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I. INTRODUCTION 
 If a wave is to travel through a medium such as water, air, steel, or a stretched string, it must cause the 

particles of that medium to oscillate as it passes [1]. For that to happen, the medium must possess both mass (so 

that there can be kinetic energy) and elasticity (so that there can be potential energy). Thus, the medium’s mass 

and elasticity property determines how fast the wave can travel in the medium.    

 

 The principle of superposition of wave states that if any medium is disturbed simultaneously by a 

number of disturbances, then the instantaneous displacement will be given by the vector sum of the disturbance 

which would have been produced by the individual waves separately. Superposition helps in the handling of 

complicated wave motions. It is applicable to electromagnetic waves and elastic waves in a deformed medium 

provided Hooke’s law is obeyed  Interference effect that occurs when two or more waves overlap or intersect 

is a common phenomenon in physical wave mechanics. When waves interfere with each other, the amplitude of 
the resulting wave depends on the frequencies, relative phases and amplitudes of the interfering waves. The 

resultant amplitude can have any value between the differences and sum of the individual waves [2]. If the 

resultant amplitude comes out smaller than the larger of the amplitude of the interfering waves, we say the 

superposition is destructive; if the resultant amplitude comes out larger than both we say the superposition is 

constructive. The interference of one wave say ‘parasitic wave’ 1y  on another one say ‘host wave’ 2y could 

cause the resident ‘host wave’ to undergo dampingto zero if they are out of phase. The damping process of 

2y can be gradual, over-damped or critically damped depending on the rate in which the amplitude of the host 

wave is  brought to zero.  However, the general understanding is that the combination of 1y and 2y would first 

yield a third stage called the resultant wave say y , before the process of damping sets in. In this work, we refer 

to the resultant wave as the constituted carrier wave or simply carrier wave.  
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 In this work, we superposed a ‘parasitic wave’ on a ‘host wave’ and the behavior of the 
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 A ‘parasitic wave’ as the name implies, has the ability of destroying and transforming the intrinsic 

constituents of the ‘host wave’ to its form after a sufficiently long time. It contains an inbuilt raising 

multiplier which is capable of increasing the intrinsic parameters of the ‘parasitic wave’ to become equal to 

those of the ‘host wave’. Ultimately, once this equality is achieved, then all the active components of the ‘host 

wave’ would have been completely eroded and the constituted carrier wave ceases to exist. A carrier wave in 

this wise, is a corrupt wave function which certainly describes the activity and performance of most physical 

systems. Thus, the reliability and the life span of most physical systems are determined by the reluctance and 

willingness of the active components of the resident ‘host wave’ to the destructive influence of the ‘parasitic 

wave’. Any actively defined physical system carries along with it an inbuilt attenuating factor such that even in 

the absence of any external influence the system will eventually come to rest after a specified time. This 

accounts for the non-permanent nature of all physically active matter. 

 
 If the wave function of any given active system is known, then its characteristics can be predicted and 

altered by means of anti-vibratory component. The activity and performance of any active system can be slowed 

down to zero-point ‘death’ by means of three factors: (i) Internal factor (ii) External factor, and (iii) Accidental 

Factor. The internal factor is a normal decay process. This factor is caused by aging and local defects in the 

constituent mechanism of the physical system. This shows that every physically active system must eventually 

come to rest or cease to exist after some time even in the absence of any external attenuating influence. The 

internal factor is always a gradual process and hence the attenuating wave function of the physical system is said 

to be under-damped.  

 

 The external factor is a destructive interference process. This is usually a consequence of the encounter 

of one existing well behaved active wave function with another. The resultant attenuating wave function under 

this circumstance is said to be under-damped, over-damped or critically-damped, depending on how fast the 
intrinsic constituent characteristics of the wave function decays to zero.The accidental factor leads to a sudden 

breakdown and restoration of the wave function of the physical system to a zero-point. In this case, all the active 

intrinsic parameters of the physical system are instantaneously brought to rest and the attenuation process under 

this condition is said to be critically-damped. 

