
ISSN (e): 2250 – 3005 || Vol, 04 || Issue, 5 || May – 2014 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 19

Efficient Ranking and Suggesting Popular Itemsets In Mobile

Stores Using Fp Tree Approach

1
B.Sujatha Asst prof,

2
Shaista Nousheen Asst.prof,

3
Tasneem rahath Asst prof,

4
 Nikhath Fatima Asst.prof

I. INTRODUCTION

1.1 TERMINOLOGY:
In this section we first want to introduce the different terms that we were going to use in our paper as

fallows.

1.1.1 Ranking: Ranking is giving rank scores to the most popular item by taking user feedback. The most

frequently occurring item is given the highest rank score.

1.1.2 Selection: We focus on the ranking of items where the only available information is the observed

selection of items. In learning of the users preference over items, one may leverage some side information

about items, but this is out of the scope of this paper.

1.1.3 Imitate: The user study was conducted in very famous mobile stores and which has been used to set

of mobiles. The user may check the list and select the set of mobiles which they like most and depending on

those like results the new suggestion list has been developed by the algorithm.

1.1.4 Popular: In practice, one may use prior information about item popularity. For example,

in the survey the user may select the suggested mobile or they may also select the others. If they selected the

already suggested items they will become more popular and if he don’t they may get out of the popular list.

1.1.5 Association Rule: Association Rules are if/then statements that help uncover relationships between

seemingly unrelated data in the relational database or other information repository. An example of an

association rule would be if a customer buys a nokia mobile, he is 70% interested in also purchasing nokia

accessories.

II. THEORETICAL STUDY
We consider the mobile phone selection and suggesting the best sold mobile and their combinations

that were most liked by most of the users. Consider a set of mobiles M: (m1, m2, m3, m4, ….mn) where n > 1.

Now we were calculating the set of items in C where were mostly sold and mostly liked by the users, as S

S: (s1, s2, s3, s4, …. sg) where g > 1.

We need to consider an item I, we interpret si as the portion of users that would select item i if

suggestions were not made. We assume that the popularity rank scores s as follows:

a) Items of set S were estimated to is as s1 > s2 > s3 >

…. sc,

b) s is completely normalized such that it is a probability

distribution, i.e., s1 + s2 + s3 + …. +sc = 1. c) si is always positive for all items i.

Abstract
We considered the problem of ranking the popularity of items and suggesting popular items

based on user feedback. User feedback is obtained by iteratively presenting a set of suggested

items, and users selecting items based on their own preferences either the true popularity ranking of

items, and suggest true popular items. We consider FP tree approach with some modifications

overcoming the complexity that has been seen in other randomized algorithms. The most effective

feature of this approach is that it reduces the number of database scans and complexity.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 20

III. PROPOSED ALGORITHM AND STUDY
We have some of the systems already existing in the same field and we have also identified some of the

disadvantages in them as follows:

 the popularity for any item is given based on the production of that item. This may not give good result

because customers may not have the knowledge of true popularity they needed and depend on the results

given by the producer.

 the updates are performed regardless of the true popularity by virtual analysis.

 Producer have to analyse things manually and complexity involves in this. Due to this time consumption

may be high.

 the algorithms used in this system may fail to achieve true popularity.

We consider the problem learning of the popularity of items that is assumed to be unknown

but has to be learned from the observed user’s selection of items. We have selected a mobile market and

mobile distribution outlets as our data set and examined them completely in all areas where we can give

the list of items suggested by the users and we have made web-application to make an survey at real-time and

considered the data given by more that 1000 members of different categories of people and applied our

proposed Fp tree approach on the set of data and started suggesting the item in the mobile outlets for the actual

users, which had helped the mobile phone companies and also the outlet in-charges. We have implemented the

same in some of the mobile outlets in INDIA where we got very good results. The actual goal of the system is

to efficiently learn the popularity of items and suggest the popular items to users. This was done to the user

to suggest them the mostly used mobiles and their accessories, such that they also buy the best and at the

same time the outlet owner will also get benefited. The most important feature in our project is suggesting

the users by refreshing the latest results every time the user gives the input and changes his like list.

Now we have overcome many of the disadvantages of the existing systems and achieved many

advantages with the proposed algorithm and method as follows:

 In our approach, we consider the problem of ranking the popularity of items and suggesting popular

items based on user feedback.

 User feedback is obtained by iteratively presenting a set of suggested items, and users selecting items

based on their own preferences either from this suggestion set or from the set of all possible items.

 The goal is to quickly learn the true popularity ranking of items and suggest true popular items.

 In this system better algorithms are used. The algorithms use ranking rules and suggestion rules in

order to achieve true popularity.

IV. PROPOSED APPROACH FP-TREE

 Like most traditional studies in association mining, we de_ne the frequent pattern mining problem as

follows.De_nition 1 (Frequent pattern) Let I = fa1; a2; : : :; amg be a set of items, and a transaction database DB

= hT1; T2; : : :; Tni, where Ti (i 2 [1::n]) is a transaction which contains a set of items in I. The support1(or

occurrence frequency) of a pattern A, which is a set of items, is the number of transactions containing A in DB.

A, is a frequent pattern if A's support is no less than a prede_ned minimum support threshold, _. 2Given a

transaction database DB and a minimum support threshold, _, the problem of _nding the complete set of

frequent patterns is called the frequent pattern mining problem.

