

Total Prime Graph

M.Ravi (a) Ramasubramanian¹, R.Kala²

Dept. of Mathematics, Sri Shakthi Institute of Engineering & Technology, Coimbatore – 641 062.
 Dept. of Mathematics, Manonmaniam Sundaranar University, Tirunelveli – 627 012.

Abstract:

We introduce a new type of labeling known as "Total Prime Labeling". Graphs which admit a Total Prime labeling are called "Total Prime Graph". Properties of this labeling are studied and we have proved that Paths P_n , Star $K_{1,n}$, Bistar, Comb, Cycles C_n where n is even, Helm H_n , $K_{2,n}$, $C_3^{(t)}$ and Fan graph are Total Prime Graph. We also prove that any C

cycle C_n where n is odd is not a Total Prime Graph.

Keywords: Prime Labeling, Vertex prime labeling, Total Prime Labeling, Total Prime Graph

1. Introduction

By a graph G = (V,E) we mean a finite, simple and undirected graph. In a Graph G, V(G) denotes the vertex set and E(G) denotes the edge set. The order and size of G are denoted by 'p' and 'q' respectively. The terminology followed in this paper is according to [1]. A labeling of a graph is a map that carries graph elements to numbers. A complete survey of graph labeling is in [2]. Prime labeling and vertex prime labeling are introduced in [4] and [6]. Combining these two, we define a total prime labeling.

Two integers 'a' and 'b' are said to be relatively prime if their greatest common divisor is 1, (i.e.) (a,b)=1.

If $(a_i, a_j) = 1$, for all $i \neq j$ $(1 \le i, j \le n)$ then the numbers $a_1, a_2, a_3, \dots, a_n$ are said to be relatively prime in pairs. Relatively prime numbers play a vital role in both analytic and algebraic number theory.

Definition 1.1 [4] Let G=(V,E) be a graph with 'p' vertices. A bijection $f:V(G) \rightarrow \{1, 2, 3, ..., p\}$ is said to be as "Prime Labeling" if for each edge e=xy the labels assigned to x and y are relatively prime. A graph which admits prime labeling is called "Prime Graph".

Definition 1.2 [6] Let G=(V,E) be a graph with 'p' vertices and 'q' edges. A bijection $f: E(G) \rightarrow \{1, 2, 3, ..., q\}$ is said to be a "Vertex Prime Labeling", if for each vertex of degree at least two, the greatest common divisor of the labels on its incident edges is 1.

2. Total Prime Graph:

Definition 2.1 Let G=(V,E) be a graph with 'p' vertices and 'q' edges. A bijection $f: V \cup E \rightarrow \{1, 2, 3, ..., p+q\}$ is

said to be a "Total Prime Labeling" if

- (i) for each edge e=uv, the labels assigned to u and v are relatively prime.
- (ii) for each vertex of degree at least 2, the greatest common divisor of the labels on the incident edges is 1.
 - A graph which admits "Total Prime Labeling" is called "Total Prime Graph".

Example 2.2

(1) C_4 is a Total Prime Graph.

(2) C_3 (or) K_3 is not a Total Prime Graph, because we can assign only one even label to an edge and one more even label to a vertex. But we have totally three even labels and the third even label can be assigned neither to any vertex not to any edge. Note that C_3 has Prime Labeling as well as Vertex Prime Labeling.

Notations 2.3

- (1) Δ and δ denotes the maximum and minimum degree of a vertex respectively.
- (2) |n| denotes the greatest integer less than or equal to n.
- (3) n denotes the least integer greater than or equal to n.
- (4) g.c.d denotes greatest common divisor.

Theorem 2.4 The path P_n is a Total Prime Graph.

Proof Let $P_n = v_1 v_2 v_3 \dots v_n$. P_n has 'n' vertices and 'n-1' edges.

We define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (2n-1)\}$ as follows.

$$f(v_i) = i, 1 \le i \le n$$
$$f(e_j) = n + j, 1 \le j < n$$

Clearly f is a bijection.

According to this pattern, the vertices are labeled such that for any edge $e=uv \in G$, gcd [f(u), f(v)] = 1. Also the edges are labeled such that for any vertex v_i , the g.c.d of all the edges incident with v_i is 1.

