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Abstract 
This paper studies a formal mathematical description and the block diagram of the secret system and, by analogy with 

the theory of secret systems, introduces the basic elements and mathematical operators, abstractly d escribing steganographic 

informat ion protection system. 
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1. Introduction 
Mathematical foundations of modern cryptography are laid by the famous American scientist C. Shannon [1-3], who, 

for the first time, using information-theoretic approach, introduced abstract mathematical defin ition of a secret system and 

formalized the procedures for data cryptographic transformat ion of data. These studies gave a significant boost to the 

development of the individual methods of the theory of information security, crypt ography and authentication, digital 

steganography, and digital signal processing techniques and error-correcting coding [4-12]. 

This paper studies a formal mathemat ical description (in terms of C. Shannon) and the block diagram of the s ecret 

system and, by analogy with the theory of secret systems, introduces the basic elements and mathematical operators, abstractly 

describing steganographic informat ion protection system.  

 

2. Block diagram and a formal mathematical definition of cryptographic (secret) system 

Abstract secret system is defined as some set of mappings from one space (the set of possible messages) to a different 

space (the set of possible cryptograms) [1-3]. 

Let’s fix a set of possible messages M = {M1, M2, …, Mm} and a set of cryptograms E = {E1, E2, …, En}. We will also 

fix a set of mappings: 

 = {1, 2, …, k}, 

where:  

i: M  E, i = 1, 2 , …, k. 

If the sets M and E are equivalent, i.e., n = m, then there is an inverse mapping i
-1

: E  M, which assigns each 

element of the set E to an element of M. Obviously, i and i
-1 

are given reciprocally the same mapping of the sets M and E.  

Let’s now fix a set of keys К = {К1, К2, …, Кk}, so that for all i = 1, 2 , …, k mapping i   is uniquely specified by 

the key Ki, that is: 

EM: iK
i  . 

Each specific mapping of i from the set  co rresponds to the way of encryption with a specific key Ki. 

Let’s fix a set of keys К
*
 = {К1

*
, К2

*
, …, Кk

*
}, in general to К  К

*
. A ll the elements of the inverse mappings: 


-1

 = {1
-1

, 2
-1

, …, k
-1

} 

are given the appropriate key: 

ME:
*
iK1

i  . 

Each specific mapping i
-1

 of the set 
-1 

corresponds to the way of decryption using the key Ki
*
. If the key Ki

*
 is 

known, then the only one answer is possible as the result of decryption – an element of the set M. 

Thus, an abstract definition of a secret system includes the following sets of M, E,, 
-1

, К and К
*
  (the sets of open 

texts and cryptograms, sets of direct and inverse mappings, sets of keys). If, in addition, К  К
*
, then the system is 

asymmetric. On the contrary, if К = К
*
 – the system is symmetric. Fig. 1 represents a block diagram of a s ecret system. 
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A message source generates the flow of messages from the set M. Each message is a specific implementation of some 

random process describing the work of a message source. Each message M j  M = {M1, M2, …, M m} corresponds to the 

probability P(Mj). A distribution of the random process probability is given by set of probability distrib ution of random 

variables, i.e. by a set of probabilit ies : 

      m21M MP...,,MP,MPP  .                                                           (1) 

Keys’ source generates a flow of keys from the set K and/or К
*
. Each  key Ki  K = {K1, K2, …, Kk} corresponds to 

some probability P(Ki), and each Ki
*
  K

*
 = {K1

*
, K2

*
, …, Kk

*
} corresponds to the probability P(Ki

*
). Random process of 

keys’ generation is defined by the sets of probabilities: 

      k21K KP...,,KP,KPP                                                                      (2) 

and 

      *
k

*
2

*
1*K KP...,,KP,KPP  .                                                                    (3) 

 

 
 

Fig. 1. The block diagram the secret system 

 

Sets of values of a priori probabilit ies (1 - 3) form a priori knowledge of the  

opponent about the source of messages and the source of keys, respectively. In fact, these sets characterize the a priori 

knowledge of the opponent of the possible  "weakness" of the secret system. 

Selection of Ki determines specific mapping i of the set of mappings . With the help of the mapping I which 

corresponds to the selected key Ki, the cryptogram Mj is formed according to a received message: 

 jiiw M,KE  ,  

 k,...,2,1i ,  m,...,2,1j ,  n,...,2,1w , mn  . 

Ew cryptogram is transmitted to the point of taking on some of the channels and can be intercepted by the opponent. At 

the receiving end, the original message is restored of cryptogram Ew using reverse mapping i
-1

 (given by the key Ki
*
): 

 wi
1

ij E,KM  . 

