
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1542

Implementation of Register Files in the Processor of Hard Real Time

Systems for Context Switching

1
Prof. B Abdul Rahim,

2
Mr. S.Narayana Raju,

3
Mr. M M Venkateswara Rao

1 Head, Dept. Of ECE AITS, Rajampet, kadapa (Dist.), A.P, India
2 M.Tech (Embedded Systems), NECT, Hyderabad, RR (dist.), A.P, India

3 M.Tech (Embedded Systems), AITS, Rajampet, kadapa (Dist.), A.P, India

Abstract

Embedded Real Time applications use multi threading
to share of real time application. The advantage of

multi-threading include greater throughput, more

efficient CPU use, Better system reliability improved

performance on multiprocessor computer.

 Real time systems like Flight control systems require

very precise timing; multi threading itself becomes an

overhead cost mainly due to context switching of the

real-time operating system (RTOS). In this paper we

propose a new approach to improve the overall

performance of embedded systems by implementing
register files into processor register bank itself. So that

the system use multithreading by moving the context

switching component of the real-time operating system

(RTOS) to the processor hardware. This technique leads

to savings of processor clock cycles used by context

switching, By this approach the hard real time

embedded systems performance can be improved

Keywords: Context Switching, Operating System,

Memory, Simulation, Programming, Hard Real Time,

Log Terminal

I. INTRODUCTION
 In general, an operating system (OS) is responsible

for managing the hardware resources of a computer and

hosting applications that execute on the computer. A

RTOS Is a Specialized type of operating system

designed to execute applications with very precise

timing and a high degree of reliability. They are

intended for use with real time applications. Such

applications include embedded systems (such as

programmable thermostats and household appliance

controllers), industrial robots, spacecrafts, industrial
controllers, scientific research equipments, etc. RTOS

can be divided into two categories, hard real-time and

soft real-time systems. In a hard real-time or immediate

real-time system, the completion of an operating after

its deadline is considered useless, and this may cause a

critical failure of the complete system and can lead to

an accident (e.g. Engine Control Unit of a car,

Computer Numeric Control Machines). Usually the

kernel divides the application into logical pieces

Commonly called threads and a kernel that coordinates

their execution. A thread is an executing Instance of an

Application and its context is the contents of the

processor registers and program counter at any point of

time. A scheduler, a part of the Real Time operating

System’s kernel, schedules threads execution based

upon their priority. Context switching function can be

described in slightly more detail as the Kernel performs
different activities with regard to threads on the CPU as

follows.

1. Suspend the progress of current running thread and

store the processor’s state for that thread in the

memory.

2. Retrieve the context of the next thread, in the

scheduler’s ready list, from memory and restore it

in the processor’s registers.

Context Switching occur as a result of threads

voluntarily relinquishing their allocated execution time

or as a result of the scheduler making the context switch
when a process has used ip its allocated time slice. A

context switch can also occur as a result of a hardware

interrupt, which is a signal from a hardware device to

the kernel indicating that an event has occurred. Storing

and restoring processor’s registers to/from external

memory (RAM) is a time consuming activity and may

take 50 to 80 processors clock cycles depending upon

context size and RTOS design. If the system needs to

respond to an event in less than this time, the event

response has to be implemented as an Interrupt Routine

(ISR). On the other hand, if several events happen

continuously, then the overall performance of the
system may not be acceptable as most treads may not

get a chance to execute. To improve responsiveness, the

context switch time needs to be reduced. In general,

there are two factors that effect the context switching

cost. Direct cost due to moving the processor’s registers

to and from external memory or cache and indirect cost

because of perturbation of cache, CPU, pipeline, etc.

This presents difficulty in estimating the total cost of

context switching cost[2], several algorithms have been

developed and implemented to reduce the direct cost of

context switching[3][4][5]. As discussed earlier,
context registers need to be saved externamemory one

at a time. A MIPS processor with 12 registers (9

temporary registers, stack pointer, global pointer and

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1543

program counter), need to be saved, it requires at least 2

X 2 X 12=48 clock cycles to switch the context. Using

our suggested approach, this context switch time would

be reduced drastically to 4 processor’s clock cycles

independent of the number of context registers.

The approach presented in this paper is to save the
context in newly created context register files. These

register files are implemented in the processor hardware

itself as part of the processor’s register bank module.

To test and achieve the required performance, software

also needs to be modified to exploit the suggested

hardware design.

II. HARDWARE IMPLEMENTATION
 To prove the concept and measure the performance

of our suggested approach, MIPS processor architecture
was selected [6] and the suggested approach was

implemented on top of it. The register bank module of

the processor was modified by adding register files in

the register bank to save context. The size of each

register file is equal to context size. We have

implemented 6 register files. The block diagram of the

modified MIPS architecture as shown in figure 1.

 Figure 1. Modified MIPS processor architecture

 To access these register files, two special context

switch CPU instructions have been implemented: ’sext’

and ‘rext’ to save and restore the processor’s context

respectively. The index will be stored in temporary

register that to which register file the context will be

stored and from which register file the context will be

restore. Example register $4 contains the index of the

register file.

III. SOFTWARE IMPLEMENTATION
 To implement the software we have installed

VMWARE for Linux operating system environment.

VMWARE is an utility to enter from one operating

system to another operating system.

The software implementation is divided into two parts.

The first part deals with modification of GNU MIPS

tool-chain by adding the ‘scxt’ and ‘rcxt’ instructions to

the GNU-MIPS assembler [8].