Hence P_n is a Total Prime graph.

Definition 2.5 K_1 with 'n' pendent edges incident with $V(K_1)$ is called a Star Graph and is denoted by $K_{1,n}$.

Theorem 2.6 $K_{1,n}$, (n > 1) is a Total Prime Graph.

Proof Let $V(K_1) = \{u\}$ and $v_i, 1 \le i \le n$ be the vertices adjacent to u.

Therefore $K_{1,n}$ has 'n+1' vertices and 'n' edges.

Now we define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (2n+1)\}$ as follows.

$$f(u) = 1$$

$$f(v_i) = 2i, 1 \le i \le n$$

$$f(e_j) = 2j + 1, 1 \le j \le n$$

Clearly f is a bijection.

According to this pattern, $K_{1,n}$ is a Total Prime Graph.

Definition 2.7 The graph obtained from $K_{1,n}$ and $K_{1,m}$ by joining their centers with an edge is called a Bistar and is denoted by B(n,m)

Theorem 2.8 Bistar B(n,m) is a Total Prime Graph.

Proof Let $V(K_2) = \{u, v\}$ and $u_i, 1 \le i \le n; v_i, 1 \le i \le m$ be the vertices adjacent to u and v respectively.

For
$$1 \le j \le n$$
, $e_j = uu_j$; $e_{n+1} = uv$; for $(n+2) \le j \le (n+m+1)$, $e_j = vv_j$.

Therefore B(n,m) has 'n+m+2' vertices and 'n+m+1' edges.

Now we define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (2n+2m+3)\}$ as follows.

$$f(u) = 1$$

$$f(v) = 2$$

$$f(u_i) = 2(i+1), 1 \le i \le n$$

$$f(v_i) = 2i+1, 1 \le i \le m$$

$$f(e_j) = (n+m+2) + j, 1 \le j \le (n+m+1)$$

Clearly f is a bijection.

According to this pattern, clearly B(n,m) is a Total Prime Graph.

Definition 2.9 A graph obtained by attaching a single pendent edge to each vertex of a path $P_n = v_1 v_2 v_3 \dots v_n$ is called a Comb.

Theorem 2.10 Comb is a Total Prime Graph.

Proof Let G be a Comb obtained from the path by joining a vertex u_i to v_i , $1 \le i \le n$.

The edges are labeled as follows:

For $1 \le i \le n$, $e_{2i-1} = v_i u_i$ and $e_{2i} = v_i v_{i+1}$

Therefore G has '2n' vertices and '2n-1' edges.

Now define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (4n-1)\}$ as follows.

$$f(v_i) = 2i - 1, 1 \le i \le n$$

$$f(u_i) = 2i, 1 \le i \le n$$

$$f(e_j) = 2n + j, 1 \le j \le (2n - 1)$$

Clearly f is a bijection.

According to this pattern, Comb is a Total Prime Graph.

Theorem 2.11 Cycle C_n , n is even, is a Total Prime Graph.

Proof Let $C_n = (v_1 e_1 v_2 e_2 v_3 \dots v_n e_n v_1)$

Therefore C_n has 'n' vertices and 'n' edges.

Now we define $f: V \cup E \rightarrow \{1, 2, 3, \dots, 2n\}$ as follows.

$$f(v_i) = i, 1 \le i \le n$$
$$f(e_j) = n + j, 1 \le i \le n$$

Clearly f is a bijection.

According to this pattern, clearly Cycle C_n , n is even, is a Total Prime Graph.

Theorem 2.12 Cycle C_n , n is odd, is not a Total Prime Graph.

Proof Let $C_n = (v_1 e_1 v_2 e_2 v_3 \dots v_n e_n v_1)$

Therefore C_n has 'n' vertices and 'n' edges.

Define
$$f: V \cup E \rightarrow \{1, 2, 3, \dots, 2n\}$$

Now, no. of even labels available is 'n'.

For any 3 consecutive vertices, we can assign at most one even label and so, number of vertices with even labels is at

$$most\left[\frac{n}{3}\right].$$

Issn 2250-3005(online)

Also, out of 3 consecutive edges, we can assign at most one even label and so the number of edges with even labels is at $most\left[\frac{n}{3}\right]$.

