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Abstract 

A subset D of V is called a dom strong dominating set if for every v  V – D, there exists u1, u2  D such that u1v, 

u2v   E(G) and deg (u1 ) ≥ deg (v). The minimum cardinality of a dom strong dominating set is called dom strong 

domination number and is denoted by γdsd. In this paper, we introduce the concept of nonsplit dom strong domination 

number of a graph. A dom strong dominating set D of a graph G is a nonsplit dom strong dominating set (nsdsd set) if the 

induced subgraph <V-D> is connected. The minimum cardinality taken over all the nonsplit dom strong dominating  sets is 

called the nonsplit dom strong domination number and is denoted by γnsdsd(G). Also we find the upper bound for the sum of 

the nonsplit dom strong domination number and chromatic number and characterize the corresponding extremal graphs. 
 

1. Introduction     
Let G = (V, E) be a simple undirected graph. The degree of any vertex u in G is the number of edges incident with 

u and is denoted by d(u). The minimum and maximum degree of G is denoted by δ(G) and ∆(G) respectively. A path on n 

vertices is denoted by Pn. The graph with V(Bn,n)={u1,u2,u3,….un,v1,v2,v3,…vn}and E(Bn,n) ={uui,vvi,uv: 1  i  n} is called 

the n-bistar and is denoted by Bn,n . The graph with vertex set V(Hn,n) = {v1,v2,v3,…vn,u1,u2,u3….un} and the edge set                      

E(Hn,n ) = { vi, uj,1 i  n, n-i+1  j  n} is denoted by Hn,n. The corona of two graphs G1 and G2 is the graph G = G1o G2 

formed from one copy of G1 and |V(G1)| copies of G2 where the ith vertex of G1 is adjacent to every vertex in the ith copy of 

G2.  

        The Cartesian graph product G = G1□ G2 is called the graph product of graphs G1 and G2 with disjoint vertex sets V1 

and V2 and edge set X1 and X2 is the graph with the vertex set V1 x V2  and u = (u1,u2) adjacent with v = (v1,v2) whenever 

[u1 = v1 and u2 adjacent to v2] or [u2 = v2 and u1 adjacent v1]. The book graph Bm is defined as the graph cartesian product 

Sm+1 x P2, where Sm is a star graph and P2 is the path graph on two nodes. The friendship graph or (Dutch windmill graph) 

Fn is constructed by joining n copies of the cycle C3 with a common vertex. The ladder graph can be obtained as the 

Cartesian product of two path graphs, one of which has only one edge. A graph G is a called a (n x m) flower graph if it has 

n vertices which form an n-cycle and n-sets of m-2 vertices which form m-cycles around the n-cycle so that each m-cycle 

uniquely intersects with n-cycle on a single edge.  
 

A (n, k)- banana tree is defined as a graph obtained by connecting one leaf of each of n copies of an k-star graph root 

vertex that is distinct from all the stars. Recently many authors have introduced some new parameters by imposing 

conditions on the complement of a dominating set. For example, Mahadevan et.al [14] introduced the concept of 

complementary perfect domination number. 

 

 A subset S of V of a non-trivial graph G is said to be an complementary perfect dominating set if S is a dominating set and 

<V-S> has a perfect matching. The concept of nonsplit domination number of a graph was defined by Kulli and Janakiram 

[5]. A dominating set D of a graph G is a nonsplit dominating set if the induced subgraph  <V-D> is connected. The non 

split domination number γns (G) of G is minimum cardinality of a nonsplit dominating set. The concept of dom strong 

domination number of the graph is defined in [16]. Double domination introduced by Haynes[18] serves as a model for the 
type of fault tolerance where each computer has access to atleast two fileservers and each of the fileservers has direct 

access to atleast one backup fileserver. Sampathkumar and Pushpalatha [15] have introduced the concept of strong weak 

domination in graphs. A combination of the concepts of double domination and strong weak domination is the concept of 

domination strong domination where in for every vertex outside the dominating set, there are two vertices inside the 

dominating set, one of which dominates the outside vertex and the other strongly dominates the outside vertex. In this 

paper we introduce the concept of non split dom strong domination number of a graph. 
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2. Non Split Dom Strong Domination Number 
Definition  2.1 
 A dom strong dominating set D of a graph G is a nonsplit dom strong dominating set (nsdsd set) if the induced subgraph 

<V-D> is connected. The minimum cardinality taken over all the nonsplit dom strong dominating sets is called the non 
split dom strong domination number and is denoted by γnsdsd (G).  