2.1 Frequent Pattern Tree

 To design a compact data structure for efficient frequent pattern mining, let's _rst examine a tiny

example.Example 1 Let the transaction database, DB, be (the _rst two columns of) Table 1 and the minimum

supportthreshold be 3.

TID Items bought (Ordered)frequent items

100 f, a, c, d, g, i,m,p f, c, a,m, p

200 a, b, c, f, l,m,o f, c, a, b,m

300 b, f, h, j,o f, b

400 b, c, k, s,p c, b, p

500 a, f, c, e, l, p,m,n f, c, a,m, p

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 21

A compact data structure can be designed based on the following observations:

[1]. Since only the frequent items will play a role in the frequent-pattern mining, it is necessary to perform one

scan of transaction database DB to identify the set of frequent items (with frequency count obtained as a by-

product).

[2]. If the set of frequent items of each transaction can be stored in some compact structure,it may be possible

to avoid repeatedly scanning the original transaction database.

[3]. If multiple transactions share a set of frequent items, it may be possible to merge the shared sets with the

number of occurrences registered as count. It is easy to check whether two sets are identical if the frequent

items in all of the transactions are listed according to a fixed order.

[4]. If two transactions share a common prefix, according to some sorted order of frequent items, the shared

parts can be merged using one prefix structure as long as the count is registered properly. If the frequent

items are sorted in their frequency descending order,there are better chances that more prefix strings can be

shared.With the above observations, one may construct a frequent-pattern tree as follows.

First, a scan of DB derives a list of frequent items, _(f :4), (c:4), (a:3), (b:3), (m:3), (p:3)_(the number after “:”

indicates the support), in which items are ordered in frequency descending rder. This ordering is important since

each path of a tree will follow this order. For convenience of later discussions, the frequent items in each

transaction are listed in this ordering in the rightmost column of Table 1.Second, the root of a tree is created and

labeled with “null”. The FP-tree is constructed as follows by scanning the transaction database DB the second

time.

[1]. The scan of the first transaction leads to the construction of the first branch of the tree:

[2]. _(f :1), (c:1), (a:1), (m:1), (p:1)_. Notice that the frequent items in the transaction are listed according to

the order in the list of frequent items.

[3]. For the second transaction, since its (ordered) frequent item list _ f, c, a, b,m_ shares a

[4]. common prefix _ f, c, a_ with the existing path _ f, c, a,m, p_, the count of each node along the prefix is

incremented by 1, and one new node (b:1) is created and linked as a child of (a:2) and another new node

(m:1) is created and linked as the child of (b:1).

[5]. For the third transaction, since its frequent item list _ f, b_ shares only the node _ f _ with

[6]. the f -prefix subtree, f ’s count is incremented by 1, and a new node (b:1) is created and linked as a child of

(f :3).

[7]. The scan of the fourth transaction leads to the construction of the second branch of the tree, _(c:1), (b:1),

(p:1)_.

[8]. For the last transaction, since its frequent item list _ f, c, a,m, p_ is identical to the first one, the path is

shared with the count of each node along the path incremented by 1.

[9]. To facilitate tree traversal, an item header table is built in which each item points to its first occurrence in

the tree via a node-link. Nodes with the same item-name are linked in sequence via such node-links. After

scanning all the transactions, the tree, together with the associated node-links, are shown in figure 1.

Based on this example, a frequent-pattern tree can be designed as follows. Definition 1 (FP-tree). A frequent-

pattern tree (or FP-tree in short) is a tree structure defined below.

[1]. It consists of one root labeled as “null”, a set of item-prefix sub trees as the children of the root, and a

frequent-item-header table.

[2]. Each node in the item-prefix sub tree consists of three fields: item-name, count, and node-link, where item-

name registers which item this node represents, count registers the number of transactions represented by

the portion of the path reaching this node, and

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 22

node-link links to the next node in the FP-tree carrying the same item-name, or null if

there is none.

[3] Each entry in the frequent-item-header table consists of two fields, (1) item-name and (2) head of node-link

(a pointer pointing to the first node in the FP-tree carrying the item-name).Based on this definition, we have the

following FP-tree construction algorithm.

Algorithm 1 (FP-tree construction).

Input: A transaction database DB and a minimum support threshold ξ .

Output: FP-tree, the frequent-pattern tree of DB.

Method: The FP-tree is constructed as follows.

1. Scan the transaction database DB once. Collect F, the set of frequent items, and the support of each frequent

item. Sort F in support-descending order as FList, the list of frequent items.

2. Create the root of an FP-tree, T , and label it as “null”. For each transaction Trans in DB do the following.

Select the frequent items in Trans and sort them according to the order of FList. Let the sorted frequent-item list

in Trans be [p | P], where p is the first element and P is theremaining list. Call insert tree([p | P], T). The

function insert tree([p | P], T) is performed as follows. If T has a child N such that N.item-name = p.item-name,

then increment N’s count by 1; else create a new node N, with its count initialized to 1, its parent link linked to

T , and its node-link linked to the nodes with the same item-name via the node-link structure. If P is nonempty,

call nserttree(P, N) recursively. Analysis. The FP-tree construction takes exactly two scans of the transaction

database: The first scan collects the set of frequent items, and the second scan constructs the FP-tree. The cost

of inserting a transaction Trans into the FP-tree is (|freq(Trans)|),wherefreq(Trans) is the set of frequent items in

Trans. We will show that the FP-tree contains the complete information for frequent-pattern mining.

