – (x-y Graph) 
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FIGURE B.7:Hexane (1) – Cyclohexane (2) System (101.33 kPa) – (x-y Graph) 
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TABLE C.1                                                                                                             

CHLOROFORM(1) – ETHANOL(2) SYSTEM (308.15 

K) – OUTPUT DATA 

 

TABLE C.2                                                                                    

METHANOL(1) – ACETONE(2) SYSTEM (101.325 

kPa) – OUTPUT DATA 

    EXPER

IMENT

AL 

MAR

GULE

S 

VAN 

LAAR 

ANN 

 

    EXPER

IMENT

AL 

MARGU

LES 

VAN 

LAAR 

ANN 

P [kPa] x1 y1 y1 y1 y1 

 

T(K) x1 y1 y1 y1 y1 

16.471 
0.054

2 
0.2154 0.2047 0.201 0.2151 

 

328.5

8 
0.133 0.144 0.1461 0.1463 0.1427 

30.006 
0.287

3 
0.6747 0.672 0.6282 0.6842 

 

328.4 0.227 0.226 0.2293 0.2284 0.2265 

36.536 
0.482

7 
0.7797 0.7924 0.7831 0.7755 

 

329.1

1 
0.446 0.382 0.3924 0.3868 0.3818 

40.679 
0.842

3 
0.8752 0.8722 0.91 0.871 

 

330.8

4 
0.676 0.55 0.5566 0.5486 0.5505 

40.518 
0.961

6 
0.9414 0.9459 0.9189 0.9424 

 

333.5

6 
0.849 0.735 0.7295 0.7197 0.7365 

    
RSMD 0.0079 0.0286 0.005 

 

335.9

4 
0.947 0.89 0.8747 0.8759 0.8912 

       

    
RSMD 0.0085 0.0089 

0.0009

93 

             TABLE C.3                                                                         

METHANOL(1) – HEXANE(2) SYSTEM  (333.15 K) – 

OUTPUT DATA 

 

TABLE C.4                                                                              

METHANOL(1) – BENZENE(2) SYSTEM  (101.33 kPa) 

– OUTPUT DATA 

    EXPE

RIME

NTAL 

MAR

GULE

S 

VAN 

LAAR 

ANN 

 

    EXPERIM

ENTAL 

MAR

GUL

ES 

VAN 

LAA

R 

ANN 

P [kPa] x1 y1 y1 y1 y1 

 

T [K] x1 y1 y1 y1 y1 

143.46

8 
0.079 0.472 0.553 0.5373 0.4724 

 

349.2 0.0055 0.1172 
0.115

3 

0.117

6 

0.1177

6 

149.56

1 
0.479 0.516 0.5212 0.5234 0.5141 

 

337.1

7 
0.083 0.43 

0.284

2 

0.545

8 

0.4465

1 

149.25

4 
0.733 0.523 0.4238 0.4318 0.5241 

 

331.1

2 
0.597 0.6114 

0.530

9 

0.567

7 

0.6128

3 

141.76

2 
0.902 0.561 0.4893 0.4987 0.5494 

 

331.2

8 
0.7298 0.6509 

0.625

7 

0.590

3 

0.6467

4 

116.67 0.967 0.714 0.6815 0.6895 0.7186 

 

333.3

3 
0.8998 0.7742 

0.772

3 

0.731

9 

0.7749

5 

    
RSMD 0.0673 0.0585 0.0057 

 

336.9

3 
0.989 0.961 

0.964

2 
0.955 

0.9601

3 

       

    
RSMD 

0.068

8 

0.058

9 

0.0069

95 
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TABLE C.5                                                                         

BENZENE(1) – ACETONITRILE(2) SYSTEM (293.15 

K) – OUTPUT DATA 

 

TABLE C.6                                                                              

WATER(1) – m-XYLENE(1) SYSTEM (101.3 kPa) 

– OUTPUT DATA 

    EXPE

RIME

NTAL 

MARG

ULES 

VAN 

LAAR 

ANN 

 

    EXPERI

MENTA

L 

MAR

GUL

ES 

VAN 

LAA

R 

ANN 

P x1 y1 y1 y1 y1 

 

T 

[K] 
x1 y1 y1 y1 y1 

10.639 0.064 0.162 0.1257 0.1239 0.169 

 

405.