Therefore the necessary condition for existence of total Prime Graph is $2\left|\frac{n}{3}\right| = n$.

Case 1: $n \equiv 0 \pmod{3}$

(i.e.) n is a multiple of 3.

Therefore, in this case $2\left(\frac{n}{3}\right) = n$ (i.e.) 2n = 3n(i.e.) 2 = 3Which is a contradiction. **Case 2:** $n \equiv 1 \pmod{3}$

In this case
$$2\left(\frac{n+2}{3}\right) = n$$

(i.e.) $2n+4=3n$
(i.e.) $n=4$
But n is odd, so it's not possible.

Case 3: $n \equiv 2 \pmod{3}$

In this case
$$2\left(\frac{n+1}{3}\right) = n$$

(i.e.) $2n+2=3n$
(i.e.) $n=2$
But n is odd, so it's not possible.

Therefore Cycle C_n , n is odd, is not a Total Prime Graph.

Definition 2.13 Helm H_n is a graph obtained from wheel by attaching a pendent edge at each vertex of n-cycle.

Theorem 2.14 Helm H_n is a Total Prime Graph.

Proof Here center vertex will be labeled as u and all the vertices on the cycle are labeled as u_1, u_2, \dots, u_n . The corresponding pendent vertices are labeled as v_1, v_2, \dots, v_n . The edges are labeled as e_1, e_2, \dots, e_{2n} starting from the pendent edge incident at vertex u_1 and with labeling the edge on the cycle alternatively in clockwise direction e_1, e_2, \dots, e_{2n} and the spokes of the wheels are labeled as $e_{2n+1}, e_{2n+2}, \dots, e_{3n}$ starting from the edge uu_1 and proceeding in the clockwise direction.

Therefore Helm H_n has '2n+1' vertices and '3n' edges.

Now we define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (5n+1)\}$ as follows.

$$f(u) = 1$$

$$f(u_i) = 2i + 1, 1 \le i \le \left\lfloor \frac{2n+1}{2} \right\rfloor$$

$$f(v_i) = 2i, 1 \le i \le \left\lfloor \frac{2n+1}{2} \right\rfloor$$

$$f(e_j) = (2n+1) + j, 1 \le j \le 3n$$

Clearly f is a bijection.

According to this pattern, clearly Helm H_n is a Total Prime Graph.

Definition 2.15 $K_{m,n}$ is a complete bipartite graph with bipartition X and Y, in which any two vertices in X as well as any two vertices in Y are non-adjacent. Also every vertex of X is adjacent to every vertex of Y.

Theorem 2.16 $K_{2,n}$, is a Total Prime Graph.

Proof $K_{m,n}$ have 'm+n' vertices and 'mn' edges. Here m=2. Therefore $K_{2,n}$ has '2+n' vertices and '2n' edges.

Let $X = \{u_1, u_2\}$ and $Y = \{v_1, v_2, v_3, \dots, v_n\}$. The edges are labeled in a continuous manner starting from $e_1 = v_1 u_1$ to $e_{2n-1} = v_n u_1$ and the last edge $e_{2n} = v_1 u_2$.

Now we define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (3n+2)\}$ as follows:

$$f(u_i) = 2i - 1, 1 \le i \le 2$$

The vertices $Y = \{v_1, v_2, v_3, ..., v_n\}$ are partitioned into $\left\lfloor \frac{n}{2} \right\rfloor$ sets as follows: for j = even and $0 \le j \le \left\lceil \frac{n}{2} \right\rceil$, let $S_j = \{v_{j+1}, v_{j+2}\}$ $f(v_i) = 2i + j, 1 \le i < n \text{ and } v_i \in S_j$ $f(v_n) = \begin{cases} 3n+1, n \text{ is odd} \\ 3n+2, n \text{ is even} \\ 3n+1, n \text{ is of the form 10r-2 and r=1,2,3,...} \end{cases}$

