
International Journal of Computational Engineering Research||Vol, 03||Issue, 7||

 

||Issn 2250-3005 ||                                                   ||July||2013||                                                                                       Page 30 
 

On The Stability and Accuracy of Some Runge-Kutta Methods of 

Solving Second Order Ordinary Differential Equations 
 

S.O. Salawu
1
, R.A. Kareem

2
 and O.T. Arowolo

3
 

1
Department of Mathematics, University of Ilorin, Ilorin, Nigeria 

2,3
Department of Mathematics, Lagos State Polytechnic, Ikorodu, Nigeria 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

I. INTRODUCTION. 
Solutions to Differential equation have over the years been a focus to Applied Mathematics. The 

question then becomes how to find the solutions to those equations. The range of Differential Equations that can 

be solved by straight forward analytical method is relatively restricted [12]. Even solution in series may not 

always be satisfactory, either because of the slow convergence of the resulting series or because of the involved 
manipulation in repeated stages of differentiation [9].Runge-Kutta methods are among the most popular ODE 

solvers. They were first studied by Carle Runge and Martin Kutta around 1900. Modern developments are 

mostly due to John Butcher in the 1960s [4]. The Runge-Kutta method is not restricted to solving only first-

order differential equations but Runge-Kutta methods are also used to solve higher order ordinary differential 

equations or coupled (simultaneous) differential equations [14]. The higher order equations can be solved by 

considering an equivalent system of first order equations. However, it is also possible to develop direct single 

steps methods to solve higher order equation. 

 

Definition: We define an explicit Runge-Kutta method with n slopes by the following equations [10]. 
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ABSTRACT. 
This paper seeks numerical solutions to second order differential equations of the form 

 yyxfy  ,,  with initial value,  
00

yxy  ,  
00

yxy   using different Runge-Kutta methods 

of order  two. Two cases of Explicit Runge-Kutta method were derived and their stability was 

determined, this is then implemented. The results were compared with the Euler’s method for accuracy. 
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II. DERIVATION OF SECOND ORDER RUNGE-KUTTA METHOD. 

To derive the Runge-Kutta methods for second order ordinary differential equation of the form 
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If the function f is independent of y  then we can construct a Runge-Kutta method in which the local 

truncation error in y and y  is  4
hO . Here we obtain, 
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Thus, the Runge-kutta method for the second order initial value problem 
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The two methods derived are explicit second order Runge-Kutta. 

III. STABILITY ANALYSIS. 
While numerically solving an initial value problem for ordinary differential equations, an error is 

introduced at each integration step due to the inaccuracy of the formula. Even when the local error at each step 

is small, the total error may become large due to accumulation and amplification of these local errors. This 

growth phenomenon is called numerical instability [11]. 

We shall discuss the stability of the Runge-Kutta method in  18.2 and  20.2  
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We shall consider the case 
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The relative error for the method under discussion in case of a large number of integration interval (large x, 

small h) are to be considered. 

The maximum eigenvalue of the matrix. 
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We shall now consider the stability of the Runge-Kutta method  20.2 using differential equation  1.3 . 
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2
                                                                            8.3                                                                              

Substituting the equation  9.3 into equation  21.2 , we have 
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We now consider the case when
2

k . The eigenvalues is given by 
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1
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Where 15574488.21
 
and 23461232.26  

Computing 
1

 and 
2

 as functions of
22

kh , the roots have unit modulus 69.50
22
 kh  Thus, the stability 

interval of the Runge-Kutta method  21.2  is 69.50
22
 kh and is of order 2. 

For
2

k , the solutions of  1.3 are exponential in nature as above in case I. 
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The maximum eigenvalue of the matrix. 
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Is obtained as  
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The relative error is given by 

  33

108

1
1log

1logloglog
kh

e

hh

e

h

hk
F

hkhk









 













 

IV. IMPLEMENTATION OF THE METHOD. 
Consider the initial value problem [13] 

xyy   Subjected to initial condition     1.0,20,10  hyy                                                      1.4                                                                          

The complementary solution is 
x

c
BeAy  and the particular solution gives xxy

p


2

2

1
Using the 

initial condition, we have 2A and 3B  

The general solution become 

xxey
x


2

2

1
32  

Numerical solutions are preferred to the derived cases I and case II of explicit second order Runge-Kutta method 

of the IVP in  1.4 , obtaining numerical solutions for values of x  up to and including 1x  with a step size of 

0.1 as found in Table 1 and Table 2. 