If the opponent takes over the cryptogram El, he can use it to try to calculate the a posteriori probabilities of various 

possible messages: 

      wmw2w1EM
EMP...,,EMP,EMPP

w
 ,                                                 (4) 

and a variety of possible keys: 

      wkw2w1EK
EKP...,,EKP,EKPP

w
 ,                                                  (5) 

that could be used in the format ion of cryptogram Ew. 

Sets of a posteriori probabilities (4 – 5) form a posteriori knowledge of the opponent about the keys 

K = {K1, K2, …, Kk} and messages M = {M1, M2, …, M m} after intercepting a cryptogram El. In fact, the sets 
wEK

P  and 

wEM
P are the sets of assumptions, which the corresponding probabilities are assigned to. 
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3. Block diagram and a formal mathematical definition of steganographic system 
By analogy with the theory of secret systems let’s consider the basic functional elements and mathematical operators 

abstractly describing steganographic informat ion protection system. 

Let’s fix a set of possible messages M = {M1, M2, …, M m}, the set of possible container L = {L1, L2, …, Ll}, and the 

set of possible filled containers  (steganograms) E = {E1, E2, …, En}. Let’s also fix a set of mappings: 

 = {1, 2, …, k}, 

where:  

i: (M, L)  E, i = 1, 2 , …, k. 

We will define the inverse mapping: 

i
-1

: E   (M, L) , 

which each element of the set E assigns to an element of the set M and an element of   the set L. 

Let’s fix a set of keys К = {К1, К2, …, Кk}, so that for all i = 1, 2 , …, k mapping i   is uniquely specified by the 

key Ki, that is: 

  EL,M: iK
i  . 

Each specific mapping of i of the set  corresponds to the way of the message embedding from the set M in the 

container of the set L with the help of the specific key Ki. 

Let’s fix the set of keys К
*
 = {К1

*
, К2

*
, …, Кk

*
}, in general, to К  К

*
. All the elements of the inverse mappings’ set: 


-1

 = {1
-1

, 2
-1

, …, k
-1

} 

are given the appropriate key: 

 L,ME:
*
iK1

i  . 

Each specific mapping i
-1

 of the set 
-1 

corresponds to a process of recovering messages from the filled container (and 

the formation of empty container) with the key Ki
*
. If the key Ki

*
 is known, there is only one possible answer as a result of the 

extraction operation – an element of the set M and an element of the set L: 

   *
iw

1
ilj K,EL,M  . 

For robust systems the following equality is correct: 

   *
iw

1
ilj K,EL,M  

, 

i.e. slight change of the filled container (for the value  ) will not lead to an incorrect message retrieval.  

Fragile steganosystems are characterized with the performance of inequality : 

   *
iw

1
ilj K,EL,M  

 

for an arb itrarily s mall value  . 

Thus, an abstract definition of steganographic system includes the following sets of M, L, E, , 
-1

, К and К
*
 (the sets 

of open texts, empty containers and steganograms (filled containers), sets of forward and backward mappings, and sets of the 

corresponding keys). 

Fig. 2 represents a block diagram of a steganographic system. 

A message source generates a flow of information from a variety of information messages Ij from the set 

I = {I1, I2, …, Im}, which, after preliminary converting in a precoder is formed as a message Mj from the set M. A precoder 

performs a function of preliminary preparation of the informat ional message to embedding in a container (such as converting 

an informat ional message in an array of specially fo rmatted digital data). 
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Fig. 2. Block diagram of steganographic system 

 

Each message Mj  M = {M1, M2, …, Mm} corresponds to the probability P(M j). The probability distribution of a 

random process is given by a cumulat ive distribution of probability distribution sets of random variables, i.e. the set of 

probabilit ies: 

      m21M MP...,,MP,MPP  .                                                                    (6) 

Source of containers generates a flow of empty containers Lu from the set L = {L1, L2, …, Ll}. Work of the source of 

containers can also be described by some random process, the specific realization of wh ich is the container Lu. In this case we 

deal with random containers that can be attributed to the corresponding probabilities : 

      l21L LP...,,LP,LPP  . 

Much more often, in practice, a different type of containers is used, the formation of which is impossible to describe by 

a random process. In this case, the source container works on a determin istic rule, asked or authorized (e.g., transmitting) side, 

or the opponent.  In the first case, a so-called selected container, i.e. the container used is not formed by chance, but is chosen 

by the party responsible for some non-stochastic characteristics. In the second case, the source container is managed by the 

opponent, and the containers themselves are generated by an attacker and imposed the transmitting side by a determin istic 

rule. Thus, we have the so-called imposed-on container. 

In the simplest case, a lot of empty containers contain only one element, which is used by the transmitting side to 

embed message and secretly pass it through a communicat ion channel. 