The edges are labeled as follows:-**Case 1:** n is odd

(i) for
$$0 \le k \le \left\lceil \frac{n}{2} \right\rceil - 1$$
, $e_{4k+1} = u_1 v_{\left\lceil \frac{4k+1}{2} \right\rceil}$
 $e_{4k+2} = u_1 v_{2k+2}$
 $e_{4k+3} = u_2 v_{\left\lceil \frac{4k+3}{2} \right\rceil}$
(ii) for $0 \le k \le \left\lceil \frac{n}{2} \right\rceil - 2$, $e_{4k+4} = u_2 v_{2k+3}$
(iii) $e_{2n-2} = u_2 v_n$, $e_{2n-1} = u_1 v_n$, $e_{2n} = u_2 v_1$

Case 2: n is even

(i) for
$$0 \le k \le \frac{n}{2} - 1$$
, $e_{4k+1} = u_1 v_{\left\lceil \frac{4k+1}{2} \right\rceil}$
 $e_{4k+2} = u_1 v_{2k+2}$
 $e_{4k+3} = u_2 v_{\left\lceil \frac{4k+3}{2} \right\rceil}$
(ii) for $0 \le k \le \frac{n}{2} - 2$, $e_{4k+4} = u_2 v_{2k+3}$
(iii) $e_{2n} = u_2 v_1$

[ssn 2250-3005(online)

The unassigned labels given in their order to the edges in the order $\{e_1, e_2, e_3, \dots, e_{2n}\}$.

Clearly f is a bijection.

According to this pattern, clearly $K_{2,n}$, is a Total Prime Graph.

Definition 2.17 $C_3^{(t)}$ denotes the one-point union of 't' cycles of length 3. $C_3^{(t)}$ is also called as Friendship Graph (or) Dutch t-windmill.

Theorem 2.18 $C_3^{(t)}$ is a Total Prime Graph.

Proof $C_3^{(t)}$ has '2t+1' vertices and '3t' edges.

Let the vertex set be $\{v_0, v_1, v_2, ..., v_{2t}\}$ with centre vertex v_0 . Let the edge set be $\{e_1, e_2, e_3, ..., e_{3t}\}$ with $e_1 = v_0v_1$ and label the edges in clockwise direction.

Now we define $f: V \cup E \rightarrow \{1, 2, 3, \dots, (5t+1)\}$ as follows:

$$f(v_i) = i + 1, 0 \le i \le 2t + 1$$

$$f(e_j) = (2t + 1) + j, 1 \le j \le 3t$$

Clearly f is a bijection.

According to this pattern, clearly $C_3^{(t)}$ is a Total Prime Graph.

Definition 2.19 The fan graph F_n is defined as $K_1 + P_n$, P_n is a path of *n* vertices.

Theorem 2.20 Fan graph F_n , $n \ge 3$, is a Total Prime Graph.

Proof F_n has n+1 vertices and '2n-1' edges.

We define $f: V \cup E \rightarrow \{1, 2, 3, \dots, 3n\}$ as follows.

$$f(v_i) = i, 1 \le i \le n$$

For $\mathbf{e}_i = v_i v_{i+1}$, $1 \le i \le n$

$$f(e_i) = n + 1 + i$$

For $e_{n+i-2} = v_1 v_i$, $3 \le j \le n+1$

$$f\left(e_{n+j-2}\right) = 3n+3-j$$

Clearly f is a bijection.

According to this pattern, Fan Graph F_n is a Total Prime Graph.

References

- [1]. F.Harary, *Graph Theory*, Addison Wesley, Reading, Mass., 1972.
- [2]. J.A.Gallian, A dynamic survey of graph labeling, Elctronic J.Combinatorics, (January 2010).
- [3]. T.M.Apostol, Introduction to Analytic Number Theory, Narosa Publishing House, 1998.
- [4]. A.Tout, A.N. Dabbouey and K.Howalla, *Prime Labeling of graphs*, National Academy Science Letters, 11(1982), 365-368.
- [5]. Fu,H.L and Huang,K.C (1994) on *Prime Labeling* Discrete mathematics, North Holland, 127, 181-186..
- [6]. T.Deretsky, S.M.Lee and J.Mitchem, on Vertex prime labeling of graphs in graph theory, Combinatorics and Applications Vol.1, J.Alavi, G.Chartrand and O.Ollerman and A.Schwenk, eds..., Proceedings 6th international conference Theory and Application of Graphs (Wiley, Newyork, 1991) 359-369.