 

 The initial characteristics of a given wave with a definite origin or source can best be determined by the 

use of a sine wave function. However, for the deductive determination of the initial behaviour of a wave whose 

origin is not certain, the cosine wave function can best be effectively utilized.  Generally, we can use the 

available information of the physical parameters of a wave at any given position and time ),( ttxxy    to 

predict the nature of its source andthe initial characteristics when the position and time was ),( txy .The reader 

should permit the lack of adequate references since no one has ever worked in this area before now. 

 

 The organization of this paper is as follows. In section 1, we discuss the nature of wave and 
interference. In section 2, we show the mathematical theory of superposition of two incoherent waves. The 

results emanating from this study is shown in section 3. The discussion of the results of our study is presented in 

section 4. Conclusion and suggestions for further work is discussed in section 5. The paper is finally brought to 

an end by a few lists of references.    

 

 

II. RESEARCH METHODOLOGY 
In this work, we superposed a ‘parasitic wave’ with inbuilt raising multiplier   on a ‘host wave’ and 

the combined effect of the waves is allowed to flow through a narrow pipe containing a viscous fluid. The 

attenuation mechanism of the carrier wave which is the result of the superposition is thus studied by means of 

simple differentiation technique.  

 

2.1.Mathematical theory of superposition of waves  

 Let us consider two incoherent waves defined by the non - stationary displacement vectors 

 

).(cos
1

  tnrkay


   (2.1) 

).(cos2   tnrkby


      (2.2)          

where all the symbols retain their usual meanings. In this study, (2.1) is regarded as the ‘host wave’ whose 

propagation depends on the inbuilt raising multiplier  1,0  . While (2.2) represents a ‘parasitic wave’ 
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 with an inbuilt raising multiplier  max,,2,1,0   . The inbuilt multipliers are both dimensionless 

and as the name implies, they are capable of gradually raising the basic intrinsic parameters of both waves 

respectively with time.Let us superpose (2.2) on (2.1), with the hope to realize a common wave function, then 

)(cos)(cos21   tnrkbtnrkayyy


       (2.3) 

Suppose, we assume that for a very small parameter , the below equation holds,  

 nn   (2.4) 

y ).cos(   tnrka


).cos(   ttnrkb


     (2.5)        

Again in (2.5), we let 

  t1
    (2.6)      

y ).cos(   tnrka


).cos( 1  tnrkb


      (2.7)  

For the purpose of proper grouping we again make the following assumption: 

  rkrk


..     (2.8) 

    rkk


.     (2.9) 

y    )(cos tna  1)(cos   tnb      (2.10)  

We can now apply the cosine rule for addition of angles to reevaluate each term in (2.10), that is, 

BABABA sinsincoscos)cos(  (2.11) 

   sin)(sincos)(cos tntnay
 

 11 sin)(sincos)(cos   tntnb      (2.12) 
 

  1coscos)cos(  batny  1sinsin)sin(   batn (2.13) 

For technicality, let us make the following substitutions so that we can further simplify (2.14). 

1coscoscos   baEA      (2.14) 

1sinsinsin   baEA (2.15) 

 EtnEtnAy sin)(sincos)(cos            (2.16) 

 EtnAy  cos   (2.17) 

 EtnrkkAy  


.)(cos  (2.18) 

The simultaneous nature of (2.15) and (2.16) would enable us to square though them and add the resulting 

equations term by term, that is  

 

 tnnbabaA )()(cos2
2222

  (2.19) 

 

  tnnbabay )()(cos2
2222

  Etnrkk  


.)(cos  (2.20)                                 

Upon dividing (2.16) by (2.15), we get that 

1

1

coscos

sinsin
tan










ba

ba
E    (2.21)                                              















))((coscos

))((sinsin1
tan

tnnba

tnnba
E




 (2.22) 

Hence (2.26) is the resultant wave equation which describes the superposition of the ‘parasitic wave’ on the 

