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Abstract  

It is known that the frame of a chaotic attractor is given by infinitely many unstable periodic orbits, which coexist 

with the strange attractor and play an important role in the system dynamics. There are many methods available for 

controlling chaos. The periodic proportional pulses technique is interesting one. In this paper it is aimed to apply the 

periodic proportional pulses technique to stabilize unstable periodic orbits embedded in the chaotic attractor of the nonlinear 

dynamics: bxaxxf  2)( , where ],4,0[x  a and b and are tunable parameters, and obtain some illuminating results.  
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1. Introduction 
      In chaos theory, control of chaos  is based on the fact that any chaotic attractor contains an infin ite number o f unstable 

periodic orbits. Chaotic dynamics then consists of a motion where the system state moves in the neighborhood of one of 

these orbits for a while, then falls close to a different unstable periodic orbit where it remains for a limited time, and so 

forth. This results in a complicated and unpredictable wandering over longer periods of time  Control of chaos is the 

stabilization, by means of small system perturbations, of one of the unstable periodic orbits. The result is to render an 

otherwise chaotic motion more stable and predictable, which is often an advantage. The perturbation must be tiny, to avoid 

significant modification of the system's natural dynamics.It is known that the frame of a chaotic attractor is given by 

infinitely many unstable periodic orbits , which coexist with the strange attractor and play an important role in the system 

dynamics. The task is to use the unstable periodic orbits to control chaos. The idea of controlling chaos consists of 

stabilizing some of these unstable orbits, thus leading to regular and predictable behavior.   However, in many practical 

situations one does not have access to system equations and must deal directly with experimental data in the form of a time 

series [3, 10]. Publication of the seminal paper [1] entitled “Controlling chaos” by Ott, Grebogi and Yorke in 1990, has 

created powerful insight in the development of techniques for the control of chaotic phenomena in dynamical systems. 

There are many methods available [9] to control chaos on different models, but we take the advantage of the periodic 

proportional pulses technique [7], to control unstable periodic orbits in strange attractor by considering the one-dimensional 

nonlinear chaotic dynamics: 

,...,o,nbxaxxfx nnnn 21,)( 2
1                                        (1.1) 

      We now h ighlight some useful concepts which are absolutely useful for our purpose. 

1.1 Discrete dynamical systems   

Any )1( kC k

 
map 

n: UE  on the open set 
nU R   defines an n-dimensional discrete-time  (autonomous) 

smooth dynamical system by the state equation  
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t x  is the state of the system at time t  and E  maps tx  to the next state 1x t . Starting with an initial 

data 0x , repeated applications (iterates) of E  generate a discrete set of points (the orbits) ,.....}3,2,1,0:)x({ 0 tE t
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1.2 Definition: A point
n*x is called a fixed point of E  if ,x)x( ** mE  for all m . 

1.3 Definition: A point
n*x is called a periodic point of E  if ,x)x( ** qE  for some integer 1q . 

1.4 Definition: The closed set
nA is called the attractor of the system ),x(x 1 tt E  if (i) there exists an open set 

AA 0 such that all trajectories  tx of system beginning in 0A are definite for all 0t and tend to A for t ,that 

is, 0),xdist( At  for ,t if 00  x A ,where yxinf),xdist( y  AA  is the distance from the point x  to the 

set ,A  and (ii) no eigensubset of A  has this property.  

1.5 Definition: A system is called chaotic if it has at least one chaotic attractor. 

      Armed with all these ideas and concepts, we now proceed to concentrate to our main aim and objectives  

2.  Control of Chaos by periodic proportional pulses    
 

 In N. P. Chua’s paper [7] it is shown that periodic proportional pulses,  

ii xx  (i is a multip le of q, where  is a constant),                                                      (1.2)
 

applied once every q iterations to chaotic dynamics, 

),(1 nn xfx                                                                                                                    (1.3)                                                                                                        

may stabilize the dynamics at a periodic o rbit. We note that a fixed point of (1.3) is any solution 
*x  of the equation  

)( ** xfx                                                                                                                         (1.4) 

and the fixed point is locally stable if   

.1
)(

*


xxdx

xdf

                                                                                                                 (1.5) 

The composite function )(xg  is given by  

).()( xfxg q                                                                                                                  (1.6) 

where the dynamics is kicked by multiply ing its value by the factor  , once every q iterat ions. As above a fixed point of 

)(xg  is any solution 
*x  of 

 

**)( xxf q                                                                                                                     (1.7) 

 and this fixed point is locally stable if 

 

1
)( *


dx

xdf q

                                                                                                                 (1.8)                

 

