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Abstract: 
This paper presents electromechanical coupled dynamic model of micro- plate subjected to electrostatic excitation. Equations of 
motion of laterally deformed thin plate are obtained analytically. The static displacement and dynamic characteristics of micro- 

plate are depicted as closed-form solutions and a reduced-order model based on Galerkin’s approximate method is used for 

comparison of the result. A simply supported micro-plate model is considered to illustrate the methodology. The effect of 

applied voltage, the gap height and plate dimensions on the natural frequencies are illustrated. 
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1. Introduction  
Micro Electro Mechanical System (MEMS) devices mostly employ movable parts such as thin beams, plates, rings, membranes 

and other mechanical components. Owing to their small size, significant forces and deformations can be obtained even with 

application of low voltages. Especially vibrations of micro-plates are used in devices like synthetic micro- jets, micro- speakers 

and gyroscopes of different structural types. Micro-plates are commonly actuated by piezoelectric or electrostatic sources for 

various resonance applications. Electrostatic actuation is most frequently applied principle and in order to control the 

performance, it is required to study the electromechanical dynamics of the plate. As the capacitive force changes with plate 

deflection, the electrical and mechanical forces are considered to be coupled. The applied electrostatic load has an upper limit 

beyond which the mechanical restoring force of micro-plate can no longer resist electrostatic load and it leads to collapse of the 
structure. Prediction of such a pull-in state is essential in design process to analyze sensitivity, frequency response and dynamic 

range of micro-sensors. In certain MEMS-based capacitive-type applications, like in micro-phones and pressure sensors, it is 

essential to avoid this pull-in effect since the contact between the two plates induces a short circuit and therefore renders the 

device inoperable. The literature contains many investigations [1-6] related to pull-in effect of micro-plates. When rate of 

voltage variation is considerable, the effect of inertia force has also to be considered and pull-in instability related to this 

situation (known as dynamic pull-in) is affected by different parameters such as electrostatic actuation, structural stiffness, 

inertia forces and damping. More emphasis is given recently to the numerical analysis of pull-in behaviour in micro-plates. 

Chao et al.[7] derived a closed form solution for prediction of pull-in voltage which offer some design guidelines for the device 

prior to its production. Zand and Ahmadian [8] presented a coupled finite element and finite difference model to analyze pull-in 

phenomenon, vibration behavior and dynamics of multi-layer micro-plates. First-order shear deformation theory has been 

employed to model dynamical system using finite element method, while finite difference method was applied to solve 
nonlinear Reynolds equation of squeeze film damping. Li et al.[9] developed a method for predicting shapes of micro-plates 

with nonclassical boundary conditions subjected to unsymmetrical electrostatic forces. Jajalli et al.[10] investigated dynamic 

pull-in behaviour of plates actuated by suddenly applied electrostatic force. More recently, Xu and Sun [11] presented nonlinear 

electromechanical coupled dynamic equations of the micro-plate subjected to electrostatic forces. Talebian et al.[12] illustrated 

a distributed parameter system model for study of electrostatically actuated micro-plates. Effects of temperature, stretching and 

residual stresses on pull-in voltage and natural frequencies were studied.  

 Present work studies the effects of various parameters on the static and dynamic solution of electromechanically 

coupled micro-plate subjected to nonlinear electrostatic excitation. A continuous system model based on a constant bias input 
voltage is employed to obtain the static deflection and modal solution. A reduced-order model is formulated based on Galerkin 

approach is employed to obtain the static and dynamic model. Single mode approximation is considered to illustrate the result. 

The results obtained are shown against the outputs of distributed parameter model. The organization of the paper is as follows: 

section-2 describes the problem formulation and an approximate solution of distributed parameter model. Section-3 presents, 

reduced order model using Galerkin method. Section-4 deals with results and discussion.  
 

2. Mathematical Analysis 
For dynamic modeling of plates, distributed continuous system models and numerical solution techniques are often employed 

and the response of the deformed plate can be analyzed very accurately. Most of the works using continuous system models in 
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literature aimed at obtaining analytical predictions of the pull-in position and voltages. Compact models based on analytic 

equations are effective and offer the advantage of immediate results without complex implementation procedures. On the other 

hand, numerical models have ability to describe the device by using large number of degrees of freedom so as to represent the 

real geometry faithfully and investigate effective solution in whole volume. Consider a micro-plate subjected to electrostatic 

excitation as shown in Fig.1. We assume that (i) both plates are perfect conductors and are separated by a dielectric layer of 

permittivity , (ii) the bottom plate is rigid, and the top one is flexible, (iii) the plate is either clamped, simply-supported or free 

on the boundary, (iv) a potential difference V exists between the two plates, (v) electric fringing fields are negligible and (vi) 
the uniform initial gap, d, between the two plates is much smaller than a typical linear dimension of the plate. 