‘host wave’. Equation (2.28) representsaresultant wave equation in which the effects of the constitutive waves 

are additive in nature.However, suppose the effects of the constitutive waves are subtractive and with the view 

that the basic parameters of the ‘host wave’ are constant with time, that is, 1 and leave its variation for future 

study, then without loss of dimensionality we can recast (2.20) and (2.22) as  
 

       )()(cos2
2222  tnnbabay  Etnnrkk  )(.)(cos 


(2.23)                        

where we have redefined the amplitude an the total phase angle as,    
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     )()(cos2
2222   tnnbabaA      (2.24)                            

















))cos((cos

))((sinsin
tan

1





tnnba

tnnba
E                (2.25) 

 

 Equation (2.25) is the constitutive carrier wave equation necessary for our study. As the equation 

stands, it is a ‘carrier wave’, in which it is only the variation in the intrinsic parameters of the ‘parasitic wave’ 

that determines the activityof thephysical system which it describes. Henceforth, we have agreed in this study, 

that the initial parameters of the ‘host wave’ are assumed to be constant and also they are initially greater than 

those of the ‘parasitic wave’.  

 

2.1 The calculus of the total phase angle E   of the carrier wave function 

 Let us now determine the variation of the total phase angle E  with respect to time t . Thus from (2.25),  


dt

dE































1

2

))cos((cos

))sin((sin
1





tnnba

tnnba














))cos((cos

))sin((sin





tnnba

tnnba

dt

d
(2.26) 


dt

dE  

   


















2

2

))sin((sin
2

))cos((cos

)cos((cos





tnnbatnnba

tnnba

 
 
 


















tnnba

tnnba

dt

d

)(coscos

)(sinsin
    (2.27)  

After a lengthy algebra (2.27) simplifies to    

Z
dt

dE
  (2.28) 

where we have introduced  a new variable defined by the symbol 

 

 


















tnnabba

tnnabb
nnZ

)()(cos2

)()(cos
)(

222

22






  (2.29) 

as the characteristic angular velocity of the carrier wave. It has the dimension of rad./s.Also the variation of the 

total phase angle with respect to the wave number is given by  

 

 





















 tnnabba

tnnabb
nn

kkd

d
t

kkd

dE

)()(cos2

)()(cos
)(

)()( 222

22







(2.30) 

2.2    Evaluation of the group angular velocity ( g ) of the carrier wave function 

 The group velocity is a well-defined but different velocity from that of the individual wave themselves. 

This is also the velocity at which energy is transferred by the wave [3]. When no energy absorption is present, 

the velocity of energy transport is equal to the group velocity [4].  The carrier wave function is amaximum if the 

spatial oscillatory phase is equal to 1. As a result 

   1)(sin)(cos)(cos  Etnnkkkkr  (2.31) 

  0
)(

)(
)(

sincos 












kkd

dE
nn

kkd

d
tr  (2.32)  
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)(
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





kkd
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d
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



 (2.33) 
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(2.34)
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)( 



kkd

gd

t

r
vg


 (2.36) 

which is the basic expression for the group angular velocity, where  

 
  























tnnabba
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)()(cos32

)sin(cos
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






 (2.37) 

is the group velocity of the carrier wave which has the dimension of radian/s. Although, g and Z  has the 

same dimension, but where Z  depends on time, g  is dependent upon the spatial frequency or wave 

number( k ). 

2.3 Evaluation of the phase velocity ( pv )of the carrier wave. 

 The phase velocity denotes the velocity of a point of fixed phase angle [4]. At any instant of the wave 
motion the displacements of other points nearby change also and there will be one of these points, at 

xx  say, where the displacement ),( ttxxy   is equal to the original displacement ),( txy   at point x . 

Now from(2.23) the carrier wave is a maximum when the spatial oscillatory phase is equal to one. 

