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Abstract:    
            Th is paper highlights two important objectives on a two-dimensional area-preserving discrete dynamical system: 

))1(,)1((),( 22 xppxyxxppxyyxE  , 

where p is a tunable parameter.  Firstly, by adopting suitable computer programs we evaluate period-doubling: 

chaos... 2 period  ...4 period2 period1 period k 
 

bifurcations, as a universal route to chaos, for the periodic orbits when the system parameter p varied and obtain the 

Feigenbaum universal constant  = 8.7210972…,   and the accumulation point  = 7.533284771388…. beyond which 

chaotic region occurs.. Secondly, the periodic behaviors of the system are confirmed by plotting the time series graphs. 
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1. Introduction 
The initial universality discovered by Mitchell J. Feigenbaum in 1975 has successfully led to discover that large 

classes of nonlinear systems exhib it transitions to chaos which are universal and quantitatively  measurable. If X  be a 

suitable function space and H, the  hypersurface of co-d imension 1 that consists of the maps in   X having derivative -1 at 

the fixed point, then the  Feigenbaum universality  is closely related to the doubling operator, F acting in X defined by 

XF            ))(())(( 1xx  

where   = 2.5029078750957…   , a universal scaling factor. The principal properties of F that lead to universality are  

(i) F has a fixed point 
*x ; 

(ii) The linearised transformation )( *xDF  has only one eigenvalue   greater than 1 in modulus; here  = 

4.6692016091029… 

(iii) The unstable manifold corresponding to   intersects the surface H transversally;  In one dimensional case, these 

properties have been proved by Lanford [2, 10].   

Next, let X be the space of two parameter family of area- preserving  maps defined  in a domain 
2U , and  Y, the 

space of two parameter family o f maps defined in the same domain having not necessarily constant  Jacobian. Then Y 

contains X. In area- preserving case, the Doubling operator F is defined by 

  21F , 

where ),(),(,: 22 yxyx 
 

is the scaling  transformation.  Here   and   are the scaling factors; 

numerically we have ...248875.0  and ...061101.0   In the area p reserving case, Feigenbaum constant,  = 

8.721097200….. Furthermore, one of his fascinating discoveries is that if a family   presents period doubling 

bifurcations then there is an infinite sequence { n  } of  bifurcation values such that 
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 is a universal number already mentioned above. Moreover, his observation suggests that there is a universal size -

scaling in the period doubling sequence designated as the Feigenbaum value,  ...5029.2lim
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  where nd  

is the size of the bifurcation pattern of period 
n2  just before it g ives birth to period 

12 n
[1, 6-8].   
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The birth and flowering of the Feigenbaum universality with numerous non -linear models has motivated me to wrire this 

paper.  

 

2. Our Nonlinear Map and the Feigenbaum Universality: 
Our concerned map:   

))1(,)1((),( 22 xppxyxxppxyyxE                                                               (1.1) 

where p is a tunable parameter. The Jacobian of E is the unity, so is area-preserving.  

The map has one fixed point other than (0,0) whose coordinates is  given by 

p
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From this one finds that E has no fixed point if p = 1. In this context, we also wish to point out that the stability 

theory is intimately connected with the Jacobian matrix of the map, and that the trace of the Jacobian matrix is the sum 

of its eigenvalues and the product of the eigenvalues equal the Jacobian determinant. For a particular value of p, the  map 

E depends on the real parameter p, and so a fixed point sx  of this map depends on the parameter value p, i.e. 

)(xx ss p . Now, first consider the set, ),7()3,( U  .  

The fixed point sx  remains stable for all values of p lying in U and a stable periodic trajectory of period-one appears 

around it. This means, the two eigenvalues  
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of the Jacobian matrix:  
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at sx  remains less than one in modulus and consequently, all the neighbouring points (that is, points in the 

domain of attraction) are attracted towards )(xs p ), p lying in U. If we now begin to increase the value of p, then it 

happens that one of the eigenvalues starts decreas ing through –1 and the other remains less than one in modulus .  When 

p = 7, one of the eigenvalues becomes –1 and then sx  loses its stability, i.e . 71 p  emerg ing as the first bifurcation 

value  of p. Again, if we keep on increasing the value of p the point )(xs p becomes unstable and there arises around it 

two points, say, )(x21 p  and )(x22 p    forming a stable periodic trajectory of period-two. A ll the neighbouring points 

