
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 21

 Mapping Fpga To Field Programmableneural Network Array(Fpnna)

1
,H Bhargav,

2,
 Dr. Nataraj K. R

1,
Assistant Professor,.Vidyavardhaka College of Engineering, Mysore, Karnataka, India.

2,.
Professor,.SJB Institute of Technology, Bangalore, Karnataka, India.

Abstract
My paper presents the implementation of a generalized back-propagation multilayer perceptron (MLP)

architecture, on FPGA, described in VLSI hardware description language (VHDL). The development of hardware

platforms is not very economical because of the high hardware cost and quantity of the arithmetic operations required in

online artificial neural networks (ANNs), i.e., general purpose ANNs with learning capability. Besides, there remains a

dearth of hardware platforms for design space exploration, fast prototyping, and testing of these networks. Our general

purpose architecture seeks to fill that gap and at the same time serve as a tool to gain a better understanding of issues

unique to ANNs implemented in hardware, part icularly using field programmable gate array (FPGA).This work describes a

platform that offers a high degree of parameterization, while maintaining generalized network design with performance

comparable to other hardware-based MLP implementations. Application of the hardware implementation of ANN with

back-propagation learning algorithm for a realistic applicat ion is also presented.

Index Terms:Back-propagation, field programmable gate array (FPGA), hardware implementation, mult ilayer

perceptron, neural network, NIR spectra calib ration, spectroscopy, VHDL, Xilinx FPGA.

1. INTRODUCTION
In recent years, artificial neural networks have been widely implemented in several research areas such as image

processing, speech processing and medical diagnoses. The reason of this widely implementation is their high classification

power and learn ing ability. At the present time most of these networks are simulated by software programs or fabricated

using VLSI technology [9]. The software simulat ion needs a microprocessor and usually takes a long period of time to

execute the huge number of computations involved in the operation of the network. Several researchers have adopted

hardware implementations to realize such networks [8]&[12].This realizat ion makes the network stand alone and operate

on a real-time fashion. Recently, implementation of Field Programmable Gate Arrays (FPGA's) in realizing complex

hardware system has been accelerated [7].Field programmable gate arrays are h igh-density digital integrated circuits that

can be configured by the user; they combine the flexibility of gate arrays with desktop programmability. An ANN’s ability

to learn and solve problems relies in part on the structural Characteristics of that network. Those characteristics include the

number of layers in a network, the number o f neurons per layer, and the activation functions of those neurons, etc. There

remains a lack of a reliable means for determin ing the optimal set of network characteristics for a given application.

Numerous implementations of ANNs already exist [5]–[8], but most of them being in software on sequential processors

[2]. Software implementations can be quickly constructed, adapted, and tested for a wide range of applications. However,

in some cases, the use of hardware architectures matching the parallel structure of ANNs is desirable to optimize

performance or reduce the cost of the implementation, particularly for applicat ions demanding high performance [9], [10].

Unfortunately, hardware p latforms suffer from several unique disadvantages such as difficu lties in achieving high data

precision with relat ion to hardware cost, the high hardware cost of the necessary calculations, and the inflexibility of the

platform as compared to software.In our work, we have attempted to address some of these disadvantages by implementing

a field programmable gate array (FPGA)-based architecture of a neural network with learn ing capability because FPGAs

are high-density digital integrated circuits that can be configured by the user; they combine the flexib ility of g ate arrays

with desktop programmability.Their architecture consists mainly of: Configurab le Logic Blocks (CLB's) where Boolean

functions can be realized, Input output Blocks (IOB's) serve as input output ports, and programmable interconnection

between the CLB's and IOB's.