Table1: Solutions of case I second ordered Runge-Kutta methods with 1.0h  

X Numerical solution y(x) Analytical solution Y(x) Absolute Error 

0 1.000000000 1.000000000 0.000000000 

0.1 1.210500000 1.210512754 
1.288

5
10


  

0.2 1.444127500 1.444208274 
8.08

5
10


  

0.3 1.704360888 1.704576424 
2.16

4
10


  

0.4 1.995043782 1.995474094 
4.30

4
10


  

0.5 2.320423378 2.321163813 
7.40

4
10


  

0.6 2.685192833 2.686356400 
1.16

3
10


  

0.7 3.094538080 3.096258121 
1.72

3
10


  

0.8 3.554189578 3.556622784 
2.43

3
10


  
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0.9 4.070479483 4.073809330 
3.33

3
10


  

1.0 4.650404829 4.654845484 
4.44

3
10


  

Figure 1: 

Table2: Solutions of case II second ordered Runge-Kutta methods with 1.0h  

X Numerical solution y(x) Analytical solution Y(x) Absolute Error 

0 1.000000000 1.000000000 0.000000000 

0.1 1.210500000 1.210512754 1.28
5

10


  

0.2 1.443075833 1.444208274 1.13
3

10


  

0.3 1.700988542 1.704576424 3.59
3

10


  

0.4 1.987830710 1.995474094 7.64
3

10


  

0.5 2.307560166 2.321163813 1.36
2

10


  

0.6 2.664537116 2.686356400 2.18
2

10


  

0.7 3.063565056 3.096258121 3.27
2

10


  

0.8 3.509935837 3.556622784 4.67
2

10


  

0.9 4.009479314 4.073809330 6.43
2

10


  

1.0 4.568618045 4.654845484 8.62
2

10


  

 

Figure 2: 

 

Euler’s method 

Euler’s method is one of many methods for generating numerical solutions to differential equations. 
Besides, most of the other methods that might be discussed are refinements of Euler’s method. This method is 

implemented and compared its accuracy and the error with the method in section 4. 

The Euler’s method generalized in the form [11]. 

 
nnnnn

yyxhfyy 


,,
1

                                                                                                                          1.5  

 
nnnnn

yyxhfyy 


,,
1

                                                                                                             

 2.5 Consider the initial value problem in equation  1.4  

xyy                                                                                                                                                        

Subjected to initial condition 

    1.0,20,10  hyy
    

 

Table3: Solutions of Euler’s methods with 1.0h  

X Numerical solution y(x) Analytical solution Y(x) Absolute Error 

0 1.000000000 1.000000000 0.000000000 

0.1 1.200000000 1.210512754 1.05
2

10


  

0.2 1.430000000 1.444208274 1.42
2

10


  

0.3 1.693000000 1.704576424 1.16
2

10


  

0.4 1.992300000 1.995474094 7.25
3

10


  

0.5 2.331530000 2.321163813 1.04
2

10


  

0.6 2.714680000 2.686356400 2.83
2

10


  

0.7 3.146145000 3.096258121 4.99
2

10


  

0.8 3.630756500 3.556622784 7.41
2

10


  

0.9 4.173829150 4.073809330 1.00
1

10


  
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1.0 4.781209065 4.654845484 1.26
1

10


  

Figure 3: 

 

V. CONCLUSION. 
Investigation carried out on some explicit second ordered Runge-Kutta method in this paper has shown 

that the stability interval of the Runge-Kutta method in case I is 44.40
22
 kh and the stability interval of 

the Runge-Kutta method in case II is 69.50
22
 kh . It is clear that case I is more stable than case II of the 

derived Runge-Kutta methods. The two methods are shown to be accurate, efficient and general in application 

for sufficiently solution of  xy . The result obtained in the present work demonstrate the effectiveness and 

superiority for the solution of second order ordinary differential equation which gave a very high accuracy when 

compared with exact solution. 
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