except the stable manifold of )(xs p  are attracted towards these two points . Since the period emerged becomes double, 

the previous eigenvalue which was –1 becomes +1 and as we keep increasing p, one of the eigenvalues starts decreasing 

from +1 to –1.Since the trace is always real, when eigenvalues are complex, they are conjugate to each other moving 

along the circle of radius ep , where pe = p
2

n

 is the effective Jacobian, in the opposite directions . When we reach a 

certain value of p, we find that one of the eigenvalues of the Jacobian of E
2 

(because of the chain rule of differentiation, it 

does not matter at which periodic point one evaluates the eigenvalues) becomes  -1, indicating the loss of stability of the 

periodic trajectory of period 2. Thus, the second bifurcation takes place at this value p2 of p. We can then repeat the same 

arguments, and find that the periodic trajectory of period 2 becomes unstable and a periodic trajectory of period 4    

appears in its neighbourhood. This phenomenon continues upto a particular value o f p say p3(p), at which the periodic 

trajectory of period 4 losses its stability in such a way that one of the eigenvalues at any of its periodic points become –1, 

and thus it gives the third bifurcat ion at p 3(p). Increasing the value further and fu rther, and repeating the same arguments 

we obtain a sequence {p n(p)} as bifurcation values for the parameter p  such that at pn(p)  a periodic trajectory of period 

2
n
 arises and all periodic trajectories of period 2

m
(m<n) remain unstable. The sequence {pn(p)} behaves in a universal 

manner such that p (p)- p n(p)}  c(p )
-n

, where c(p) is independent of n and  and is the Feigenbaum universal 

constant.  Since the map has constant Jacobian 1(unity), we have the conservative case, i.e. the preservation of area and 

in this case  equals 8.721097200…. Furthermore, the Feigenbaum theory says that the our map E at  parameter = p(p) 
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has an invariant set S of Cantor type encompassed by infinitely many unstable periodic orbits of period 2
n
(n = 0, 1, 2,…), 

and that all the neighbouring points except those belonging to these unstable orbits and their stable manifolds are 

attracted to S under the iterations of the map E.  

 

3. Numerical Method For Obtaining Periodic Points [2]: 
      Although there are so many sophisticated numerical algorithms available, to find a periodic fixed point, we have 

found that the Newton Recurrence formula is one of the best numerical methods with neglig ible error for  our purpose. 

Moreover, it gives fast convergence of a periodic fixed point.  

      The Newton Recurrence formula is  

),x()x(xx n
1

nn1n fDf 
   

where n = 0,1,2,… and )x(Df  is the Jacobian of the map f  at the vector x . We see that this map f is equal to IE k   in 

our case, where k  is the appropriate period. The Newton formula actually gives the zero(s) of a map, and to apply this 

numerical tool in our map one needs a number of recurrence formulae which are given below. 

      Let the in itial point be ( x0 , y0 ), 

Then, 

),())1(,)1((),( 11
2
0000

2
00000 yxxppxyxxppxyyxE   

),(),(),( 221100
2 yxyxEyxE   

Proceeding in this manner the following recurrence formula fo r our map can be established. 

,)1( 2
111   nnnn xppxyx and ,)1( 2

111   nnnn xppxyy  

where n = 1,2,3… 

  
Since the Jacobian of E

k
 ( k  times iteration of the map E ) is the product of the Jacobian of each iteration of the map, we 

proceed as follows to describe our recurrence mechanism for the Jacobian matrix. 

The Jacobian J1 for the transformation  
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where ,)1(2 01 xppA   ,11 B ,)1(21 01 xppC  .11 D   

Next the Jacobian  J2 for the transformat ion  

E
2
( x0 , y0 )  = ( x2 , y2 ), is the product of the Jacobians for the transformations  
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where ,])1(2[,])1(2[ 11121112 DBxppBCAxppA   

           .])1(21[,])1(21[ 11121112 DBxppDCAxppC   

Continuing this process in this way, we have the Jacobian for 
mE as 





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mm

mm
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with a set of recursive formula as  

,])1(2[,])1(2[ 111111   mmmmmmmm DBxppBCAxppA  

,])1(2[,])1(2[ 111111   mmmmmmmm DBxppDCAxppC  

 (m = 2, 3, 4, 5…). 