Completeness and compactness of FP-tree

There are several important properties of FP-tree that can be derived from the FP-tree construction process.

Given a transaction database DB and a support threshold ξ . Let F be the frequent items in DB. For each

transaction T , freq(T) is the set of frequent items in T , i.e., freq(T) = T ∩ F,and is called the frequent item

projection of transaction T . According to the Apriori principle, the set of frequent item projections of

transactions in the database is sufficient for mining the complete set of frequent patterns, because an infrequent

item plays no role in frequent patterns.

Lemma 1. Given a transaction database DB and a support threshold ξ, the complete set of frequent item

projections of transactions in the database can be derived from DB’s FP-tree.Rationale. Based on the FP-tree

construction process, for each transaction in the DB, its frequent item projection is mapped to one path in the

FP-tree.For a path a1a2 . . . ak from the root to a node in the FP-tree, let cak be the count at the node labeled ak

and c_ak be the sum of counts of children nodes of ak . Then, according to the construction of the FP-tree, the

path registers frequent item projections of cak− c_ak transactions.Therefore, the FP-tree registers the complete

set of frequent item projections without duplication.Based on this lemma, after an FP-tree for DB is constructed,

it contains the complete information for mining frequent patterns from the transaction database. Thereafter, only

the FP-tree is needed in the remaining mining process, regardless of the number and length of the frequent

patterns.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 23

Lemma 2. Given a transaction database DB and a support threshold ξ. Without consideringthe (null) root, the

size of an FP-tree is bounded by _T∈DB |freq(T)|, and the height of the tree is bounded by maxT∈DB{|freq(T

)|}, where freq(T) is the frequent item projection of transaction T Rationale. Based on the FP-tree construction

process, for any transaction T in DB, there exists a path in the FP-tree starting from the corresponding item

prefix subtree so that the set of nodes in the path is exactly the same set of frequent items in T . The root is the

only extra node that is not created by frequent-item insertion, and each node contains one node-link and one

count. Thus we have the bound of the size of the tree stated in the Lemma.The height of any p-prefix subtree is

the maximum number of frequent items in any transaction with p appearing at the head of its frequent item list.

Therefore, the height of the tree is bounded by the maximal number of frequent items in any transaction in the

database, if we do not consider the additional level added by the root.Lemma 2.2 shows an important benefit of

FP-tree: the size of an FP-tree is bounded by the size of its corresponding database because each transaction will

contribute at most one path to the FP-tree, with the length equal to the number of frequent items in that

transaction. Since there are often a lot of sharings of frequent items among transactions, the size of the tree is

usually much smaller than its original database. Unlike the Apriori-like method which may generate an

exponential number of candidates in the worst case, under no circumstances, may an FP-tree with an

exponential number of nodes be generated.FP-tree is a highly compact structure which stores the information

for frequent-patternmining. Since a single path “a1 → a2 → · · · → an” in the a1-prefix subtree registers all the

transactions whose maximal frequent set is in the form of “a1 → a2 → ·· ·→ak” for any 1 ≤ k ≤ n, the size of

the FP-tree is substantially smaller than the size of the database and that of the candidate sets generated in the

association rule mining.The items in the frequent item set are ordered in the support-descending order: More

frequently occurring items are more likely to be shared and thus they are arranged closer to the top of the FP-

tree. This ordering enhances the compactness of the FP-tree structure. However, this does not mean that the tree

so constructed always achieves the maximal compactness. With the knowledge of particular data characteristics,

it is sometimes possible to achieve even better compression than the frequency-descending ordering. Consider

the following example. Let the set of transactions be: {adef , bdef , cdef , a, a, a, b, b, b, c, c, c}, and the

minimum support threshold be 3. The frequent item set associated with support count becomes {a:4, b:4, c:4,

d:3, e:3, f :3}. Following the item frequency ordering a → b → c → d → e → f , the FP-tree constructed will

contain 12 nodes, as shown in figure 2(a). However, following another item ordering f → d → e → a → b → c,

it will contain only 9 nodes, as shown in figure 2(b).The compactness of FP-tree is also verified by our

experiments. Sometimes a rather small FP-tree is resulted from a quite large database. For example, for the

database Connect-4 used in MaxMiner (Bayardo, 1998), which contains 67,557 transactions with 43 items in

each transaction, when the support threshold is 50% (which is used in the MaxMiner experiments (Bayardo,

1998)), the total number of occurrences of frequent items is 2,219,609, whereas the total number of nodes in the

FP-tree is 13,449 which represents a reduction ratio of 165.04, while it still holds hundreds of thousands of

frequent patterns! (Notice that for databases with mostly short transactions, the reduction ratio is not that high.)