Examples 2.2   

 

 

 

 

 

 

 

 

 
 

 

 In the figure 2.1, D1 = { v1, v2, v5 } form the nonsplit dom strong dominating set of  G1.  

 

 

 

 

 

 

 

 

 
 

In the figure 2.2, D1 = { v1, v2, v5, v6}and    D2 = { v1, v2, v4, v5, v6} form the nonsplit dom strong dominating set of  G2. The 

minimum cardinality is taken as the nonsplit dom strong domination number for G2 is 4. 

 

Basic Observations  2.3 

The nonsplit dom strong domination number of some of the standard classes of graphs are given below 

1. γnsdsd (Pn) = n-1 for n ≥ 4,where Pn is a path on n vertices. 

2. γnsdsd (Cn) = n-1 for n ≥ 4,where Cn is a cycle on n vertices 

3. γnsdsd (Kn ) = 2   for n ≥ 3, where Kn is a complete graph on n vertices. 

4. γnsdsd (K1,n ) = n+1, where K1,n is a star graph. 

5.  γnsdsd (Km,n ) =  m + n -1  for m≠ n where Km,n is a bipartite graph on m+n vertices  
6. γnsdsd (Km,n ) =  4  for m = n where Km,n is a bipartite graph on m+n vertices 

7. γnsdsd (P) = 8, where P is the Peterson graph. 

8. γnsdsd (Wn) = n-1 where Wn is a wheel whose outer cycle has n vertices. 

9. γnsdsd (Hn) = n +1 where Hn is a Helm graph. 

10. γnsdsd (Bm,n) = m+n+1 where Bm,n is a bistar. 

11. If G is the corona Cno K1, then γnsdsd (G) = 2n-2 for n ≥ 3 

12. If G is the corona Kno K1, then γnsdsd (G) = n+1 for n ≥ 3 

13. γnsdsd (Bm) = n - 1, where Bm is a book graph. 

14. γnsdsd (Fn) = n -1, where Fn is a friendship graph. 

15. γnsdsd (Ln) = 2n-2, where Ln is a ladder graph. 

16. γnsdsd (Fnxm) = n(m-1)-2, where Fnxm is a flower graph. 

17. γnsdsd (Bn,k) = nk, where Bn,k is a banana tree. 

 

Theorem 2.4  Let G be a graph with no isolates. Then 2  γnsdsd (G)  n and the bounds are sharp. 
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Proof  Since any dom strong dominating set has at least two elements and at most n elements. Hence for any nonsplit dom 

strong dominating set has at least two elements and at most n elements. For a star γnsdsd (K1,n ) = n+1 and for Kn, γnsdsd (Kn) = 

2.Therefore the bounds are sharp. 

 

Theorem 2.5  In a graph G, if a vertex v has degree one then v must be in every nonsplit dom strong dominating set of G. 

That is every nonsplit dom strong dominating set contains all pendant vertices. 
Proof   Let D be any nonsplit dom strong dominating set of G. Let v be a pendant vertex with support say u. If v does not 

belong to D, then there must be two points say x,y belong to D such that x dominates v and y dominates v. Therefore x and 

y are adjacent to v and hence deg v ≥ 2 which is a contradiction. Since v is a pendant vertex, so v belongs to D. 

 

Observation 2.6   γ(G)  γdsd (G)  γnsdsd (G) and the bounds are sharp for the graph G3 figure 2.3   
 

 

 

 

                         

 

 

 
 

 

 

 

Observation  2.7   For any graph G, γnsdsd (G)  ≥   and the bound is sharp. 