  1)(.)(cos  Etnnrkk 


(2.38) 

kkkjkkikkkk zyx )()()()(  


 (2.39) 

 zkyjxir 


 (2.40) 

If we assume that the motion is constant in the z-direction and the wave vector mode is also the same for both x 

and y plane, then (2.40) becomes 

jrirr  sincos 


 (2.41) 

where )(   is the variable angle between 1y and 2y , please see appendix for details.Hence 

  1)(sin)(cos)(cos  Etnnrkkrkk  (2.42) 

  0)(sin)(cos)(  Etnnrkkrkk  (2.43) 

  0)(sin)(cos)(  dt
dt

dE
tdnnrdkkkk  (2.44) 

  
  0)(sin)(cos)(  Zdttdnnrdkkkk  (2.45) 

   dtZnnrdkkkk  )(sin)(cos)(  (2.46) 

 












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)sin)(cos(
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



kk

Znn

dt

rd
v p (2.47) 

This has the dimension of m/s. Since our argument is equally valid for all values ofr, (2.47) tells us that the 

whole sinusoidal wave profile move to the left or to the right at a speed pv .  

2.4 Evaluation of the oscillating angularfrequency ( ) of the carrier wave. 

 The variation of the spatial oscillatory phase of the carrier wave with respect to time gives 

theoscillating frequency ( ). Hence, from (2.43) 

  0)(sin)(cos)(  Etnnrkkrkk  (2.48) 

0)()sin(cos)(  








dt

dE
nn

dt

d
rkk  (2.49) 

0)(
sincos

)(  







Znn

dt

d

d

d

dt

d

d

d
rkk 










 (2.50) 

   Znnrkk  )(sincos)(   (2.51) 
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 














)sin(cos)(

)(






rkk

Znn
v  (2.52) 

The unit isper second (
1

s ). Thus because of the tethered nature of the elastic pipe the carrier wave can only 

possess oscillating radial velocity and not oscillating angular velocity.  

2.5 Evaluation of the radial velocity ( rv )of the carrier wave. 

 The variation of the spatial oscillatory phase of the carrier wave with respect to time gives the radial 

velocity ( rv ). Hence, from (2.48) 

0)()sin(cos)( 
dt

dE
nn

dt

dr
kk  (2.53) 

  0)()sin(cos)(  Znnrkk   (2.54) 
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)sin(cos)(
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


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Znn
rrv  (2.55) 

This has the same unit as the phase velocity which is sm / . 

2.6 Evaluation of the velocity of the ‘carrier wave’ 
 Letus now evaluate the velocity with which the entire carrier wave function moves with respect to time. 
This has to do with the product differentiation of the non-stationary amplitude and the spatial oscillatory cosine 

phase. 

  )()(sin)()(
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  )sin(cos)()sin(cos)()(   rkkVkkVZnn r  

 Etnnrkk  )()sin(cos)(sin  (2.56) 
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  )sin(cos)()sin(cos)()(   rkkVkkVZnn r  

 Etnnrkk  )()sin(cos)(sin  (2.57) 

Upon using Binomial expansion on the fractional terms and stopping at the second term we get 
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2
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 Etnnrkk  )()sin(cos)(sin  (2.58) 

For the velocity of the constituted carrier wave to be maximum we have to ignore all the oscillating phases, so 

that 

mv
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
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(2.59) 

The unit is sm / . 

 

2.7 Evaluation of the energy attenuation equation 

 In natural systems, we can rarely find pure wave which propagates free from energy-loss mechanisms. 

But if these losses are not too serious we can describe the total propagation in time by a given force 

law )(tf .The propagating carrier wave which takes its course from the origin of the elastic pipe is affected by 

two factors: (i) the damping effect of the mass of the surrounding fluid (ii) the damping effect of the dynamic 

viscosity of the elastic walls of the pipein response to the wave propagation. Let us consider a carrier wave 

propagating through an elastic pipe of a given elasticity Q ,if the fluid in the pipe has a mass m and viscosity , 

the dissipationof the carrier wave-energy if the fluid is Newtonian, would obey the equation 

2
2

)( y
dt

yd
tf Q  (2.60) 

dtyydydttf Q
2

2)(   (2.61) 