2. MOTIVATION
Features of ANN support evaluation implementations of different implementations of networks by changing

parameters such as the number of neurons per layer, number of layers & the synaptic weights. ANNs have three main

characteristics: parallelism, modularity & dynamic adaptation. Parallelism means that all neurons in the same layer perform

the computation simultaneously. Modularity refers to the fact that neurons have the same structural architecture. It is clear

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 22

from these characteristics that FPGAs are well tailored to support implementation of ANNs, since it has a regular structure

based on a matrix of parallel configurable units.Implementations in Application Specific Integrated circuits (ASICs) lack

flexibility for evaluating the performance of different implementations. This deficiency can be overcome by using

Programmable Logic Devices (PLDs) such as FPGAs. FPGAs provide high performance for parallel computation &

enhanced flexibility (if compared with ASICs implementation) & are the best candidates for this kind of hardware

implementations. If we mount ANN on FPGA , design should be such that there should be a good balance between the

response & area restrictions of ANN on FPGA.FPGAs are programmable logic devices that permit the implementation of

digital systems. They provide arrays of logical cells that can be configured to perform given functions by means of

configuring bit stream. An FPGA can have its behavior redefined in such a way that it can implement completely different

digital systems on the same chip. Despite the prevalence of software-based ANN implementations, FPGAs and similarly,

application specific integrated circuits (ASICs) have attracted much interest as platforms for ANNs because of the

perception that their natural potential for parallelis m and entirely hardware-based computation implementation provide better

performance than their predominantly sequential software-based counterparts. As a consequence hardware-based

implementations came to be preferred for high performance ANN applications [9]. While it is broadly assumed, it should be

noted that an empirical study has yet to confirm that hardware-based platforms for ANNs provide higher levels of

performance than software in all the cases [10]. Currently, no well defined methodology exists to determine the optimal

architectural properties (i.e., number of neurons, number of layers, type of squashing function, etc.) of a neural network fo r a

given application. The only method currently available to us is a sys tematic approach of educated trial and error. Software

tools like MATLAB Neural Network Toolbox [13] make it relatively easy for us to quickly simulate and evaluate various

ANN configurations to find an optimal architecture for software implementations. In hardware, there are more network

characteristics to consider, many dealing with precision related issues like data and computational precision. Similar

simulation or fast prototyping tools for hardware are not well developed.

Consequently, our primary interest in FPGAs lies in their reconfigurability. By exp loit ing the reconfigurability of

FPGAs, we aim to transfer the flexib ility of parameterized software based ANNs and ANN simulators to hardware

platforms. All these features of ANN & FPGAs have made me think about giving a hardware(FPGA) platform for ANN.

Doing this, we will give the user the same ability to efficiently exp lore the design space and prototype in hardware as is no w

possible in software. Additionally, with such a tool we will be able to gain some insight into hardware specific issues such as

the effect of hardware implementation and design decisions on performance, accuracy, and design size.

3. PREVIOUS WORKS
In the paper published by Benjamin Schrauwen,1, Michiel D’Haene 2, David Verstraeten 2, Jan Van Campenhout

in the year 2008 with the title Compact hardware Liquid State Machines on FPGA for real-t ime speech recognition have

proposed that real-time speech recognition is possible on limited FPGA hardware using an LSM. To attain this we first

exp lored existing hardware architectures (which we reimplemented and improved) for compact implementation of SNNs.

These designs are however more than 200 times faster than real-time which is not desired because lots of hardware resources

are spend on speed that is not needed. We present a novel hardware architecture based on serial processing of dendritic trees

using serial arithmetic. It easily and compactly allows a scalable number of PEs to process larger net - works in parallel.

Using a hardware oriented RC design flow we were able to easily port the existing speech recognition application to the

actual quantized hardware architecture. For future work we plan to investigate different applications, such as autonomous

robot control, large vocabulary speech recognition, and medical signal processing, that all use the hardware LSM

architectures presented in this work, but which all have very different area/speed trade-offs. Parameter changing without

resynthesis will also be investigated (dynamic reconfiguration or parameter pre-run shift-in with a long scan-chain are

possibilities).In the paper published by Subbarao Tatikonda, Student Member, IEEE, Pramod Agarwal, Member, IEEE in the

year 2008 with the title Field Programmable Gate Array (FPGA) Based Neural Network Implementation of Motion Control

and Fault Diagnosis of Induction Motor Drive have proposed A study of fault tolerant strategy on the ANN-SVPWM VSI

performed. This Strategy is based on the reconfiguration on the inverter topology after occurrence . The modified topology

for the inverter is proposed. Entire system design on FPGA has been suggested which includes the programmable low -pass

filter flux estimation, space vector PWM (neural network based), fault diagnosis block and binary logic block. Th e paper

talks about the fault feature extraction and classification and then how the neural networks can be build on the FPGA. Digita l

circuits models for the linear and log sigmoid been discussed. This work clearly gives the observer no slight change in

operation with any fault in one leg. Study suggests that feature extraction is a challenging research topic still to be explo ited.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 23

Still this work has many prospects in multilevel inverters, where the better operating algorithms can be proposed with

increase in the level of inverters. The number of redundant states is more they have to be exploited in the near future work.