Proof   For any graph G,   γ  and also by observation 2.6, the theorem follows. The bound is sharp for the 
graph G4 in figure 2.4. 

  

 

 

 

 

 

 

 

 

 

 

 

Remark 2.8  Support of a pendant vertex need not be in a nonsplit dom strong dominating set. For the graph G5 in figure 

2.5, γnsdsd (G5) = 4. Here D1 = { v1, v2 v4,v5 }is a  nonsplit dom strong dominating set which does not contains the support 

v3.   

 

 

 

 

 

 
 

 

Observation 2.9  If H is any spanning subgraph of a connected graph G and  E(H)  E(G) then  γnsdsd (G)   γnsdsd (H). 

 

Theorem 2.10  Let G  Cn (n ≥ 5). Let H be a connected spanning subgraph of G, then γnsdsd (G) =  γnsdsd (H). 
Proof  We have γnsdsd (G) = n - 1 and also a connected spanning sub graph of G is a path. Hence <H> is  a path so that  

γnsdsd (H) = n -1. 
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Observation 2.11   For any cycle Cn and any v   V(Cn),  

                                       γnsdsd (Cn -v) = 2   if n = 3, 

                                                               3    if n = 4,   

                                                              n-2  if n > 4.  

Proof   Follows from theorem 2.10. 

 

Observation 2.12    If G  Kn o K1, for any complete graph Kn, then γdsd (G) = γnsdsd (G). 
  

Theorem 2.13   For any connected graph G, γnsdsd (G) = n if and only if G is a star. 

Proof   If G is a star then V is the only nonsplit dom strong dominating set so that  γnsdsd (G) = n. Conversely, assume that 

γnsdsd (G) = n. We claim that G is a star. Suppose not, let u be a vertex of a maximum degree ∆ with N(u) = { u1,u2,…..u∆ }. 

If < N(u) > has an edge e = uiuj, then V- { ui } is a nonsplit dom strong dominating set of cardinality n - 1, which is a 

contradiction. If  < N(u) > has no edge then G has an edge e = xy which is not incident with u such that u is adjacent to x. 

then V-{u} is a nonsplit dom strong dominating set of cardinality n-1 which is a contradiction. Hence G is a star. 

 

Theorem 2.14   For any connected graph G, γnsdsd (G) = 2 if and only if there exist u and v such that deg u = deg v = ∆, 

then deg u and deg v ≥ n-2. 

Proof    Let there exist u and v satisfying the hypothesis. Let D = {u,v}. Let x   V-D, then x is adjacent to both u and v. 

Since deg u = deg v = ∆, we have   deg x  deg u and deg x  deg v, therefore D is the nonsplit dom strong dominating set. 

Conversely, let      D = {u, v} be a nonsplit dom strong dominating set. Every point xV-D is adjacent to both u and v. 

Therefore deg u ≥ n-2, deg v ≥ n-2. Also deg x  deg u or deg v. Suppose deg u and deg v < ∆ then there exists x   V - D 
of deg ∆. Therefore D is not a nonsplit dom strong dominating set, which is a contradiction. Hence deg u = deg v = ∆. If 

deg u is not equal to deg v then deg u = n-1 and deg v = n-2, which is impossible. Therefore      deg u = deg v = ∆. 

 

Theorem 2.15  Let G be a graph without isolates and let there exists a γnsdsd set which is not independent. Then γ(G)+ 1  
γnsdsd (G). 

Proof   Let D be a γnsdsd  set which is not independent. Let x  D be such that x is adjacent  to some point of D. If N(x) ∩ 

(V-D)= Φ, then as G has no isolates N(x) ∩ D ≠ Φ. Hence D - { x } is a dominating set. Therefore γ(G)  |D-{ x }| = 
γnsdsd(G) -1. If N(x) ∩(V-D) ≠ Φ. Then for any y   N(x) ∩(V-D) there exists z  D such that z is adjacent to y. As x is 

adjacent to some point of D, D -{ x } is a dominating set. Therefore γ(G)   |D-{ x }|   γnsdsd (G) -1.The bound is sharp. 
γ(Kn) = 1and γnsdsd (Kn) = 2. 