 

For the carrier wave to have a maximum value then the spatial oscillating part is ignored such that 
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The unit is in Joulesor kgm2s-2or Nm. However, in this work we assume the dynamic viscosity  of the fluid 

mediumwhere the carrier wave is propagating as 
2

004.0


 msN  and the elasticity of the wall of the narrow 

pipe
216

109048.1


 smkgQ . 
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2.8 Determination of the ‘parasitic wave’ parameters (b , n ,  and k  ) 

 Now, suppose we assign arbitrary values for the parameters of the ‘host wave’ 

say: ma 00524.0 , sradn /.000882.0 , .6109.0 rad )(
0

35 and mradk /.166 , then we can precisely 

determine the basic parameters of the ‘parasitic wave’ which were initially not known before the 

interference,using the below method.The gradual deterioration in the physical system under studyshows that 

after a sufficiently long period of time all the active constituents of theresident ‘host wave’ would have been 

completely eroded by the destructive influence of the ‘parasitic wave’, on the basis of this argument the below 

relation holds. 

 bba  00524.00  

 nnn  000882.00  

  6109.00 } -------------------- (2.68) 

 kkk  1660  

 

Upon dividing the sets of relations in (2.68) with one another with the view to firsteliminate  we get 

bn  94104.5  

b 0085775.0  

bk  000031566.0  

n 00144377.0 }  ---------------------(2.69) 

nk  50000053132.0  

  k00368.0  

A more realistic and applicable relation is when: 0085775.0 k 000031566.0 , from which based on simple 

ratio 

.0000316.0 rad  

mradk /.00858.0 }-------------------- (2.70) 

sradn /.1056.4
8

  

mb
7

1071.2


  

Any of these values of the ‘parasitic wave’ shall produce a corresponding approximate value of 

lambda 19332 upon substituting them into (2.68). Note that for the interest of uniformity and anticipated 

complications we are using the minimum value which is19332. Hence the interval of the multiplier 

is 193320   .Thus, so far, we have determined the basic intrinsic parameters of both the ‘host wave’ and 

those of the ‘parasitic wave’ both contained in the carrier wave. 

 

2.9 Determination of the attenuation constant ( ) 

 Attenuation is a decay process. It brings about a gradual reduction and weakening in the initial strength 

of the basic parameters of a given physical system.  In this study, the parameters are the amplitude ( a ), phase 

angle ( ), angular frequency ( n ) and the spatial frequency ( k ). The dimension of the attenuation constant 

( )is determined by the system under study. However, in this work, attenuation constant is the relative rate of 

fractional change (FC) in the basic parameters of the carrier wave. Thereare 4 (four) attenuating parameters 

present in the carrier wave. Now, if a , n ,  , k represent the initial basic parameters of the ‘host wave’ that is 

present in the carrier wave and ba  , nn  ,   , kk   represent the basic parameters of the ‘host 

wave’ that survives after a given time. Then, the FC is 








































 











k

kk

n

nn

a

ba 






4

1
 (2.71) 
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stimeunit

FCFC
ii 





  = 

)(

1

stimeunit

ii 
       (2.72) 

The dimension is per second (
1

s ).  Thus (2.72) gives 
1

s0.0000517η


 for all values 

of )19332,,2,1,0( i . 
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2.10 Determination of the time ( t ) 

 We used the information provided in section 2.9, to compute the various times taken for the carrier 

wave to attenuate to zero. The maximum time the carrier wave lasted as a function of the raising multiplier  is 

also calculated from the attenuation equation shown by (2.72). The reader should note that we have adopted a 

slowly varying regular interval for the raising multiplier since this would help to delineate clearly the physical 

parameter space accessible to our model. However, it is clear from the calculation that the different attenuating 

fractional changes contained in the carrier wave are approximately equal to one another.We can now apply the 

attenuation time equation given below. 