Therefore,it is not surprising some gigabyte transaction database containing many long patterns may

even generate an FP-tree that fits in main memory. Nevertheless, one cannot assume that an FP-tree can always

fit in main memory no matter how large a database is. Methods for highly scalable FP-growth mining will be

discussed in Section 5.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 24

4.1 Mining frequent patterns using FP-tree:Construction of a compact FP-tree ensures that subsequent

mining can be performed with a rather compact data structure. However, this does not automatically guarantee

that it will be highly efficient since one may still encounter the combinatorial problem of candidate generation if

one simply uses this FP-tree to generate and check all the candidate patterns. In this section, we study how to

explore the compact information stored in an FP-tree, develop the principles of frequent-pattern growth by

examination of our running example, explore how to perform further optimization when there exists a single

prefix path in an FP-tree, and propose a frequent-pattern growth algorithm, FP-growth, for mining the complete

set of frequent patterns using FP-tree. 4.1.1 Principles of frequent-pattern growth for FP-tree mining In this

subsection, we examine some interesting properties of the FP-tree structure which will facilitate frequent-

pattern mining.

Property 1 (Node-link property). For any frequent item ai , all the possible patterns containing only frequent

items and ai can be obtained by following ai ’s node-links, starting from ai ’s head in the FP-tree header.This

property is directly from the FP-tree construction process, and it facilitates the access of all the frequent-pattern

information related to ai by traversing the FP-tree once following ai ’s node-links.To facilitate the

understanding of other properties of FP-tree related to mining, we first go through an example which performs

mining on the constructed FP-tree (figure 1) in Example 1. Example 2. Let us examine the mining process based

on the constructed FP-tree shown in figure 1. Based on Property 3.1, all the patterns containing frequent items

that a node aiparticipates can be collected by starting at ai ’s node-link head and following its node-links.

We examine the mining process by starting from the bottom of the node-link header table. For node p, its

immediate frequent pattern is (p:3), and it has two paths in the FP-tree:_ f :4, c:3, a:3,m:2, p:2_ and _c:1, b:1,

p:1_. The first path indicates that string“(f, c, a,m, p)” appears twice in the database. Notice the path also

indicates that string _ f, c, a_ appears three times and _ f _ itself appears even four times. However, they only

appear twice together with p. Thus, to study which string appear together with p, only p’s prefix path _ f :2, c:2,

a:2,m:2_ (or simply, _ f cam:2_) counts. Similarly, the second path indicates string “(c, b, p)” appears once in

the set of transactions in DB, or p’s prefix pathis _cb:1_. These two prefix paths of p, “{(f cam:2), (cb:1)}”,

form p’s subpattern-base, which is called p’s conditional pattern base (i.e., the subpattern-base under the

condition of p’s existence). Construction of an FP-tree on this conditional pattern-base (which is called p’s

conditional FP-tree) leads to only one branch (c:3). Hence, only one frequent pattern (cp:3) is derived. (Notice

that a pattern is an itemset and is denoted by a string here.) The search for frequent patterns associated with p

terminates. For node m, its immediate frequent pattern is (m:3), and it has two paths, _ f :4, c:3, a:3,m:2_ and _ f

:4, c:3, a:3, b:1, m:1_. Notice p appears together with m as well, however, there is no need to include p here in

the analysis since any frequent patterns involving p has been analyzed in the previous examination of p. Similar

to the above analysis, m’s conditional pattern-base is {(fca:2), (fcab:1)}. Constructing an FP-tree on it, we

derive m’s conditional FP-tree, _ f :3, c:3, a:3_, a single frequent pattern path, as shown in figure 3. This

conditional FP-tree is then mined recursively by calling mine(_ f :3, c:3, a:3_ |m). Figure 3 shows that “mine(_ f

:3, c:3, a:3_ |m)” involves mining three items (a), (c), (f) in sequence. The first derives a frequent pattern

(am:3), a conditional pattern-base {(fc:3)}, and then a call “mine(_ f :3, c:3_ | am)”; the second derives a

frequent pattern (cm:3), a conditional pattern-base {(f :3)}, and then a call “mine(_ f :3_ | cm)”; and the third

derives only a frequent pattern (fm:3). Further recursive call of “mine(_ f :3, c:3_ | am)” derives two patterns

(cam:3) and (fam:3), and a conditional pattern-base {(f :3)}, which then leads to a call “mine(_ f :3_ | cam)”,

that derives the longest pattern (fcam:3). Similarly, the call of “mine(_ f :3_ | cm)” derives one pattern (fcm:3).

Therefore, the set of frequent patterns involving m is {(m:3), (am:3), (cm:3), (f m:3), (cam:3), (fam:3), (fcam:3),

(fcm:3)}. This indicates that a single path FP-tree can be mined by outputting all the combinations of the items

in the path.Similarly, node b derives (b:3) and it has three paths: _ f :4, c:3, a:3, b:1_, _ f :4, b:1_, and _c:1,

b:1_. Since b’s conditional pattern-base {(fca:1), (f :1), (c:1)} generates no frequent item, the mining for b

terminates. Node a derives one frequent pattern {(a:3)} and one subpattern base {(f c:3)}, a single-path

conditional FP-tree. Thus, its set of frequent pattern

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 25

Table 2. Mining frequent patterns by creating conditional (sub)pattern-bases.