 

Fig.1 Micro- plate subjected to electro-static force 

Under these assumptions the governing equation for the transverse deflection w(x,y,t) of the plate becomes: 
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where  is material density of the plate, t is time, D=
)1(12
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2

3


is bending stiffness (flexural modulus) of the plate with 

thickness equal to h, E as elastic modulus of plate material and  is Poisson ratio. The force per unit area term f(x,y,t) 
comprises of transverse electrostatic and fluid-film components as well as in-plane normal and shear loads . The electrostatic 

force is defined according to 
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Here V is the applied voltage and C=
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is capacitance between plates in terms of plate area A, initial gap d and  is 

permittivity of free space in air gap.  Thus, the electrostatic force per unit area becomes
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. The position w=0 is 

referred to the undeformed shape of the structure and the ultimate position w=d is provided by dedicated elements (stop 

dimples) that are able to avoid contact between electrodes.  

2.1 Static Analysis 

By considering only the electrostatic force, the static governing equation in non-dimensional form can be written as: 
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Here W=w/d, =x/a, =y/b and =b/a, are the dimensionless variables considered for convenience. Galerkin’s method can be 
now employed to study the nonlinear response of plate. By considering the evenly distributed electrostatic load on the micro-

plate, the dimensionless deflection is considered in multi-mode expansion form [13] as: W=   






1m 1n
mnmnA , where Amn is 
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displacement amplitude and mn is plate displacement function. For rectangular plates with different boundary conditions, these 
functions are given by Gorman [14]. For example, a plate with four edges under simply-supported boundary conditions, this 

shape function can be written as mn=sin m sin n and the corresponding expression for transverse deflection becomes: 

W(, )=   






1m 1n
mn nsinmsinA               (4) 

The load function p(, ) can also be given as [13]: 
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Substituting Eqs.(4) and (5) in Eq.(3), we get: 
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Substituting p(, ) from Eqs.(5) and (6), we get: 

  Amn= )ncos1)(mcos1(

)
n

m()W1(mnDd

Va2

2

2

2
2263

24







            (8) 

Thus, the normalized deflection of the plate is given by substituting Amn in Eq.(4): 
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The average deflection of the plate can be obtained as:  

),(W  =   
1
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dd),(W                  (10) 

2.2 Modal Analysis 

When micro- plate is under electrostatic load, its mode shapes and natural frequencies are influenced by applied voltage and 

initial gap in addition to the geometrical dimensions. Dynamic equation of motion of the electrostatically excited micro- plate is 

written in terms of dynamic displacement component wd(x,y,t) as: 

 )t,y,x(q
D

1

t

w

D

h

y

w

yx

w
2

x

w
d2

d
2

4

d
4

22

d
4

4

d
4































             (11) 

Here, qd(x,y,t) is the dynamic electrostatic flux. The expression for qd(x,y,t) can be obtained from two term expansion of Eq.(2) 

by considering voltage V as constant [15]. That is: q(x,y,t)=













 d2

2
2 w

dw

Cd

dw

dC
V

2

1
. The first term has already been accounted 

as static force, while the second term comes under qd(x,y,t). Thus,  
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Here w = dW , is the average displacement of the plate obtained from static analysis. Using the set of non-dimensional 

variables: Wd=wd/d, =x/a, =y/b and =b/a, the resultant dynamic equation reduces to: 
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In order to solve Eq.(13) using modal superposition, the vertical displacement for free vibration of the plate may be expressed 

as 
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where mn(,) are the mode shapes corresponding to the ith mode in the x-direction and jth mode in the y-direction with 
associated natural frequency ωmn and Amn is the unknown modal amplitude. Substituting the expression for Wd in Eq.(13), the 

resulting equation is simplified as:  
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revised as the following eigenvalue problem: 
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Substituting mn and simplifying, 
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This gives dimensionless natural frequency parameter mn of the plate. With appropriate initial conditions, the complete 
dynamic solution can be obtained using Eq.(14).   