 /)2( t
e


      (2.73) 







ln

2













t      (2.74) 

where  is the functional index of any physical system under study and here we assume 3 .The equation is 

statistical and not a deterministic law. It gives the expected basic intrinsic parameters of the ‘host wave’ that 

survives after time t . Clearly, we used (2.74) to calculate the exact value of the decay time as a function of the 

raising multiplier.In this work, we used table scientific calculator and Microsoft excel to compute our results. 

Also the GNUPLOT 4.6 version was used to plot the corresponding graphs.   

 

III. PRESENTATION OF RESULTS 

 
Fig. 3.1. This representsthe graph of thespatial oscillating phase of the carrier wave against time t . 

 

 
Fig. 3.2. This representsthe graph of the total phase angle E of the carrier wave against time t . 
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Fig. 3.3. This representsthe graph of theamplitude A of the carrier wave against time t . 

 

 
Fig. 3.4. This represents the graph ofthe carrier wave displacement against time t . 
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Fig. 3.5. This represents the graph ofthe characteristic angular frequency Z of the carrier wave against time t . 

 

Fig. 3.6. This represents the graph ofthe group angular velocity Wg of the carrier wave against time t . 
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Fig. 3.7. This represents the graph ofthe radial velocity rv  of the carrier wave against time t . 

 

 

Fig. 3.8. This represents the graph ofthe phase velocityvp of the carrier wave against time t . 



Dynamical Properties Of Carrier Wave… 

www.ijceronline.com                                                    ||July||2013||                                                                                  Page 51 

 

Fig. 3.9. This represents the graph ofthe angular oscillating frequency ( )of the carrier wave against time t . 

 

 

Fig. 3.10. This represents the graph ofthe maximum velocity m axv of the carrier wave against time t . 
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Fig. 3.11. This represents the graph ofthe attenuated Energy Eof the carrier wave against time t . 

 

IV. DISSCUSION OF RESULTS 
 The fig.3.1 represents the variation of the spatial oscillating part of the carrier wave with time. It 

oscillates between the values of 1 and converges to zero when the multiplier attainsa maximum 

value 19332 . Generally, the first significant feature of the spectra given by the figs 3.1, 3.2, 3.3 and 3.4 is 

the definite singularity at time t = 5 x 107s (19 months) or about 2 years. This definite singularity is an indication 
of the attenuating constituent parameters of the physical system of the resident ‘host wave’ due to the presence 

of the interfering ‘parasitic wave’. However, the host system further renormalizes to cancel the systems defect 

and hence the continuous bold spectra. 

 

 The second obvious significant feature common to the figures is the depletion in the spectra at t = 1.7 x 

108 s (65 months) or about 5 years. The interpretation of this depletion is that the interfering ‘parasitic wave’ is 

now taking dominant control of the resident host system. Thus the constituent parameters of the ‘parasitic wave’ 

are gradually becoming equal to those of the ‘host wave’. This results to the decay in the active constituents of 

the host system. The destructive effect of the interfering wave in the host system is now becoming very intense 

and difficult to control.Finally, the graphs show that the spectra of the physical system represented by the carrier 

wave develops failure and hence breakdown if uncontrolled around st
8

105.2  (96 months) or about 8 years. 

This is marked by the faint and sharp separations in the spectra lines of figs 3.1 - 3.4. The physical system 

described by the constituted carrier wave goes to zero when st 367894196  which is about 12 years. 

 

 The Fig. 3.2 shows that within the first 2 years (t = 5 x 107s) when the multiplicative 

factor 146330   , the total phase angle E  experiences both positive and negative increase in values. Also 

the figure reveals a bold spectrum in the total phase angle of the constituted carrier wave in the interval of the 

multiplicative factor 188740   and time 0  t 1.7x108s (0  t 5years). In this regime the phase angle of 

the ‘host wave’ is fluctuating between both positive and negative values thereby undergoing constructive and 

destructive interactions with that of the ‘parasitic wave’. Beyond this interval, that is, when the 

time st
8

107.1  and the multiplier 1933218875   , the spectrum lines of the total phase angle becomes 

faint and sharp showing a steady depletion in the total phase angle of the carrier wave.The total phase angle of 

the constitutive carrier wave has maximum and minimum value of 5468.1 rad. However, the spectrum does 

not finally go to zero rather it diverges even when the multiplier has attained its maximum value 19332 .  
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 In Fig. 3.3, the amplitude of the carrier wave is initially imaginary in the interval 

1866λ0  and 122st0  while the amplitude of thecarrier wave is miAmi 00405311.000418631.0  . 