 The second part mainly deals with the

implementation of a small co-operative operating
system that executes the threads in round robin fashion

using the newly implemented context switch

instructions. The’sext’ and ‘rext’ was developed using

mips assembly language and the cooperating operating

system was developed using C- language. Those two

files executed in VMWARE linux environment. These

object files added to the GNU MIPS assembler so that

the GNU MIPS tool-chain gets modified. This

operating system supports context switching using

external RAM locations as well as internal register

files.

 Figure 2. Shows the co-operating operating system’s
tread structure. To achieve the fast context switch using

internal register files, application has to set the

‘FastCtxtSwitch’ member of the task structure to 1 for

that particular thread at the time of thread creation.

#include “plasma’s”

#define CONTXT_SIZE 15

typedef void (*TaskFunc)(void)

typedef struct task

{
Void (*Taskptr)();

…………..

…………..

……..

}

Void createTask (….)

 {

If (cnxt_type= =0)

{Threads[TaskID].State=0;

Threads[TaskID].Fastctxtswitch=1;
}else

{

Threads[TaskID].FastCtxtSwitch=0;

}

 Figure 2. Task Structure

IV. SIMULATION RESULTS
 Xilinx Spartan 3E 1600E the advanced development
board was used for our test and experimentation [9].

Xilinx ISE 10.1 was used to design the hardware and

the simulations were executed using the advanced

simulation and debugging toolset, ModelSim [10].

Figure 3 shows the simulation wave form. Context

registers are saved in the context switch register file-2

in 2 clock cycles.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1544

 Figure 3. Simulation results for ‘scxt’ instruction

Similarly figure 4. Shows the simulation waveform of

the ‘rext’ instruction. The context registers are also

being restored from the context switch register file-2 in

2 clock cycles.

 Figure 4. Simulation results for ‘rext’ instruction

V. PROGRAMMING VIA IMPACT
 After successfully compiling an FPGA design using

the Xilinx development software, the design can be

downloaded using the iMPACT programming software

and the USB cable. To begin programming, connect the

USB cable to the starter kit board and apply power to
the board. Then double-click configure Device

(iMPACT) from within Project Navigator. To start

programming the FPGA, right click the FPGA and

select program. When the FPGA successfully programs,

the iMPACT software indicates success, as shown in

Figure 5.

Figure 5. iMPACT Programming Succeeded

VI. TEST APPLICATION 1
 This Application tests the successful operation of the

proposed approach by switching four threads using

internal register files. This test is used to ensure that

data between threads is not corrupted and thread’s

context switching is correct. The flow chart of this

application is shown in figure 6.

 Figure 6:Flowchart for Test Application -1

 There are four Tasks Executes in round robin

fashion. TaskID=0, TaskID=1, TaskID=2, TaskID=3

executes one by one, finally the TaskID3 calculates and
prints the Number of Clock cycles consumed to process

one data sample. These Tasks will send the messages to

the debug terminal port, the output log received on the

debug terminal as shown in figure 7.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1545

Figure 7: Serial Debug Log from Test Application -1

VII. TEST APPLICATION-2
 The Second application is designed to measure the

performance improvement, in clock cycles. It creates

four threads that executes in never-ending loops. First

two threads does context switching using internal
register files. Next two threads does context switching

using external memory. Message send to the debug

serial port include: Number of Clock cycles consumed

by first two threads, Number of clock cycles consumed

by the next two threads. Finally, the difference between

these two. Figure 8 shows the output log for this test.

Figure 8: Serial Debug Log from Test Appl-2

VIII. CONCLUSION
 This paper Presents a new approach as an attempt

to improve the hard RTOS system performance which

helps in meeting the deadlines in an efficient Way. It
boosts the system performance for such systems where

lot of context switching is required in a small period of

time. This approach can be easily extended to soft

RTOS and regular operating systems to improve the

overall system performance. In these systems, threads

are created at run time and it is difficult to know the

number of threads at the design time. Therefore, threads

that are part of frequent context switching using internal

register files using the specially designed scheduler

algorithm. This paper also takes another step forward in

moving the real-time operating system kernel to

hardware and programming iMPACT using Xilinx

software.

IX. REFERENCES

[I] http://www.rtos.com/PDFs/ AnalyzingReal-

TimeSystemBehavior.pdf

[2] Francis M. David, Jeffery C. Carlyle, Roy H. Campbell

"Context Switch Overheads for Linux on ARM
Platforms" San Diego, California Article No. : 3 Year of
Publication: 2007 ISBN:978-I-59593-751-3

[3] Zhaohui Wu, Hong Li, Zhigang Gao, Jie Sun, Jiang Li An
Improved Method of Task Context Switching in OSEK
Operating System" Advanced Information Networking
and Applications, 2006. AlNA 2006. Publication date:

18-20 April 2006 ISSN : 1550-445X
[4] Jeffrey S. Snyder, David B. Whalley, Theodore P. Baker

"Fast Context Switches: Compiler and rchitectural
support for Preemptive Scheduling" Microprocessors and
Microsystems, pp.35-42, 1995.
Vailable:citesser.ist.psu.edul33707.html

[5] Xiangrong Zhou, Peter Petrov "Rapid and low-cost
context-switch through embedded processor
customization for real-time and control applications"

DAC 2006, July 24- 28 San Francisco, CA [6]
http://www.opencores.org/projecLplasma

[7] MIPS Assembly Language Programmer's Guide, ASM - 0
I-DOC, PartNumber 02-0036-005 October, 1992

[8] http://ftp. gnu.org/gnuibinutilsl
[9] MicroBlaze Development Kit Spartan-3E 1600E Edition

User Guidewww.xilinx.com

[10] http://model.com/contentlmodelsim-pe-simulation-

and-debug