Item Conditional pattern-base Conditional FP-tree

P {(f cam:2), (cb:1)} {(c:3)}|p

M {(f ca:2), (fcab:1)} {(f :3, c:3, a:3)}|m

b {(f ca:1), (f :1), (c:1)} ∅

a {(f c:3)} {(f :3, c:3)}|a

c {(f :3)} {(f :3)}|c

f ∅ ∅

can be generated by taking their combinations. Concatenating them with (a:3), we have {(f a:3), (ca:3),

(fca:3)}. Node c derives (c:4) and one subpattern-base {(f :3)}, and the set of frequent patterns associated with

(c:3) is {(fc:3)}. Node f derives only (f :4) but no conditional pattern-base.The conditional pattern-bases and the

conditional FP-trees generated are summarized in Table 2.The correctness and completeness of the process in

Example 2 should be justified.This is accomplished by first introducing a few important properties related to the

mining process.

Property 2 (Prefix path property). To calculate the frequent patterns with suffix ai , onlythe prefix subpathes of

nodes labeled ai in the FP-tree need to be accumulated, and the frequency count of every node in the prefix

path should carry the same count as that in the corresponding node ai in the path.Rationale. Let the nodes

along the path P be labeled as a1, . . . , an in such an order that a1 is the root of the prefix subtree, an is the leaf

of the subtree in P, and ai (1 ≤ i ≤ n) is the node being referenced. Based on the process of FP-tree construction

presented in Algorithm 1, for each prefix node ak (1 ≤ k < i), the prefix subpath of the node ai in P occurs

together with ak exactly ai .count times. Thus every such prefix node should carry the same count as node ai .

Notice that a postfix node am (for i < m ≤ n) along the same path also co-occurs with node ai. However, the

patterns with am will be generated when examining the suffix node am, enclosing them here will lead to

redundant generation of the patterns that would have been generated for am. Therefore, we only need to

examine the prefix subpath of ai in P. For example, in Example 2, node m is involved in a path _ f :4, c:3,

a:3,m:2, p:2_, to calculate the frequent patterns for node m in this path, only the prefix subpath of node m,

which is _ f :4, c:3, a:3_, need to be extracted, and the frequency count of every node in the prefix path should

carry the same count as node m. That is, the node counts in the prefix path should be adjusted to _ f :2, c:2, a:2_.

Based on this property, the prefix subpath of node ai in a path P can be copied and transformed into a count-

adjusted prefix subpath by adjusting the frequency count of every node in the prefix subpath to the same as the

count of node ai . The prefix path so transformed is called the transformed prefix path of ai for path P. Notice

that the set of transformed prefix paths of ai forms a small database of patterns which co-occur with ai . Such a

database of patterns occurring with ai is called ai ’s conditional pattern-base, and is denoted as “pattern base |

ai ”. Then one can compute all the frequent patterns associated with ai in this ai -conditional pattern-base by

creating a small FP-tree, called ai ’s conditional FP-tree and denoted as “FP-tree | ai ”. Subsequent mining can

be performed on this small conditional FP-tree. The processes of construction of conditional pattern-bases and

conditional FP-trees have been demonstrated in Example 2. This process is performed recursively, and the

frequent patterns can be obtained by a pattern-growth method, based on the following lemmas and corollary.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 26

Lemma 1 (Fragment growth). Let α be an itemset in DB, B be α’s conditional patternbase, and β be an itemset

in B. Then the support of α ∪β in DB is equivalent to the support of β in B. Rationale. According to the

definition of conditional pattern-base, each (sub)transaction in B occurs under the condition of the occurrence of

α in the original transaction database DB. If an itemset β appears in B ψ times, it appears with α in DBψ times as

well. Moreover, since all such items are collected in the conditional pattern-base of α, α ∪ β occurs exactly ψ

times in DB as well. Thus we have the lemma. From this lemma, we can directly derive an important corollary.

Corollary 1 (Pattern growth). Let α be a frequent itemset in DB, B be α’s conditional pattern-base, and β be an

itemset in B. Then α ∪ β is frequent in DB if and only if β is frequent in B. Based on Corollary 3.1, mining can

be performed by first identifying the set of frequent 1-itemsets in DB, and then for each such frequent 1-itemset,

constructing its conditional pattern-bases, and mining its set of frequent 1-itemsets in the conditional pattern-

base, and so on. This indicates that the process of mining frequent patterns can be viewed as first mining

frequent 1-itemset and then progressively growing each such itemset by mining its conditional pattern-base,

which can in turn be done similarly. By doing so, a frequent k-itemset mining problem is successfully

transformed into a sequence of k frequent 1- itemset mining problems via a set of conditional pattern-bases.

Since mining is done by pattern growth, there is no need to generate any candidate sets in the entire mining

process. Notice also in the construction of a new FP-tree from a conditional pattern-base obtained during the

mining of an FP-tree, the items in the frequent itemset should be ordered in the frequency descending order of

node occurrence of each item instead of its support (which represents item occurrence). This is because each

node in an FP-tree may represent many occurrences of an item but such a node represents a single unit (i.e., the

itemset whose elements always occur together) in the construction of an item-associated FP-tree.

3.2. Frequent-pattern growth with single prefix path of FP-tree

The frequent-pattern growth method described above works for all kinds of FP-trees. However, further

optimization can be explored on a special kind of FP-tree, called single prefixpathFP-tree, and such an

optimization is especially useful at mining long frequent patterns. A single prefix-path FP-tree is an FP-tree that

consists of only a single path or a single prefix path stretching from the root to the first branching node of the

tree, where a branching node is a node containing more than one child. Let us examine an example.