However, it is the absolute values of the amplitude that we used in the graphical presentation. Subsequently, the 

amplitude is made up of the imaginary and real part,
21 iAAA  in the interval of the 

multiplier 64320   , and the time st 62870920  and the amplitude of thecarrier wave 

is miAmi 00018918.000418631.0   . This shows that the motion is actually two-dimensional (2D). Thus 

1
A and

2
A  are the components of the amplitude in x and y - directions, and A is tangential to the path of the 

moving amplitude in the carrier wave.  This region of real and imaginary values of the amplitude is an 

indication of the physical system to guide and renormalizes the system against the effect of the 

interfering‘parasitic wave’. 

 

 There is constant agitation by the intrinsic parameters of the ‘host wave’ to suppress the destructive 

influence of the interfering ‘parasitic wave’ in this region.  The intrinsic parameters of the ‘host wave’ are 

posing a serious resistance to the destructive tendency of the ‘parasitic wave’.The effect of the imaginary decay 

in the amplitude is unnoticeable or inadequately felt by the physicalsystem in this interval. Although, 

unnoticeable as it may, but so much imaginary destructive harm would have been done to the intrinsic 

constituent parameters of the ‘host wave’. 

 

 Beyond this interval the amplitude of the carrier wave begins to fluctuate with only real values in the 

interval of the multiplier 192336433   and the time 6289274 s  t 241907463 sor(73 days  t 8 

years)and the amplitude of thecarrier wave is mAm 00054097.000337988.0  . In this region the interfering 

wave is now taking absolute effect on the dynamic mechanical system of the ‘host wave’. In other words, 
counting from the moment the ‘parasitic wave’ interferes with the ‘host wave’, there would be absolute 

indication and manifestation of the ‘parasitic wave’ after 73 days. The non-consistent attenuating behavior 

in this interval is a consequence of the fact that the amplitude of the carrier wave do not steadily go to zero, 

rather it fluctuates. The fluctuation is due to the constructive and destructive interference of both the ‘host wave’ 

and the ‘parasitic wave’.  In the regions where the amplitude of the carrier wave is greater than either of the 

amplitude of the individual wave, we have constructive interference, otherwise, it is destructive. 

 

 Our calculation shows that there is a steady exponential decrease in the values of the amplitude in the 

interval sts 367894196242359220   (8 years  t 12 years) when the raising 

multiplier 1933219234   . This consistent decrease leads to a gradual reduction and weakening in the initial 

strength of theconstituents of the system of the host. Consequently, the amplitude of the constituted carrier wave 

consistently attenuates to zero when the raising multiplier  19332and the time t 367894196 s or about 12 

years. The amplitude of thecarrier wave thus varies asymptotically 

between mAm 00010378.000053612.0  . 
 

 The graph of the carrier wave against time is shown in fig. 3.4. Of course we know that the carrier 

wave is the product of the amplitude and the spatial oscillating phase. Consequently, the calculated values of the 

amplitude which is the maximum displacement from some origin are usually greater those of the carrier wave.  

As we have said before now, the spectrum of the carrier wave is similar to those of figs, 3.1 and 3.2. The carrier 
wave experiences a steady damping process and it is consistently attenuated to zero. The spectrum of the carrier 

wave was initially bold with several regular discontinuities most noticeably in the time interval 1.5 x 108 

s  t 2 x 108 s (about 5 years). The attenuation of the carrier wave to zero is rapid in the interval when the 

raising multiplier 19234   19332 and the time 2.5 x 108 s  t 4 x 108 s.  This of course represents the 

interval of the predominance of the dynamic constituents of only the interfering ‘parasitic wave’,while those of 

the resident ‘host wave’ are critically undergoing damping. 