The system behaves as no fault in the system at all.

4. NEURAL NETWROK MODEL DESCRIPTION
There are various hardware implementations based on ASIC,DSP & FPGA.DSP based implementation is

sequential and hence does not preserve the parallel architecture of the neurons in a layer. ASIC implementations do not offer

reconfigurablity by the user. FPGA is a suitable hardware for neural network implementation as it preserves the parallel

architecture of the neurons in a layer and offers flexibility in reconfiguration. FPGA realization of ANNs with a large

number of neurons is a challenging task. Selecting weight precision is one of the important ch oices when implementing

ANNs on FPGAs. Weight precision is used to trade-off the capabilit ies of the realized ANNs against the implementation

cost. A higher weight precision means fewer quantization errors in the final implementations, while a lower precis ion leads

to simpler designs, greater speed and reductions in area requirements and power consumption. One way of resolving the

trade-off is to determine the ―minimum precision‖ required. In this work we consider the weights as 8 -bit fixed-point values.

Direct implementation for non-linear sigmoid transfer functions is very expensive. As the excitation function is highly

nonlinear we adopt the Look Up Table (LUT) method in order to simplify function computation. The LUT is implemented

using the inbuilt RAM available in FPGA IC.

Input

ROM

(Weights)

LUT

Multiplier + Accumulator LUT
Output

Register

Output

Fig 1. Neuron RTL Block Diagram

The use of LUTs reduces the resource requirement and improves the speed. Also the implementation of LUT needs

no external RAM since the inbuilt memory is sufficient to implement the excitation function. The basic structure of the

functional unit (neuron) that implements the calculations associated with neuron. Each neuron has a ROM, which stores the

weights of the connection links between the particular neuron to the neurons of the previous layer. The multiplier performs

high speed multiplication of input signals with weights from ROM. Multiplier is again implemented using an LUT

multiplier. Such implementation of a multiplier needs one of the operands to be constant. In this case the other operand

addresses the LUT where the result of multip lication is previously stored. Given two operands A&B with n & m bits

respectively & B is constant, it is possible to implement their multiplication in LUT of 2
n
. Since both mult iplier & Activation

Function(sigmoid function) are implemented using LUT, cost of implementation is very much reduced. We have tried

comparing the model in the reference no. [15] , with that of our model with respect to cost of implementation, in the

conclusion section. A sixteen bit register is used to hold the weights from the ROM and the input signal from the previous

layer. The whole MLP implementation is shown in Fig. 2.The network main ly consists of input registers, control unit,

neurons and output register. To provide on neuron output to the next stage at each clock cycle a Multiplexer and a counter is

used. The training of the network is done in software and the results loaded into hardware .Weights are updated during the

training process, but remain constant during the detection process. The Register Transfer Level design of the system has

been carried out using standard VHDL as the hardware description language. This language allows three different levels of

description. We have chosen RTL to implement this system. The entire design process was done using the ISE development

tool, from Xilinx (ISE development). The system physically implemented on Spartan -3 XC3 S4000 XILINX FPGA device.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 24

Fig2.The RTL block diagram of MLP neural network

Being a single source for hardware and software expertise, Mistral helps developers save on valuable development time and

costs. The software engineers and hardware designers work together in an efficient and seamless manner providing expert

design, development and support services.Mistral's professional services include hardware board design, reference designs,

driver development, board support packages, embedded applications, codec and DSP algorithms across various domains.

These services are delivered through a proven development process, designed specifically for embedded product

development.

5. Results:

Fig 3. Inner layer top view of neural network.

Fig 4. Inner layer RTL Schematic of Neural network.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 25

Fig 5 . Inner layer Design summary

Fig 6. Input layer’s top view.

Fig 7.Input layer network of neural network.