Example 3. Figure 4(a) is a single prefix-path FP-tree that consists of one prefix path,_(a:10)→(b:8)→(c:7)_,

stretching from the root of the tree to the first branching node (c:7).Although it can be mined using the frequent-

pattern growth method described above, a bettermethod is to split the tree into two fragments: the single prefix-

path, _(a:10)→(b:8)→(c:7)_, as shown in figure 4(b), and the multipath part, with the root replaced by a

pseudoroot R, as shown in figure 4(c). These two parts can be mined separately and then combined together.Let

us examine the two separate mining processes. All the frequent patterns associated with the first part, the single

prefix-path P = _(a:10)→(b:8)→(c:7)_, can be mined by enumeration of all the combinations of the subpaths of

P with the support set to the minimum support of the items contained in the subpath. This is because each such

subpath is distinct and occurs the same number of times as the minimum occurrence frequency among the items

in the subpath which is equal to the support of the last item in the subpath. Thus, path P generates the following

set of frequent patterns, freq pattern set(P) = {(a:10), (b:8), (c:7), (ab:8), (ac:7), (bc:7), (abc:7)}.Let Q be the

second FP-tree (figure 4(c)), the multipath part rooted with R. Q can be mined as follows.First, R is treated as a

null root, and Q forms a multipath FP-tree, which can be mined using a typical frequent-pattern growth method.

The mining result is: freq pattern set(Q)= {(d:4), (e:3), (f :3), (d f :3)}. Figure

Figure 4. Mining an FP-tree with a single prefix path.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 27

Second, for each frequent itemset in Q, R can be viewed as a conditional frequent pattern-base, and each itemset

in Q with each pattern generated from R may form a distinct frequent pattern. For example, for (d:4) in freq

pattern set(Q), P can be viewed as its conditional pattern-base, and a pattern generated from P, such as (a:10),

will generate with it a new frequent itemset, (ad:4), since a appears together with d at most four times. Thus, for

(d:4) the set of frequent patterns generated will be (d:4)×freq pattern set(P) = {(ad:4), (bd:4), (cd:4), (abd:4),

(acd:4), (bcd:4), (abcd:4)}, where X × Y means that every pattern in X is combined with everyone in Y to form a

“cross-product-like” larger itemset with the support being the minimum support between the two patterns. Thus,

the complete set of frequent patterns generated by combining the results of P and Q will be freq pattern

set(Q)×freq pattern set(P), with the support being the support of the itemset in Q (which is always no more than

the support of the itemset from P). In summary, the set of frequent patterns generated from such a single prefix

path consists of three distinct sets: (1) freq pattern set(P), the set of frequent patterns generated from the single

prefix-path, P; (2) freq pattern set(Q), the set of frequent patterns generated from the multipath part of the FP-

tree, Q; and (3) freq pattern set(Q)×freq pattern set(P), the set of frequent patterns involving both parts. We

first showif an FP-tree consists of a single path P, one can generate the set of frequent patterns according to the

following lemma.

Lemma 2 (Pattern generation for an FP-tree consisting of single path). Suppose an FP-tree T consists of a

single path P. The complete set of the frequent patterns of T can be generated by enumeration of all the

combinations of the subpaths of P with the support being the minimum support of the items contained in the

subpath. Rationale. Let the single path P of the FP-tree be _a1:s1→a2:s2→ ·· ·→ak :sk _. Since the FP-tree

contains a single path P, the support frequency si of each item ai (for 1 ≤ i ≤ k) is the frequency of ai co-

occurring with its prefix string. Thus, any combination of the items in the path, such as _ai , . . . , aj _ (for 1 ≤ i,

j ≤ k), is a frequent pattern, with their cooccurrence frequency being the minimum support among those items.

Since every item in each path P is unique, there is no redundant pattern to be generated with such a

combinational generation. Moreover, no frequent patterns can be generated outside the FP-tree. Therefore, we

have the lemma. We then show if an FP-tree consists of a single prefix-path, the set of frequent patterns can be

generated by splitting the tree into two according to the following lemma.

Lemma 3 (Pattern generation for an FP-tree consisting of single prefix path). Suppose an FP-tree T, similar to

the tree in figure 4(a), consists of (1) a single prefix path P, similar to the tree P in figure 4(b), and (2) the

multipath part, Q, which can be viewed as an independent FP-tree with a pseudo-root R, similar to the tree Q in

figure 4(c). The complete set of the frequent patterns of T consists of the following three portions:

1. The set of frequent patterns generated from P by enumeration of all the combinations of the items along path

P, with the support being the minimum support among all the items that the pattern contains.