3. Reduced-order model 
There are several approximate solution techniques available in literature to discretize the distributed parameter equation of the 

plate into finite degrees of freedom such as Galerkin method, Collocation method, Differential Quadrature (DQ) technique etc. 

In formulating using Galerkin method, the original dynamic equation of motion in continuous form is revised as: 
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implemented by substituting W in Eq.(18) and then both sides are multiplied by mn as weighing functions. On double 

integrating the outcome, from =0 to 1 and =0 to 1, it results in MN second-order ordinary differential equations in terms of 
qmn. For example, with one mode approximation, the following equation is obtained: 
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Here the overdot means derivative with respect to time t. If we can consider 11=sin  sin  then, the term 
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The resulting equation can be simplified as: 
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The static equilibrium equations are obtained by setting the time-derivative to zero in this equation. Thus, the equilibrium 

equation is 
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The solution of this equation is obtained algebraically, while the time-domain solution of Eq.(20) can be achieved using either a 

numerical integration scheme or perturbation method. Such a dynamic solution also facilitates the evaluation of dynamic pull-in 

voltage of the system.  

 

4. Results and discussions 
In order to illustrate the methodology, the following geometric and material properties of micro-plate under electric field are 

employed [12]: length a=250m, width b=250 m, thickness h=3m, Young’s modulus E=169GPa, Poisson’s ratio =0.06, 

density =2331 kg/m3, Initial gap d=1m, dielectric constant =8.854187810-12 F/m. The effects of plate dimensions and 
initial gap on static pull-in voltage are studied by the two approaches. Fig.2 shows the variation of central static normalized 

deflection of the plate as a function of applied voltage for different values of aspect ratios.  

 
Fig.2 Central deflection of plate versus applied voltage 

As seen from the figure, higher the aspect ratio the pull-in voltage reduces. Fig.3 shows variation of pull-in voltage as a 

function of thickness to gap ratio for a square plate. The variation is nonlinear up to certain value of h/d and later-on it 

proportionately increases.  
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Fig.3 Variation of pull-in voltage with gap height 

Fig.4 shows variation of non-dimensional natural frequency at the stable equilibrium points of a square plate as function of 

applied voltage. It can be seen that by increasing the applied voltage, the natural frequencies of the micro-plate decrease and 

approaches zero in the vicinity of the pull-in voltage. This frequency reduction from nominal value is based on the fact that 

there is a reduction in stiffness due to electrostatic force. 

 
Fig.4 Fundamental natural frequency versus bias voltage 

Fig.5 shows the solution of equilibrium equation as obtained from one mode approximate solution. Compared with solution of 
distribution-parameter model, the one-mode reduced order model predicts the pull-in point at 48% of the gap between the 

electrode and plate, which is larger than the 33% predicted in former case as reported earlier in literature. 

 

Fig.5 Reduced order solution versus continuous model output 
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As the number of modes used in the reduced-order modeling increases, the asymptotic convergence can be obtained over the 

full extent of the lower and upper branches. Fig.6 shows the pull-in surface as a function of center-gap (d/h) ratio of the square 

plate.  

 
Fig.6 Comparison of pull-in surfaces 

Fig.7 shows non-dimensional central deflection history at three different input voltages using reduced-order model. 

 
Fig.7 Dynamic solution from reduced order model 

As is seen, at a bias voltage 30.79 volts, amplitude shoots-up to very high value indicating the state of dynamic pull-in, which is 
quite smaller than the static pull-in voltage predicted by reduced-order model earlier. 

5. Conclusion 
The nonlinear electromechanical coupled dynamics of simply-supported micro-plate subjected to electrostatic force has been 

presented in this work. The static and dynamic solutions for the closed form equation of motion were arrived analytically. 

Galerkin’s approximate solution approach rendered the equation in reduced form. The static displacements and dynamic natural 
frequency of simply–supported square plate has been illustrated numerically. It was seen that the static pull-in voltage increases 

with aspect ratio of plates as well as with initial gap at constant plate thickness. Also, the intrinsic size dependence of material 

leads to increase in natural frequencies of the micro-plates. A coupled-field finite element analysis has to be employed as a 

further validation tool.  
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