Fig 8. Input layer Design summary.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 26

Fig 9. Simulat ion Results for Input layer of neural network

Fig 10. Sigmoid layer RTL Schematic of Neural network

Fig 11.Sigmoid layer Design summary

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 8

Issn 2250-3005(online) December| 2012 Page 27

6. COMPARISION RESULTS
The device used to take Comparison results is Spartan XC3S400-5 PQ208.

Tab 1: Comparison results of Sigmoid function proposed system and previous system.

7. CONCLUSION
It is seen from the comparison table in section VI that previous system [15] used more number of Slices, LUT’s and

IOB’s for sigmoid function. So our sigmoid function system used less number of resources as mentioned above. So we have

effectively reduced the area utilization of these neural network systems. This has increased compactness & reliability of our

system. In future our system permits us to achieve maximum level of optimization.Therefore one should aim at giving a

hardware platform for ANN like FPGA because of the re-configurability of FPGA, we can develop the prototypes of

hardware based ANNs very easily. Mapping FPGA into Field programmable Neural Network Arrays can fin d vast

applications in real time analysis .

REFERENCES
[1] I. A. Basheer and M. Hajmeer, ―Artificial neural networks: Fundamentals, computing, design, and application,‖ J. Microbio.

Methods, vol. 43, pp. 3–31, Dec. 2000.

[2] M. Paliwal and U. A. Kumar, ―Neural networks and statistical techniques: A review of applications,‖ Expert Systems With
Applications, vol. 36, pp. 2–17, 2009.

[3] B. Widrow, D. E. Rumelhart, and M. A. Lehr, ―Neural networks: Applications in industry, business and science,‖ Commun. ACM,

vol. 37, no. 3, pp. 93–105, 1994.

[4] A. Ukil, Intelligent Systems and Signal Processing in Power Engineering, 1st ed. New York: Springer, 2007

[5] B. Schrauwen, M. D’Haene, D. Verstraeten, and J. V. Campenhout, ―Compact hardware liquid state machines on FPGA for real-
time speech recognition,‖ Neural Networks, vol. 21, no. 2–3, pp. 511–523, 2008.

[6] C. Mead and M. Mahowald, ―A silicon model of early visual processing,‖ Neural Networks, vol. 1, pp. 91–97, 1988.

[7] J. B. Theeten, M. Duranton, N. Mauduit, and J. A. Sirat, ―The LNeuro chip: A digital VLSI with on-chip learning mechanism,‖ in

Proc. Int. Conf. Neural Networks, 1990, vol. 1, pp. 593–596.

[8] J. Liu and D. Liang, ―A survey of FPGA-based hardware implementation of ANNs,‖ in Proc. Int. Conf. Neural Networks Brain,
2005, vol. 2, pp. 915–918.

[9] P. Ienne, T. Cornu, and G. Kuhn, ―Special-purpose digital hardware for neural networks: An architectural survey,‖ J. VLSI Signal

Process., vol. 13, no. 1, pp. 5–25, 1996.

[10] A. R. Ormondi and J. Rajapakse, ―Neural networks in FPGAs,‖ in Proc. Int. Conf. Neural Inform. Process., 2002, vol. 2, pp. 954–

959.
[11] B. J. A. Kroese and P. van der Smagt , An Introduction to Neural Networks, 4th ed. Amsterdam, the Netherlands: The University of

Amsterdam, Sep. 1991.

[12] J. Zhu and P. Sutton, ―FPGA implementations of neural networks—A survey of a decade of progress,‖ Lecture Notes in Computer

Science, vol. 2778/2003, pp. 1062–1066, 2003.

[13] “MATLAB Neural Network Toolbox User Guide,” ver. 5.1, The MathWorks Inc., Natick, MA, 2006.
[14] A. Rosado-Munoz, E. Soria-Olivas, L. Gomez-Chova, and J. V. Frances, ―An IP core and GUI for implementing multilayer

perceptron with a fuzzy activation function on configurable logic devices,‖ J. Universal Comput. Sci., vol. 14, no. 10, pp. 1678–

1694, 2008.

[15] Rafid Ahmed Khali,l Hardware Implementation of Backpropagation Neural Networks on Field programmable Gate Array (FPGA)