2. The set of frequent patterns generated from Q by taking root R as “null.”

3. The set of frequent patterns combining P and Q formed by taken the cross-product of the frequent patterns

enerated from P and Q, denoted as freq pattern set(P) × freq pattern set(Q), that is, each frequent itemset is the

union of one frequent itemset from P and one from Q and its support is the minimum one between the supports

of the two itemsets. Rationale. Based on the FP-tree construction rules, each node ai in the single prefix path of

the FP-tree appears only once in the tree. The single prefix-path of the FP-tree forms a new FP-tree P, and the

multipath part forms another FP-tree Q. They do not share nodes representing the same item. Thus, the two FP-

trees can be mined separately. First, we show that each pattern generated from one of the three portions by

llowing the pattern generation rules is distinct and frequent. According to Lemma 3.2, each pattern generated

from P, the FP-tree formed by the single prefix-path, is distinct and frequent. The set of frequent patterns

generated from Q by taking root R as “null” is also distinct and frequent since such patterns exist without

combining any items in their conditional databases (which are in the items in P. The set of frequent patterns

generated by combining P and Q, that is, taking the cross-product of the frequent patterns generated from P and

Q, with the support being the minimum one between the supports of the two itemsets, is also distinct and

frequent. This is because each frequent pattern generated by P can be considered as a frequent pattern in the

conditional pattern-base of a frequent item in Q, and whose support should be the minimum one between the

two supports since this is the frequency that both patterns appear together.Second, we show that no patterns can

be generated out of this three portions. Sinceaccording to Lemma 3.1, the FP-tree T without being split into two

FP-trees P and Q generatesthe complete set of frequent patterns by pattern growth. Since each pattern generated

from T will be generated from either the portion P or Q or their combination, the method generates the complete

set of frequent patterns. The frequent-pattern growth algorithm Based on the above lemmas and properties, we

have the following algorithm for mining frequent patterns using FP-tree.

Algorithm 2 (FP-growth: Mining frequent patterns with FP-tree by pattern fragment

growth).

Input: A database DB, represented by FP-tree constructed according to Algorithm 1, and a minimum support

threshold ξ .

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 28

Output: The complete set of frequent patterns.68 HAN ET AL.

Method: call FP-growth(FP-tree, null).

Procedure FP-growth(Tree, α)

{

(1) if Tree contains a single prefix path // Mining single prefix-path FP-tree

(2) then {

(3) let P be the single prefix-path part of Tree;

(4) let Q be the multipath part with the top branching node replaced by a null root;

(5) for each combination (denoted as β) of the nodes in the path P do

(6) generate pattern β ∪ α with support = minimum support of nodes in β;

(7) let freq pattern set(P) be the set of patterns so generated; }

(8) else let Q be Tree;

(9) for each item ai in Q do { // Mining multipath FP-tree

(10) generate pattern β = ai ∪ α with support = ai .support;

(11) construct β’s conditional pattern-base and then β’s conditional FP-tree Treeβ ;

(12) if Treeβ = ∅

(13) then call FP-growth(Treeβ, β);

(14) let freq pattern set(Q) be the set of patterns so generated; }

(15) return(freq pattern set(P) ∪ freq pattern set(Q) ∪ (freq pattern set(P)

×freq pattern set(Q)))

}

Analysis. With the properties and lemmas in Sections 2 and 3, we show that the algorithm correctly finds the

complete set of frequent itemsets in transaction database DB. As shown in Lemma 2.1, FP-tree of DB contains

the complete information of DB in relevance to frequent pattern mining under the support threshold ξ . If an FP-

tree contains a single prefix-path, according to Lemma 3.3, the generation of the complete set of frequent

patterns can be partitioned into three portions: the single prefix-path portion P, the multipath portion Q, and

their combinations. Hence we have lines (1)-(4) and line (15) of the procedure. According to Lemma 3.2, the

generated patterns for the single prefix path are the enumerations of the subpaths of the prefix path, with the

support being the minimum support of the nodes in the subpath. Thus we have lines (5)-(7) of the procedure.

After that, one can treat the multipath portion or the FP-tree that does not contain the single prefix-path as

portion Q (lines (4) and (8)) and construct conditional pattern-base and mine its conditional FP-tree for each

frequent itemset ai . The correctness and completeness of the prefix path transformation are shown in Property

3.2. Thus the conditional pattern-bases store the complete information for frequent pattern mining for Q.

According to Lemmas 3.1 and its corollary, the patterns successively grown from the conditional FP-trees are

the set of sound and complete frequent patterns. Especially, according to the fragment growth property, the

support of the combined fragments takes the support of the frequent itemsets generated in the conditional

pattern-base. Therefore, we have lines (9)-(14) of the procedure. Line (15) sums up the complete result

according to Lemma 3.3. Let’s now examine the efficiency of the algorithm. The FP-growth mining process

scans the FP-tree of DB once and generates a small pattern-base Bai for each frequent item ai , each consisting

of the set of transformed prefix paths of ai . Frequent pattern mining is then recursively performed on the small

pattern-base Bai by constructing a conditional FP-tree for Bai. As reasoned in the analysis of Algorithm 1, an

FP-tree is usually much smaller than the size of DB. Similarly, since the conditional FP-tree, “FP-tree | ai ”, is

constructed on the pattern-base Bai , it should be usually much smaller and never bigger than Bai . Moreover, a

pattern-base Bai is usually much smaller than its original FP-tree, because it consists of the transformed prefix

paths related to only one of the frequent items, ai . Thus, each subsequent mining process works on a set of

usually much smaller pattern-bases and conditional FPtrees. Moreover, the mining operations consist of mainly

prefix count adjustment, counting local frequent items, and pattern fragment concatenation. This is much less

costly than generation and test of a very large number of candidate patterns. Thus the algorithm is efficient.