We note that a stable fixed point of g  can be viewed as a stable periodic point of period q of the original dynamics f , 

kicked by the control procedure. Now the dynamics f
 
is chaotic and wanted to control it so as to obtain stable periodic 

orbits of period q, by kicking once every q iterat ions, following equation (1.1).   
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To find a suitable point 
*x  and a factor   satisfying (1.7) and (1.8), the function )(xHq  is defined as   

dx

xdf

xf

x
xHq

q

q

)(

)(
)(                                                                                                      (1.9) 

Substituting from (1.7), equation (1.8) becomes 

.1)( * xHq                                                                                                                    (1.10) 

Interestingly, if a point 
*x  satisfies the inequalities (1.10), then with the kicking factor   defined by equation (1.6), the 

control procedure will stabilize the dynamics at a periodic orbit of period q, passing through the given point. It is important 

to note that, if the the impulse   is too strong, it may kick the dynamics out of the basin of attraction, and in that case, the 

orbit may escape to infinity. In performing pulse control, one must have this precaution in mind.  

3. Periodic proportional pulses on the concerned model 
Period ic proportional pulses for stabilizing unstable periodic orbits embedded in a chaotic attractor can be well  

demonstrated by the nonlinear chaotic model (1.1), that is, 

,...,o,nbxaxx nnn 21,2
1   

with the control parameter value 9.3b . Here the parameter a is fixed as a = 1 and for this fixed value, it is observed 

that model (1.1) develops chaos via the period-doubling bifurcation route.  
 

Period-doubling cascade for the  model (1.1): 

Table 1.1  

Period One of the  Periodic points  Bifurcation Points.  

1 x1 =2.000000000000… b1 = -3.000000000000… 

2 x2 =1.517638090205… b2 =-3.449489742783… 

4 x3 =2.905392825125… b3 =-3.544090359552… 

8 x4 =3.138826940664… b4 =-3.564407266095… 

16 x5 =1.241736888630… b5 =-3.568759419544… 

32 x6 =3.178136193507… b6 =-3.569691609801… 

64 x7 =3.178152098553… b7 =-3.569891259378… 

128 x8 =3.178158223315… b8 =-3.569934018374… 

256 x9 =3.178160120824… b9 =-3.569943176048… 

512 x10 =1.696110052289… b10 =-3.569945137342… 

1024 x11=1.696240778303… b11 =-3.569945557391… 

… …          …          …  …          …          …  

[Periodic points and period-doubling points are calculated using numerical mechanis ms discussed in [8, 11] taking the fixed 

parameter value a = 1] 
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The period-doubling cascade accumulates at the accumulation point b = -3.569945672….., after which chaos arise. For the 

parameter 9.3b  the system (1.1) is chaotic. The time series graph in the following figure (1.1) shows the chaotic 

behavior of the system:  
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         Fig. 1.1 Time series graph for parameter -3.9b   and initial point 1.6x0 
 

For 1q  and 9.3b  the control curve )(1 xH  is drawn in figure 1.2. The range is restricted to 

1  ,1)(1 *  qxHq  and in this interval we can stabilize orb its of period one at every point 
*x  in the range about 

(0, 2.6).  
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         Fig. 1.2 Control curve for parameter -3.9b   

Taking 9.1* x   in  the above stated range, the value of the kicking factor 5.0  is calculated and the control 

procedure stabilizes the dynamics at a periodic orbit  of period-one, passing through the given point as shown in the figure 

1.3. 
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         Fig. 1.3 Time series graph for parameter -3.9b    

Again for 2q  and 9.3b  the control curve )(2 xH  is drawn in figures 1.4. Here also the range is restricted to 

2  ,1)(1 *  qxHq  and the figure 1.5 shows that we can stabilize orbits of period-two at point 
*x only in three 

ranges. For this purpose the kicking factor is found as 868056.0 , taking the given point as .3.3* x   
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        Fig. 1.4 Control curves for parameter -3.9b   
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         Fig. 1.5 Time series graph for parameter -3.9b    

Similarly fo r 4,3q  and  815.0m  the control curves )(3 xH , )(4 xH  are drawn in figures 1.6 and 1.7.  
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Fig. 1.6 Control curves for parameter -3.9b 
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         Fig. 8.7 Control curves for parameter -3.9b 
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These figures indicate that there are 7 and 15 narrow ranges of 
*x  values of periods 3 and 4 respectively. We note that the 

control ranges are getting smaller and smaller as the periodicity increase. Lastly, 4q  and .11892.1* x  stabilize 

orbits of period-4 with the kicking factor as shown in the figure 1.8. 
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         Fig. 1.8 Time series graph for parameter -3.9b    

4. Conclusion 
By the above technique, we can conclude that an irregular orbit of any period can be controlled  by the above 

technique. But in practice, chaos control always deals with period ic orbits of low periods, say 5,4,3,2,1q . 
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