01 

0.003

5 
0.1875 

0.045

1 

0.04

04 

0.180

79 

12.186 0.243 0.37 0.3577 0.352 0.3709 

 

385.

91 

0.024

2 
0.5627 

0.260

1 

0.22

46 

0.569

64 

12.679 0.435 0.479 0.4981 0.4976 0.4798 

 

370.

25 

0.205

7 
0.7243 

0.837

3 

0.76

59 

0.726

21 

12.732 0.512 0.519 0.5391 0.5418 0.5177 

 

367.

2 

0.999

3 
0.7992 

0.969

8 
1 

0.796

38 

12.359 0.753 0.662 0.6615 0.6693 0.6631 

 

371.

21 

0.999

9 
0.9334 0.997 1 

0.969

34 

11.386 0.906 0.808 0.801 0.801 0.7937 

 

    
RSMD 

0.177

6 

0.19

1 

0.016

712 

10.692 0.966 0.906 0.908 0.905 0.9068 

           RSM

D 
0.0181 0.0198 0.0061 

       

             

             

             

             

             

             

             TABLE C.7                                                                         

HEXANE(1) – CYCLOHEXANE(2)  SYSTEM (101.33 

kPa) – OUTPUT DATA 

           EXPE

RIME

NTAL 

MARG

ULES 

VAN 

LAAR 

ANN 

       T [K] x1 y1 y1 y1 y1 

       353.15 0.045 0.07 0.0632 0.0639 0.0676 

       351.15 0.1815 0.247 0.2433 0.2473 0.2442 

       347.95 0.4145 0.505 0.509 0.5209 0.5024 

       346.75 0.5155 0.5995 0.6088 0.6098 0.5996 

       344.55 0.724 0.786 0.7912 0.7926 0.7879 

       342.9 0.9 0.926 0.9272 0.9291 0.9254 

           RSM

D 
0.0056 0.0086 0.002 

       

             APPENDIX C: TRAINING OF DATA AND TRAINING GRAPH 

 The Methanol (1) – Acetone(1) system was trained with the training data given in appendix (B.2) by 

implementing the Matlab code given in appendix (A.1) 

The training output obtained is training set file name: maa-input target file name: maa-target input set file name: 

maa-test 

TRAINRP, Epoch 0/100000, MSE 0.660786/1e-006, Gradient 36.7999/1e-006 
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TRAINRP, Epoch 5000/100000, MSE 1.43502e-005/1e-006, Gradient 0.00193372/1e-006 

TRAINRP, Epoch 10000/100000, MSE 6.49147e-006/1e-006, Gradient 0.0037737/1e-006 

TRAINRP, Epoch 15000/100000, MSE 2.11517e-006/1e-006, Gradient 0.000254585/1e-006 

TRAINRP, Epoch 20000/100000, MSE 1.62195e-006/1e-006, Gradient 0.000552213/1e-006 

TRAINRP, Epoch 25000/100000, MSE 1.45938e-006/1e-006, Gradient 0.000329364/1e-006 

TRAINRP, Epoch 30000/100000, MSE 1.27897e-006/1e-006, Gradient 0.000208013/1e-006 

TRAINRP, Epoch 35000/100000, MSE 1.15176e-006/1e-006, Gradient 0.000179174/1e-006 

TRAINRP, Epoch 40000/100000, MSE 1.03867e-006/1e-006, Gradient 0.00016271/1e-006 

TRAINRP, Epoch 41656/100000, MSE 9.99977e-007/1e-006, Gradient 0.000333166/1e-006 

TRAINRP, Performance goal met. 

The training graph obtained is 

 

C.1. Training graph for Methanol (1) – Acetone (2) system 101.325kPa 
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