 

Theorem 2.16   γnsdsd (G) ≥   

Proof  Every vertex in V-D contributes two to degree sum of vertices of D. Hence 2|V-D|   uD d(u) where D is a 

nonsplit dom strong dominating set, so  that 2 |V-D|  γnsdsd  ∆ which implies 2(|V|- |D|)  γnsdsd ∆. Therefore 2n - 2γnsdsd   

γnsdsd ∆, which implies  γnsdsd (∆+2) ≥  2n. Hence γnsdsd ≥  . The bounds are sharp. For K4, γnsdsd (K4 ) = 2.      

γnsdsd (G) =  = 2. 
 

3. Relation Between The Nonsplit Dom Strong Domination Number And Chromatic Number : 

Recently many authors have studied the problem of obtaining an upper bounds for the sum of the one domination 

parameter and graph theory parameter and characterize the corresponding extremal graphs. In [11], Paulraj Joseph J and 

Arumugam S proved that γ + k ≤ p. In [12], Paulraj Joseph J and Arumugam S proved that  +     p + 1. They also 

characterized the class of graphs for which the  upper bound is attained. They also proved similar results for  and t. In 

[13], Paulraj Joseph J and Mahadevan G proved that cc+    2n-1 and characterized the corresponding extremal graphs. 

In [6], Mahadevan G, proved that pr +   2n-1 and characterized the corresponding extremal graphs. He also proved that 

γipr + χ ≤ 2n - 2 and characterized the corresponding extremal graphs. In [14], Paulraj Joseph J, Mahadevan G and Selvam 

A. introduced the concept of complementary perfect domination number cp and proved that cp +   2n-2, and 

characterized the corresponding extremal graphs. They also obtained the similar results for the induced complementary 

perfect domination number and chromatic number of a graph. We find the upper bound for the sum of the nonsplit dom 

strong domination number and chromatic number and characterize the corresponding extremal graphs 
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 Notations 3.1  

 Pk(m1,m2) where k 2, m1,m2  1 be the graph obtained by identifying centers of the stars K1,.m1 and K1,.m2 at the 

ends of PK respectively. The graph C3(m1, m2, 0) is obtained from C3 by identifying the centers of stars K1,.m1 and K1,.m2 at 

any two vertices of C3. The graph Kn(m1, m2, m3, m4, m5,……..mn) denote the graph obtained from Kn by pasting m1 edges to 

any one vertex ui of Kn, m2 edges to any vertex   uj  of Kn,       for i  j, m3 edges to any vertex uk for i  j  k, m4 edges to ul 

i  j  k  l,……….mn edges to all the distinct vertices of Kn. Cn(Pk) is the graph obtained from Cn by attaching the end 

vertex of Pk to any one vertices of Cn. Kn(Pk) is the graph obtained from Kn by attaching the end vertex of Pk to any one 
vertices of Kn. 

Theorem 3.2  For any graph G, γnsdsd (G) ≤ n. 

 

Theorem 3.3  For any connected graph G, χ (G) ≤ ∆ (G) +1. 

 

Theorem 3.4  For any graph, γnsdsd (G) + χ (G) ≤ 2n and equality holds if and only if       G  K2. 

Proof    By theorem 3.2 and 3.3, it follows that γnsdsd (G) + χ (G)  n + ∆ + 1  n + n – 1 +1  2n. Now we assume that 
γnsdsd (G) + χ (G) = 2n. This is possible only if γnsdsd (G) = n and χ (G) = n. Since χ (G) = n, G is complete. But for complete 

graph, γnsdsd (G) = 2. Hence G  K2. Converse is obvious. 