From the algorithm and its reasoning, one can see that the FP-growth mining process is a divide-and-conquer

process, and the scale of shrinking is usually quite dramatic. If the shrinking factor is around 20-100 for

constructing an FP-tree from a database, it is expected to be another hundreds of times reduction for

constructing each conditional FP-tree from its already quite small conditional frequent pattern-base. Notice that

even in the case that a database may generate an exponential number of frequent patterns, the size of the FP-tree

is usually quite small and will never grow exponentially. For example, for a frequent pattern of length 100, “a1,

. . . , a100”, the FP-tree construction results in only one path of length 100 for it, possibly “_a1,→···→a100_”

(if the items are ordered in the list of frequent items as a1, . . . , a100). The FP-growth algorithm will still

generate about 1030 frequent patterns (if time permits!!), such as “a1, a2, . . ., a1a2,. . ., a1a2a3, . . ., a1 . . .

a100.” However, the FP-tree contains only one frequent pattern path of 100 nodes, and according to Lemma

3.2, there is even no need to construct any conditional FP-tree in order to find all the patterns.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 29

V. RESULTS

The above is the best method of ranking and suggesting the best methods in the scenario of mobi le phone

outlets in INDIA, which is shown in the following diagram:

As it was shown in the above diagram we were going to take the most liked items from the users and

suggesting the best mobiles or the best set of suggestions that the most of the users liked or ordered.

The confidence of the suggestions were also proved by an traditional confidence calculations as follows In

this section we are going to discuss about algorithms. Till now we have discussed some ranking rules ,

suggestion rules and Frequency move2set algorithm. We have some problems with these, so we go for an

algorithm which suits our requirements well. The algorithm is Apriori algorithm. In order to know these

algorithms we need to know some concepts of data mining.

Efficient Ranking And Suggesting ….

www.ijceronline.com Open Access Journal Page 30

Frequent itemsets: Let I={I1, I2, I3,…., Im} be a set of items. Let D, the task-relevant data, be a set of

database transactions where each transaction T is a set of items such that T is a subset of I. Each transaction

is associated with an identifier, called TID. Let A be a set of items. A transaction T is said to contain A if

and only if A is a subset of T. An association rule is an implication of the form A > B, where A is subset of

I, B is subset of I and A∩B =Ø. The rule A > B holds in the transaction set D wi th support s, where s is the

percentage of transactions in D that contain AUB. This is taken to be the probability ,P(AUB).The rule A >

B has confidence c in the transaction set D, where c is the percentage of transactions in D containing A that

also contain B. This is taken to be the conditional probability, P(B/A). That is, Support(A=>B) = P(AUB)

Confidence(A=>B) = P(B/A) Rules that satisfy both a minimum support threshold (min_sup) and a

minimum confidence threshold (min_conf) are called strong. The occurrence frequency of an itemset is the

number of transactions that contain the itemset. This is also known, simply as the frequency, support

count,or count of the itemset. The set of frequent k-itemset is commonly denoted by Lk. confidence(A > B)

= P (A / B) = support(AUB) / support(A) = supportcount(AUB) / supportcount(A).

Mining frequent itemsets: In general, association rule mining can be viewed as a two-step process: 1.

Finding all frequent itemsets: By definition, each of these itemsets will occur at least as frequently as a

predetermined minimum support count, min-sup. 2. Generate strong association rules from the frequent

itemsets: By definition, these rules must satisfy minimum support and minimum confidence

VI. CONCLUSION
All the previous process already proposed were very complex and contains very complicated

computations which made the ranking and suggesting the best and popular items have been more and more

complex and not getting to the actual end users. Now we have proposed as very simple randomized

algorithm for ranking and suggesting popular items designed to account for popularity bias. This was

utilized by many of the mobile outlets in the country successfully.

REFERENCES
[1]. Huidrom Romesh Chandra Singh, T. kalaikumaran, Dr. S. Karthik, Suggestion of True Popular Items, IJCSE, 2010.

[2]. Y.Maanasa, V.Kumar, P.Satish Babu, Framework for suggesting POPULAR ITEMS to users by Analyzing Randomized
Algorithms, IJCTA, 2011.

[3]. V. Anantharam, P. Varaiya, and J. Walrand, ―Asymptotically Efficient Allocation Ru les for the Multiarmed Bandit Problem

with Multiple Plays—Part i: i.i.d. Rewards,‖ IEEE Trans. Automatic Control, vol. 32, no. 11, pp. 968 -976, Nov. 1987.
[4]. J.R. Anderson, ―The Adaptive Nature of Human Categorization‖ Psychological Rev., vol. 98, no. 3, pp. 409-429, 1991.

[5]. Yanbin Ye, Chia-Chu Chiang, A Parallel Apriori Algorithm for Frequent Itemsets Mining, IEEE, 2006.

[6]. Cong-Rui Ji, Zhi-Hong Deng, Mining Frequent Ordered Patterns without Candidate Generation.
[7]. Huang Chiung-Fen, Tsai Wen-Chih, Chen An-Pin, Application of new Apriori Algorithm MDNC to Exchange Traded Fund,

International Conference on Computational Science and Engineering, 2009.

[8]. Milan Vojnovi_c, James Cruise, Dinan Gunawardena, and Peter Marbach, Ranking and Suggesting Popular Items, IEEE, 200 9.