Since the fixed point of this map E is a zero of the map  

),,(),(),( yxyxEyxG   

the Jacobian of 
)(kG  is given by 
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Its inverse is ,
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where ,)1)(1( kkkk CBDA   

the Jacobian determinant. Therefore, Newton‟s method gives the following recurrence formula in order to yield a 

periodic point of 
kE  


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4. Numerical Methods For Finding Bifurcation Values [2, 4 ]: 

First of all, we recall our recurrence relations for the Jacobian matrix of the map 
kE  described in the Newton‟s 

method and then the eigenvalue theory gives the relation )(1 kkk JDetDA   at the bifurcation value. Again the 

Feigenbaum theory says that 



nn
nn

pp
pp
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1

12                                                                                                           (1.2)  

where n = 1,2,3,…   and  is the Feigenbaum universal constant. 

In the case of our map, the first two bifurcat ion values p1 and p2 can be evaluated.  

Furthermore, it is easy to find the periodic points  for p 1 and p 2. We note that if we put )(1 kkk JDetDAI  , then 

I turns out to be a function of the parameter p . The bifurcation value of p of the period k occurs when I(p) equals zero. 

This means, in order to find a bifurcation value of period k , one needs the zero of the function I(p), which is given by the 

Secant method, 
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Then using the relation (1.2), an approximate value 3p  of 3p  is obtained. Since the Secant method needs two initial 

values, we use 3p  and a slightly larger value, say, 
4

3 10p   as the two initial values to apply this method and 

ultimately  obtain 3p . In like manner, the same procedure is employed to obtain the successive bifurcation values 

4 5, ,...p p etc. to our requirement.  

For finding periodic points and bifurcation values for the map E, above numerical methods are used and consequently, 

the following Period-Doubling Cascade : Table 1.1, showing bifurcation points  and corresponding periodic points , are 

obtained by using suitable computer programs:  

Table 1.1  
 

Period   One of the  Periodic points Bifurcation Pt.   

1 (x=0.666666666666...., y= -1.333333333333....)  p1=7.00000000000  

2 (x= -0.500000000003..., y= -1.309016994376...)  p2=7.47213595500  

4 (x= -0.811061640408 ..., y= -1.273315586957...)  p3=7.525683372…  

8 (x=-0.813878975794 ..., y= -1.275108054848...)  p4=7.531826966…  

16 (x=-0.460474775277...,y= -1.273990103300...)  p5=7.532531327…  

32 (x=-0.46055735696 ..., y= -1.274198905689...)  p6=7.532612093…  

64 (x=-0.54742669886 ..., y= -1.356526357634...)  p7=7.532621354…  

128 (x=-0.547431479795 ..., y= -1.356530832564...)  p8=7.532636823…  

… …          …          … …        …        ..  
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For the system (1.1), the values of   are calculated as follows:  
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and so on. 

The ratios tend to a constant as k  tends to infinity: more formally  
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And the above table confirms that the „universal‟ Feigenbaum constant δ = 8.7210972… 

is also encountered in this  area-preserving two-dimensional system. 

 The accumulation point p  can be calculated by the formula   

,
1

1
)( 212 pppp 





  

where δ is Feigenbaum constant, it is found to be 7.533284771388…. ., beyond which the system (1.1) develops chaos. 

 

5. Time Series Graphs [3] 

The key theoretical tool used for quantifying chaotic behavior is the notion of a time series of data for the 

system [9]. A t ime series is a chronological sequence of observations on a particular variable. Usually the observations 

are taken at regular intervals. The system (1.1) giv ing the difference equations: 

,...2,1,0   ,)1(  ,)1( 2
1

2
1   nxppxyxyxppxyx nnnnnnnnn                             (1.3)

 
On the horizontal axis the number of iterat ions („time‟) are marked, that on the vertical axis the amplitudes are given for 

each iteration. The system (1.3) exhib is the following discrete time series  graphs for the values of xn and yn , plotted 

together, showing the existences of periodic orb its of periods 2
k
, k = 0, 1, 2,…, at d ifferent parameter  
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       Fig. 1 Showing period-1 behavior, parameter = 1st bifurcation point
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Fig. 1.2 Showing period-2 behavior, parameter = 2nd bifurcation point  
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Fig. 1.3 Showing period-4 behavior, parameter = 3rd bifurcation point 
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Fig. 1.4 Showing period-8 behavior, parameter = 4th bi furcation point  
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