 

 Thus the phenomenon of AIDS actually occurs in the interval when the raising multiplier 

19234   19332and the time 242359220 s  t 367894196 s or (8 years  t 12 years). Consequently, 

within this interval the physical system under study can no longer annul the destructive effect of the ‘parasitic 

wave’. The carrier wave which describes the coexistence of the ‘host wave’ and the ’parasitic wave’ ceases to 

exist around 12 years after interference. This is as a result of the fact that all the active constituents of the ‘host 

wave’ would have been completely attenuated by the influence of the interfering ‘parasitic wave’. 
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The spectrum of the characteristic angular velocity Z and that of the group angular velocity gw  is represented in 

figs. 3.5 and 3.6. They are both negatively attractive showing a significant affinity between the resident ‘host 

 wave’ and the ‘parasitic wave’. It is ctear from the fiures that both physical quantities of the carrier 

wave attenuate to zero after a sufficiently long time. However, the spectrum of the characteristic angular 

velocity has a wider spectrum than that of the group angular velocity.The spectrum of figs. 3.7, 3.8 and 3.9 are 

also very similar. The radial velocity, the phase velocity and the oscillating angular frequency of the carrier 

wave increases positively with increase in time. They all attenuate to zero at 
8

104.2 t s (about 8 years). 

This exemplary behavior is synonymous with most physical system to produce enhanced efficiency before the 

system malfunction or complete failure sets in. 

The maximum velocity attainby the carrier wave is shown in fig. 3.10. The velocity decreases to zero when the 

time 
8

102t  (about 6 years). Although, the velocity is zero but there is still a residual velocity that keeps 

the carrier wave going. 
Finally, the energy of the constituted carrier wave as shown in fig. 3.11, first increases beforeit decreases 

exponentially to zero when the time is 
8

102t s. The explanation is that the energy attenuation process is not 

instantaneous and consistent. The lack of consistency is as a result of the constituents of the resident ‘host wave’ 

in the carrier wave putting a serious resistance to the destructive influence of the interfering ‘parasitic wave’.  

 

V. CONCLUSION 
 The existence and life span of any physically active system described by the constituted carrier wave is 

thus determined by the functional index  . If the index factor issay zero 0  , the carrier wave would have 

lasted for 2943609286 s (93 years)before it would have attenuated to zero. This study shows that the process of 

attenuation in most physically active system does not obviously begin immediately. The wave function that 

defines the activity and performance of most system is guided by some internal factor which enables it to resist 

any external interfering influence which is destructive in nature. The anomalous behaviour exhibited by the 

carrier wave at some point during the damping, is due to the resistance pose by the carrier wave in an attempt to 

annul the destructive effects of the interfering wave. It is evident from this work that when a carrier wave is 

undergoing attenuation, it does not steadily or consistently come to rest; rather it shows some resistance at some 

point in time during the damping process, before it finally comes to rest. Consequently, the existence or the life 

span of any physically active system is determined by the resistance ofits basic intrinsic parameters to the 

destructive influence of any external factor. 

 

5.1 Suggestions for further work 

 This study in theory and practice can be extended to investigate wave interference and propagation in 

three- dimensional (3D) system. The constituted carrier wave we developed in this work can be utilized in the 

deductive and predictive study of wave attenuation in exploration geophysics and telecommunication 

engineering.  This work can also be extended to investigate energy attenuation in a HIV/AIDS patient.  

 

APPENDIX: Vector representation of the superposition of the ‘host wave’ and the ‘parasiticwave’. 
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Fig.A1.This represents the resultant wave or the constitutive carrier wave y after the superposition of the 

‘parasitic wave’ y2 on the ‘host wave’ y1. 

     ;180;;180180
000
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