
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1361

 Query Optimization Issues for Data Retrieval in Cloud Computing

N.Samatha
1
, K.Vijay Chandu

 2
, P.Raja Sekhar Reddy

3

1, 3
CSE, Anurag Group of Institutions, Hyderabad, A.P, India

2 CSE, Viswa Bharathi Group of Institutions, Hyderabad, A.P, India

Abstract
Cloud data storage redefines the issues targeted on customer’s

out-sourced data (data that is not stored/retrieved from the
customers own servers). In this work we observed that, from a

customer’s point of view, the data need to be accessed with in

no time the user given the request ,Even though the data is

stored on cloud severs the effective query optimizations may

not be defined to access the data in an efficient way. This paper

proposes the efficient available Query optimization techniques

for efficient retrieval of data to satisfy the customer needs.

Keywords: Cloud computing, storage, Cloud service

provider, Query Optimization.

Introduction
The industrial information technology towards a subscription

based or pay-per-use service business model known as cloud

computing. This paradigm provides users with a long list of
advantages, such as provision computing capabilities; broad,

heterogeneous network access; resource pooling and rapid elas-

ticity with measured services .Huge amounts of data being

retrieved from geographically distributed data sources, and

non-localized data-handling requirements, creates such a

change in technological as well as business model. One of the

prominent services offered in cloud computing is the cloud

data storage, in which, subscribers do not have to store their

own data on their servers, where instead their data will be

stored on the cloud service provider’s servers. In cloud

computing, subscribers have to pay the providers for this

storage service. This service does not only provides flexibility
and scalability data storage, it also provides customers with the

benefit of paying only for the amount of data they needs to

store for a particular period of time, without any concerns of

efficient storage mechanisms and maintainability issues with

large amounts of data storage[3]. In addition to these benefits,

customers can easily access their data from any geographical

region where the Cloud Service Provider’s network or Internet

can be accessed [1]. An example of the cloud computing is

shown in Fig. 1. Since cloud service providers (SP) are

separate market entities, data integrity and privacy and retrieval

are the most critical issues that need to be addressed in cloud
computing. Even though the cloud service providers have

standard regulations and powerful infrastructure to ensure

Customer’s data privacy, data retrieval and provide a better

availability [5], the reports of privacy breach and service
outage have been apparent in last few years

 Fig. 1. Cloud computing architecture example

In this work we observed that, from a customer’s point of

view, relying upon data retrieving which he needs by

performing an effective query optimization In addition,

providing reliability ,availability are crucial and equally

important to query optimization. Query Optimization can be

achieved by implementing the optimization techniques for

effective retrieval of data.

To address optimization issues in this paper, we proposed the

techniques for optimizing the queries to provide customers

with fast data retreival [2]. In our model,

Query processing: A 3-step process that transforms a high-

level query (of relationa lcalculus/SQL) into an equivalent and

more efficient lower-level query (of relational algebra).

1. Parsing and translation

– Check syntax and verify relations.

– Translate the query into an equivalent relational algebra

expression.

2. Optimization

– Generate an optimal evaluation plan (with lowest cost) for
the query plan.

3. Evaluation

– The query-execution engine takes an (optimal) evaluation

plan, executes that plan and returns the answers to the query.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1362

The success of storage is due, in part to the availability

– of declarative query languages that allow to easily express
complex queries without knowing about the details of the

physical data organization and of advanced query processing

technology that transforms the high-level user/application

queries into efficient lower-level query execution strategies.

The query transformation should achieve both correctness and

efficiency

– The main difficulty is to achieve the efficiency

– This is also one of the most important tasks of any distributed

system

• Cloud storage system query processing: Transform a high-

level query (of relational calculus/SQL) on a stored database
(i.e., a set of global relations) into an equivalent and efficient

lower-level query (of relational algebra) on relation fragments.

• Cloud storage system query processing is more complex

– Fragmentation/replication of relations

– Additional communication costs

– Parallel execution

Example: Transformation of an SQL-query into an RA-query.

Relations: EMP(ENO, ENAME, TITLE),

ASG(ENO,PNO,RESP,DUR)

Query: Find the names of employees who are managing a

project?

– High level query
SELECT ENAME FROM EMP,ASG

WHERE EMP.ENO = ASG.ENO AND DUR > 37

– Two possible transformations of the query are:

_ Expression 1:

_ENAME(_DUR>37∧ EMP.ENO=ASG.ENO(EMP × ASG))

_ Expression 2: _ENAME(EMP ⋊⋉ENO (_DUR>37(ASG)))

– Expression 2 avoids the expensive and large intermediate

Cartesian product, and therefore typically is better.