Theorem 3.5   For any graph G, γnsdsd (G) + χ (G) = 2n-1 if and only if G  P3, K3.                                                   
Proof   If G is either P3 or K3 , then clearly γnsdsd (G) + χ (G) = 2n-1. Conversely, assume that γnsdsd(G)  + χ(G) =  2n-1. This 

is possible only if  γnsdsd(G) = n and  χ(G) =  n-1 (or) γnsdsd(G) = n-1 and  χ (G) = n. 

Case (i)   γnsdsd (G) = n and χ(G) = n-1. Since γnsdsd (G) = n, G is a star. Therefore n=3.  Hence G  P3. On increasing the 
degree we get a contradiction. 

Case (ii)   γnsdsd (G) = n-1 and χ (G) = n. Since χ (G) = n, G is complete. But for Kn,   γnsdsd (G) = 2, so that  n = 3. Hence    

G  K3. 
 

Theorem  3.6     For any  graph G, γnsdsd (G) + χ (G) = 2n-2 if and only if G  K1,3, K3 (P2), K4. 
Proof   If G is any one of the following graphs K1,3, K3 (P2), K4, then clearly   γnsdsd(G) + χ (G) = 2n-2. Conversely, assume 

that γnsdsd (G) + χ (G) = 2n-2. This is possible only if γnsdsd (G) = n and χ(G) = n-2 (or) γnsdsd (G) = n-1and χ(G) = n-1 (or) 

γnsdsd(G)  = n-2 and  χ(G) = n 

Case (i)   γnsdsd(G) = n and χ(G) = n-2. Since γnsdsd (G) = n, G is a star. Therefore n = 4. Hence G  K1,3. On increasing the 
degree we get a contradiction. 
Case (ii)   γnsdsd (G) = n-1 and χ (G) = n-1.  Since χ(G) = n-1, G contains a clique K on    n-1 vertices. Let S = {v} be the 

vertex other than the clique Kn-1.Then v is adjacent to ui for some i in Kn-1. Then { v1,ui, uj} is a γnsdsd set. Hence n = 4. 

Therefore K= K3. If       d(v1) = 1 then G  K3 ( P2 ). On increasing the degree of v1, no graph exists.  

Case (iii)  γnsdsd (G) = n-2 and  χ(G)  = n. Since χ(G) = n, G  Kn. But for Kn, γnsdsd (G) = 2. Therefore n = 3. Hence G  K4. 
 

Theorem 3.7    For any graph G, γnsdsd (G) + χ (G) = 2n-3 if and only if G  K1,4, K3 (P3), K3 (2), K3 (P2, P2, 0), K5, or any 
one of the graphs in the figure 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof   If G is any one of the above graphs then clearly γnsdsd (G) + χ (G) = 2n-3. Conversely, assume that  γnsdsd (G) + χ (G) 

= 2n-3. This is possible only if γnsdsd (G) = n,    χ (G) = n-3 (or) γnsdsd (G) = n-1, χ (G) =  n-2 (or) γnsdsd (G) = n-2, χ(G) = n-1 

(or)  γnsdsd (G) = n-3, χ(G) = n. 
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Case (i) γnsdsd (G) = n and χ (G) = n-3. Since γnsdsd (G) = n, G is a star. Therefore n = 5. Then G  K1,4. On increasing the 
degree no new graph exists.  

Case (ii)   γnsdsd (G) = n-1 and χ (G) = n-2. Since χ (G) = n-2, G contains a clique K on   n-2 vertices. Let S = {v1, v2} be the 

vertices other than the clique Kn-2 then the possible cases are <S> = K2 or K2. 

Subcase (i)   Let <S> = K2. Since G is connected, either v1 or v2 is adjacent to ui for some i in Kn-2, then  {v1, v2, ui, uj} is a 

γnsdsd set so that n = 5. Hence K = K3. If d (v1) = 2 and     d (v2) = 1, then  G  K3(P3). On increasing the degree, no graph 
exists. 