Lu shaped container is processed by the containers’ features’ registration unit.  The main function of the containers’ 

features’ registration unit is the selection of attributes (features) Bu of incoming container Lu, which will be used for 

embedding the message to Mj. 

A source of keys in steganographic system generates a flow of the set of keys К and/or К
*
. Each key 

Ki  K = {K1, K2, …, Kk} corresponds to some probability P(Ki), and each Ki
*
  K

*
 = {K1

*
, K2

*
, …, Kk

*
}  corresponds to the 

probability P(Ki
*
). Random key generation process is given by the sets of probabilities:  
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      k21K KP...,,KP,KPP                                                                       (7) 

and:  

      *
k

*
2

*
1*K KP...,,KP,KPP  .                                                                        (8) 

Sets of values of a priori p robabilities (6 - 8) form a priori knowledge of the opponent about the source of messages and 

the source of keys, respectively. In fact, these sets characterize the a priori knowledge of the opponent on the possible 

"weakness" of steganographic system. 

Key selection Ki  determines specific mapping i of the set of mappings . With the help of mapping i corresponding 

to the selected key Ki, following received message Mj and the received container Lu based on identified characteristics Bu of 

the container Lu, a steganogram (fu ll container) is formed: 

 ujiiw L,M,KE  ,  

 k,...,2,1i ,  m,...,2,1j ,  l,...,2,1u ,  n,...,2,1w , mn  . 

A steganogram Ew is transferred to the receiving point by a certain channel and may be intercepted by the  opponent. At 

the receiving end with the help of the reverse mapping i
-1

 (given by the key Ki
*
) of the steganogram Ew restored the original 

message and the empty container is restored: 

   wi
1

iuj E,KL,M  . 

When transferring the steganogram Ew through a communication channel and because of the opponent’s poss ible 

impact on Ew, a transmitted steganogram may become distorted. In this case, the receiving side will get a mixture of a 

delivered filled container and of a feedback to the container during the t ransmission through the communication channel: 

Ew+ε. Performing the operation of a reverse mapping i
-1

 (given by the key Ki
*
) will lead, in this case, to a certain evaluation 

of a transferred message and give an empty container, i.e. we get:  

    
wi

1
i

*
u

*
j E,KL,M . 

For fragile steganographic systems, an inequality j
*
j MM  should lead to a message rejection, i.e. at the slightest 

distortion of the container ( 0 ), an ext racted assessment 
*
jM should not lead to the reading of embedded message (the 

message jM is destroyed when 0 ). 

Robust steganographic systems are resistant to the impact on a filled container. In the above notations, this means that 

when 0 , an ext racted assessment 
*
jM should be compared to one of the possible messages (ideally, with the message jM ). 

At the same time, the derived from a communication channel container Ew can contain no embedded message at all, i.e . the 

extracted from the container assessment 
*
jM should not be compared to any of the possible messages. A built-in message 

detection functions at a receiving side are assigned to messages’ detector, which by the received assessment 
*
jM  decide on the 

presence or absence of an internal message in the received container wE . Thus, the estimate of the detector jS can be 

interpreted as a binary (yes/no) decision of an error-correct ing decoder on the presence or absence of uncorrectable errors. The 

decoding itself is performed at a messages decoder, the main functions of which are to compare the extracted assessment 
*
jM  

with one of the possible messages jM and to transform the latter to the informational message  Ij provided to the recipients of 

informat ion. 

The opponent may capture the steganogram Ew. In this case, he can use it to try to calculate posteriori probabil ities of 

various possible messages: 

      wmw2w1EM
EMP...,,EMP,EMPP

w
                                                             (9) 

and of a variety of possible keys : 

      wkw2w1EK
EKP...,,EKP,EKPP

w
 ,                                                           (10) 

that could be used in the format ion of the steganogram Ew. 

The sets of posterior probabilit ies (9 - 10) fo rm a posteriori knowledge of the opponent about the keys 

K = {K1, K2, …, Kk} and the messages M = {M1, M2, …, M m} after the interception of the steganogram Ew. In fact, the sets 

wEK
P  and 

wEM
P  are sets of assumptions, which are assigned the corresponding probabilities. 
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4. Conclusions 
In this paper we have analyzed and studied the formal mathemat ical description and a block diagram of a secret 

system. By analogy with the examined formalizat ion of the theory of secret systems the basic elements and mathemat ical 

operators, abstractly describing steganographic information protection system, are introduced. In the introduces fo rmalization 

a definit ion of fragile and robust steganosystems has been received, as well as probabilistic indicators characterizing a 

posteriori knowledge of the opponent on the secret keys and embedded messages. A promising direction for further research is 

the analysis and theoretical basis of criteria and performance indicators of steganographic security systems, the study of the 

properties of the known examples of steganosystems by entering the show-makers and the criteria of performance evaluation. 
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