We make the following assumptions about the data
fragmentation[8]

– Data is (horizontally) fragmented and distributed

_ Site1: ASG1 = _ENO≤”E3”(ASG)

_ Site2: ASG2 = _ENO>”E3”(ASG)

_ Site3: EMP1 = _ENO≤”E3”(EMP)

_ Site4: EMP2 = _ENO>”E3”(EMP)

_ Site5: Result

– Relations ASG and EMP are fragmented and distributed in

the same way
– Relations ASG and EMP are locally clustered on attributes

RESP and ENO respectively

Now consider the expression _ENAME(EMP ⋊⋉ENO

(_DUR>37(ASG)))

• Strategy 1 (partially parallel execution)[2]:

– Produce ASG′1 and move to Site 3

– Produce ASG′ 2 and move to Site 4

– Join ASG′ 1 with EMP1 at Site 3 and move the result to

 Site 5

– Join ASG′ 2 with EMP2 at Site 4 and move the result to

 Site 5
– Union the result in Site 5

• Strategy 2:

– Move ASG1 and ASG2 to Site 5

– Move EMP1 and EMP2 to Site 5

– Select and join at Site 5

• For simplicity, the final projection is omitted.

Calculating the cost of the two strategies under the following

assumptions:
– Tuples are uniformly distributed to the fragments; 20 tuples

satisfy DUR>37

– size(EMP) = 400, size(ASG) = 1000

– tuple access cost = 1 unit; tuple transfer cost = 10 units

– ASG and EMP have a local index on DUR and ENO

• Strategy 1:

– Produce ASG’s: (10+10) * tuple access cost 20

– Transfer ASG’s to the sites of EMPs: (10+10)

 * tuple transfer cost 200
– Produce EMP’s: (10+10) * tuple access cost * 2 40

– Transfer EMP’s to result site: (10+10) * tuple transfer cost

 200

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1363

– Total cost 460

• Strategy 2:

– Transfer EMP1, EMP2 to site 5: 400 * tuple transfer cost
 4,000

– Transfer ASG1, ASG2 to site 5: 1000 * tuple transfer cost

 10,000

– Select tuples from ASG1 [ASG2: 1000 * tuple access cost

 1,000

– Join EMP and ASG’: 400 * 20 * tuple access cost 8,000

– Total cost 23,000

Query optimization is a crucial and difficult part of the overall

query processing[2]

• Objective of query optimization is to minimize the following

cost function: I/O cost + CPU cost + communication cost
• Two different scenarios are considered:

– Wide area networks

 Communication cost dominates

 low bandwidth

 low speed

 high protocol overhead

 Most algorithms ignore all other cost components

– Local area networks

 Communication cost not that dominant

 Total cost function should be considered

Ordering of the operators of relational algebra is crucial for
efficient query processing

• Rule of thumb: move expensive operators at the end of query

processing

• Cost of RA operations:

Operation Complexity

Select, Project

(withoutduplicate elimination)

O(n)

Project (with duplicate

elimination)

O(n log n)

Group ,Join,Semi-join

Division,Set Operators

O(n log n)

Cartesian Product O(n2)

Query Optimization Issues[2]

Several issues have to be considered in query optimization
• Types of query optimizers

 – Wrt the search techniques (exhaustive search, heuristics)

 – Wrt the time when the query is optimized (static, dynamic)

• Statistics

• Decision sites

• Network topology

• Use of semi joins

Types of Query Optimizers wrt Search Techniques[2]

– Exhaustive search

 Cost-based

 Optimal

 Combinatorial complexity in the number of relations
– Heuristics

 Not optimal

 Regroups common sub-expressions

 Performs selection, projection first

 Replaces a join by a series of semijoins

Reorders operations to reduce intermediate relation size

Optimizes individual operations

Types of Query Optimizers wrt Optimization Timing

– Static

 Query is optimized prior to the execution

 As a consequence it is difficult to estimate the size of the
intermediate results

 Typically amortizes over many executions

– Dynamic

 Optimization is done at run time

 Provides exact information on the intermediate relation

sizes

 Have to re-optimize for multiple executions

– Hybrid

 First, the query is compiled using a static algorithm

 Then, if the error in estimate sizes greater than threshold,

the query is re-optimized at run time.