Subcase (ii)   Let <S> = K2. Since G is connected, v1 and v2 is adjacent to ui for some i in Kn-2. Then γnsdsd (G) = 4, so that K 

= K3. If d(v1) = d (v2) = 1, then G  K3(2). If d(v1)=1 and d(v2) = 2 then G   G1. If v1 is adjacent to ui and v2 adjacent to uj 

for some i ≠ j in Kn-2 then γnsdsd(G) = 4. Hence K = K3. If d (v1) = d (v2) = 1, then G  K3 (P2, P2, 0). On increasing the 
degree, no graph exists.  

 
Case (iii) γnsdsd (G) = n-2 and χ (G) = n-1. Since χ (G) = n-1, G contains a clique K on   n-1 vertices. Let S = {v} be the 

vertex other than the clique Kn-1.If v is adjacent to ui for some i in Kn-1, then γnsdsd (G) = 3. Hence n = 4. Therefore K= K4. If 

d (v) = 1, then  G  K4 (P2 ). If d(v) = 2, then G  G2. On increasing the degree, no new graph exists. 

Case (iv)  γnsdsd (G) = n-3 and χ (G) = n. Since χ (G) = n, G  Kn. But for complete Graph Kn, γnsdsd (G) = 2 so that n = 5. 

Therefore G  K5. 

 

Theorem 3.8    For any graph G, γnsdsd (G) + χ (G) = 2n - 4 if and only if G  K1,5, K3 (3), C4(P2), S(K1,3), K3 (P3), C3 (1,1,1), 
K3 (2, 1, 0) , K4 (2), K4 (P2, P2, 0,0), K5 (P2). K6, or any one of the graphs given in the figure 3.2 

   
 

 

         

  

 

 

 

 

                    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Proof   Assume that γnsdsd (G) + χ (G) = 2n-4. This is possible only if γnsdsd (G) = n and  χ(G) = n-4 (or)  γnsdsd (G) = n-1 and  

χ(G) = n-3 (or) γnsdsd (G) = n-2 and  χ(G) = n-2 (or) γnsdsd (G) = n-3 and  χ(G) = n-1 (or)  γnsdsd (G) = n-4 and χ(G) = n. 

  Figure 3.2 
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Case (i)  γnsdsd (G) = n and χ (G) = n-4.  Since γnsdsd (G) = n, G is a star. Therefore n = 6. Then G  K1,5. On increasing the 
degree, we get a contradiction.  

case (ii)   γnsdsd(G) = n-1 and  χ (G) = n-3.  

    Since χ (G) = n-3, G contains a clique K on n-3 vertices Let S = {v1, v2, v3} be the vertices other than the clique Kn-3 then 

<S> = P3, K3, K3, K2UK1  

Subcase (i)   Let < S > = P3. Since G is connected, the following are the possible cases (i) there exist a vertex ui of Kn-3 

which is adjacent to any one of  end vertices (ii) there exist a vertex ui of Kn-3 which is adjacent to other than end vertices. 

If there exist a vertex ui of Kn-3 which is adjacent to any one of end vertices, then γnsdsd (G) = 5. Hence n = 6. Therefore      

K = K3. If d(v1) = 2 and d(v2) = d(v3) = 1 then G  K3(P4). If  ui is adjacent to v2 which is not a pendant vertices  then γnsdsd 

(G) = 5. Hence n = 6. Therefore  K = K3. If d(v1) = d(v3) = 1 and d(v2) = 3 then G  G1. If d(v3) = 2 and d(v1) = 1 and d(v2) 

= 3 then G  G2. If d(v1) = 1 and d(v2) = 3 and d(v3) = 2 then G  G3.  
Subcase (ii)    Let < S > = K3. Since G is connected, there exist a vertex ui of Kn-3 adjacent to anyone of  {v1, v2 ,v3}. 
Without loss of generality let v1 be adjacent to ui, then γnsdsd (G) = 5. Therefore K=K3. If d(v1) =3 and d(v2) = d(v3) = 2 then 

G  G4. If d(v1) = 3 and d(v2) = 3 and d(v3) = 2 then G  G5.  On increasing the degree we get a contradiction. 
Subcase (iii)   Let < S > = K3. Since G is connected, let all the vertices of K3 be adjacent to vertex ui . Then γnsdsd (G) = 5. 

