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I. INTRODUCTION AND STATEMENT OF RESULTS 
A famous result giving a bound for all the zeros of a polynomial with real positive monotonically 

decreasing coefficients is the following result known as Enestrom-Kakeya theorem [8]: 

Theorem A: Let 
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Then all the zeros of P(z) lie in the closed disk 1z . 

If the coefficients are monotonic but not positive, Joyal, Labelle and Rahman [6] gave the following 

generalization of Theorem A: 
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Then all the zeros of P(z) lie in the closed disk 
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Aziz and Zargar [1] generalized Theorem B by proving the following result: 
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Then all the zeros of P(z) lie in the closed disk 
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Gulz ar [4,5] generalized Theorem C to polynomials with complex coefficients and proved the following results: 
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Then all the zeros of P(z) lie in the closed disk 
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Theorem E: Let 
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Theorem F: : Let 
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Then all the zeros of P(z) lie in the closed disk 
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     Some questions which have been raised by some researchers in connection with 

the Enestrom-Kakeya Theorem are[2]: 

 What happens , if ( i)  instead of the leading coefficient 
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 In this direction, Liman and Shah [7, Cor.1] have proved  the following result: 

Theorem G: Let 
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Unfortunately,  the  conclusion of the theorem is not correct and their claim that it follows from Theorem 1 in 

[7] is false. The correct form of the result is as follows: 

Theorem H: Let 
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Then P(z) has all its zeros in 
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In this paper , we are going to prove the following more general result: 

Theorem 1: Let 
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Then P(z) has all its zeros in 
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Remark 1: For 1 ,Theorem 1 reduces to Theorem H. 

 Taking in particular 1
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   For 1 , Cor. 1 reduces to the following 

Corollary 2: Let 
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    Theorem 1 is a special case of the following more general result: 

Theorem 2: Let 
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Remark 2: If nj
j

,......,2,1,0,0   i.e. 
j

a is real, then  Theorem 2 reduces to  

Theorem 1. 
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   Applying Theorem 2 to the polynomial –iP(z), we get the following result: 

Theorem 3: Let 
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For   polynomials with complex coefficients, we have the following form of Theorem 1: 

Theorem 4: Let 
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Then P(z) has all its zeros in      
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Remark 3: For k=1, Theorem 4 reduces to Theorem F with k=1. 

Next, we prove the following result: 

Theorem 5: Let 
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Remark 4: If nj
j

,......,2,1,0,0   i.e. 
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a is real,  we get the following result: 

Corollary 3: Let 
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    Applying Theorem 2 to the polynomial –iP(z), we get the following result from Theorem 4: 

Theorem 6: Let 
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Theorem 7: Let 
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Remark 4: For 1,
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  Taking 1  in Theorem 7, we get the following 

Corollary 4: Let 
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II. LEMMA 
For the proof of Theorem 6, we need the following lemma: 

Lemma: Let 
1
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2

a  be any two complex numbers such that 
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The above lemma is due to Govil and Rahman [3] . 
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Proof of Theorem 2: Consider the polynomial  
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This shows that the zeros of F(z) having modulus greater than 1 lie in  
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But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence, it 
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Since the zeros of P(z) are also the zeros of F(z), the result follows. 

Proof of Theorem 4: :  Consider the polynomial  
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This shows that the zeros of F(z) having modulus greater than 1 lie in                                                                
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But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence, it 

follows that all the zeros of F(z) lie in 

)1sin(2)1sin(cos)sin(cos[
1

 


kkaaka
a

z
n

n

 

                ]2)1sin(cos
00

aa    

Since the zeros of P(z) are also the zeros of F(z), the result follows. 
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   Since the zeros of P(z) are also the zeros of F(z), Theorem 4 follows. 
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This shows that the zeros of F(z) having modulus greater than 1 lie in  
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But the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above inequality. Hence, it 
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Since the zeros of P(z) are also the zeros of F(z), the result  follows. 
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