Statistics

– Relation/fragments

 Cardinality

 Size of a tuple

 Fraction of tuples participating in a join with another

relation/fragment

– Attribute

 Cardinality of domain

 Actual number of distinct values

 Distribution of attribute values (e.g., histograms)
– Common assumptions

 Independence between different attribute values

 Uniform distribution of attribute values within their domain

Decision sites

– Centralized

 Single site determines the ”best” schedule

 Simple

 Knowledge about the entire distributed database is needed

– Distributed

 Cooperation among sites to determine the schedule

 Only local information is needed
 Cooperation comes with an overhead cost

– Hybrid

 One site determines the global schedule

 Each site optimizes the local sub-queries

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 5

Issn 2250-3005(online) September| 2012 Page 1364

Network topology

– Wide area networks (WAN) point-to-point

 Characteristics

 · Low bandwidth

 · Low speed
 · High protocol overhead

 Communication cost dominate; all other cost factors are

ignored

 Global schedule to minimize communication cost

 Local schedules according to centralized query

optimization

– Local area networks (LAN)

 Communication cost not that dominant

 Total cost function should be considered

 Broadcasting can be exploited (joins)

 Special algorithms exist for star networks

Use of Semi joins[2]

 Reduce the size of the join operands by first computing

semijoins

 Particularly relevant when the main cost is the

communication cost

 Improves the processing of distributed join operations by

reducing the size of data

exchange between sites

 However, the number of messages as well as local

processing time is increased

Query processing transforms a high level query (relational

calculus) into an equivalent lower level query (relational

algebra). The main difficulty is to achieve the efficiency in the

transformation

• Query optimization aims to minimize the cost function:

 I/O cost + CPU cost + communication cost

• Query optimizers vary by search type (exhaustive search,

heuristics) and by type of the

algorithm (dynamic, static, hybrid). Different statistics are

collected to support the query

optimization process
• Query optimizers vary by decision sites (centralized,

distributed, hybrid)

• Query processing is done in the following sequence: query

decomposition data localization global optimization local

optimization.

Conclusion
In this paper, we proposed a various issues related to the Query

Optimization in cloud computing, which seeks to provide each

customer with better data retrieval from cloud data storage.

Acknowledgement
We are very much thankful to Prof. G. Vishnu Murthy, Head

of the CSE Dept who had given valuable suggestions in

carrying out this paper.

Reference

[1] Amazon.com, “Amazon s3 availablity event: July 20,

2008”, Online at http://status.aws.amazon.com/s3-

20080720.html, 2008.

[2] M. Tamer Oezsu, Patrick Valduriez ``Principles of

Distributed Database Systems, Second Edition'' Prentice

Hall, ISBN 0-13-659707-6, 1999

 [3] R. Gellman, “Privacy in the clouds: Risks to privacy

and confidentiality from cloud computing”, Prepared for

the World Privacy Forum, online at
http://www.worldprivacyforum.org/pdf/WPF Cloud

Privacy Report.pdf,Feb 2009.

[4] W. Itani, A. Kayssi, A. Chehab, “Privacy as a Service:

Privacy-Aware Data Storage and Processing in Cloud

Computing Architectures,” Eighth IEEE International

Conference on Dependable, Autonomic and Secure

Computing, Dec 2009

[5] M. Jensen, J. Schwenk, N. Gruschka, L.L. Iacono, “On

Technical Security Issues in Cloud Computing”, IEEE

International Conference on Cloud Computing,

(CLOUD II 2009), Banglore, India, September 2009,

109-116
[6] P. F. Oliveira, L. Lima, T. T. V. Vinhoza, J. Barros, M.

M´edard,“Trusted storage over untrusted networks”,

IEEE GLOBECOM 2010, Miami, FL. USA.

[7] S. H. Shin, K. Kobara, “Towards secure cloud storage”,

Demo forCloudCom2010, Dec 2010.

[8] Stefano ceri Giuseppe pelagati “Distributed Databases-

Principles and systems”Tata MC Graw Hill 2008

[9] J. Du, W. Wei, X. Gu, T. Yu, “RunTest: assuring

integrity of dataflow processing in cloud computing

infrastructures”, In Proceedings of the 5th ACM

Symposium on Information, Computer and
Communications Security (ASIACCS ’10), ACM, New

York, NY, USA, 293-304

http://www.cs.ualberta.ca/~database/ddbook.html
http://www.cs.ualberta.ca/~database/ddbook.html
http://www.cs.ualberta.ca/~database/ddbook.html