Hence n = 6. Therefore K = K3. Let  u1, u2, u3  be the vertices of  K3. Let all the three vertices of K3 adjacent to u1. Then       

G  K3 (3 ). If d(v3 ) = 2 and d(v1) = 1 and d(v2) = 1 then G  G6.On increasing the degree, we get a contradiction. If two 
vertices of K3 are adjacent to ui and the third vertex adjacent to uj for some i≠j, then γnsdsd(G) = 5. Hence n = 6. Therefore K 

= K3. Let u1, u2, u3 be the vertices of  K3. Then G  K3 (2, 1, 0). If d(v ) = 1 and d(v2) = 2 and d(v3) = 1 then G  G7. On 
increasing the degree, we get a contradiction. If all the three vertices of K3 are adjacent to three distinct vertices of Kn-3  say 

ui, uj, uk for i ≠ j ≠ k, then γnsdsd (G) = 5. Hence n = 6. Therefore K = K3. Let u1, u2, u3 be the vertices of  K3. Then  G  K3 

(1,1,1). On increasing the degree, we get a contradiction. 

Subcase (iv)   Let < S > = K2  K1. Since G is connected, there exist a vertex ui of Kn-3 which is adjacent to anyone of {v1, 

v2} and v3. Then γnsdsd(G) = 4. Hence n = 6. Therefore K = K2, so that G  S(K1,3). On increasing the degree, we get a 
contradiction. Let there exist a vertex ui of Kn-3 be adjacent to any one of {v1, v2} and uj for some I ≠ j in Kn-3 adjacent to v3. 

Hence γnsdsd(G) = 4, so that n = 5. Therefore K = K2, which is a contradiction. 

            If G does not contain a clique K on n-3 vertices, then it can be verified that no new graph exist. 
 

Case (iii) γnsdsd (G) = n-2 and χ (G) = n-2. Since χ (G) = n-2, G contains a clique K on   n-2 vertices. Let S = { v1, v2, v3, v4 } 

be the vertices other than the clique Kn-2 then the possible cases are  <S> = K2,  K2. 

Subcase (i)   Let  <S> = K2. Since G is connected, either v1 or v2 is adjacent to ui for some i in Kn-2. Then γnsdsd (G) = 4 so 

that n = 6. Therefore K= K4. Let u1, u2, u3 be the vertices of K3. Therefore G  K4(P3). On increasing the degree, then           

G  G8, G9. 
Subcase (ii)   Let <S> = K2. Since G is connected, both v1 and v2 adjacent to ui for some i in Kn-2. Then γnsdsd (G) = 4 so that 

n = 6.Therefore K= K4. Let u1, u2, u3, u4 be the vertices of K4. Therefore G  K4 (2). If d(v1) = 1 and  d(v2)  = 2 then G  G10.  
On increasing the degree, we get a contradiction.. If the two vertices are adjacent to two distinct vertices of Kn-2, then      

γnsdsd (G) = 4. Hence n = 6.Theefore K = K4.  Then  G  K4 (P2, P2, 0, 0). If d(v1) = 2 and d(v2) = 1 then G  G11. If d(v1) = 2 

and d(v2)  = 2 then G  G12. On increasing the degree, we get a contradiction.. 
Case (iv)   γnsdsd (G) = n-3 and χ(G) = n-1.Since χ(G) = n-1, G contains a clique K on n-1 vertices. Let the vertex v1 is 

adjacent to ui for some i in Kn-1. Therefore γnsdsd (G)  = 3, hence n = 6. Therefore K = K5. Then G  K5 (P2). If d (v) = 2 then 

G  G15.On increasing the degree, we get a contradiction. 

Case (v)   Let  γnsdsd(G) =  n-4 and χ (G) = n. Since χ (G) = n, G  Kn. But for Kn, γnsdsd (G) = 2, so that n = 6. Therefore     

G  K6. 
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