
 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1087

A Survey on Models and Test strategies for Event-Driven Software

1
Mr.J.Praveen Kumar

2
Manas Kumar Yogi

Asst.Prof. CSE Dept.

Malla Reddy College of Engineering and Technology

Abstract
A Graphical User Interface (GUI) testing tool is one to test

applications user

Interface and to detect the correctness of applications

functionality. Event-Driven Software (EDS) can change state

based on incoming events; common examples are GUI and

web applications.

 These EDS pose a challenge to testing because there are a

large number of possible event sequences that users can invoke

through a user interface. While valuable contributions have

been made for testing these two subclasses of EDS, such

efforts have been disjoint. This work provides the first single

model that is generic enough to study GUI and web

applications together. This paper presentsdetail survey of the

existing GUI testing tools . This paperalso summarizes various

existing automated GUI testing approaches such as

PerformanceTesting and Analysis (PTA), Model Based

Testing (MBT), Combinatorial InteractionTesting (CIT),

(GUI)-based Applications (GAPs). The feasibility of using

java GUI captureand replay tools for GUI performance test

automation has been studied.

The severelimitations of GUI tools when used for recording

and replaying realistic session of the realworld Java

applications have been also addressed. Various GUI testing

tool are comparedin terms of performance.In this we use the

model to define generic prioritization criteria that are

applicable to both GUI and web applications. Our ultimate

goal is to evolve the model and use it to develop a unified

theory of how all EDS should be tested.

Keywords: Graphical User Interface, Performance Testing,

event driven software (EDS), t-way interaction coverage, test

suite prioritization, user-session testing, web-application

testing, GUI testing

1. Introduction
The GUI testing is a process to test application's user interface

and to detect if application is

functionally correct. GUI testing involves carrying set of tasks

and comparing the result of same withthe expected output and

ability to repeat same set of tasks multiple times with different

data input and same level of accuracy. GUI Testing includes

how the application handles keyboard and mouse events, how

different GUI components like menubars, toolbars, dialogs,

buttons, edit fields, list controls,images etc. reacts to user input

and whether or not it performs in the desired manner.

ImplementingGUI testing for your application early in the

software development cycle speeds up developmentimproves

quality and reduces risks towards the end of the cycle. GUI

Testing can be performed bothmanually with a human tester or

could be performed automatically with use of a software

program.

Every software organization tests its software’s, still the end

product always have some issues

left. Testing team tries their best to find all the bugs before

release of the software but still there areissues left in the

product and they often re-appear as new modules are added to

the software. Even thebest of manual testing process struggle

to deliver an effective, efficient, accurate and increased

testcoverage.

Manual testing is often error prone and there are chances of

most of the test scenarios left out.

Automated GUI Testing is a software program which is used

to analyze whether the desktop

application is functionally correct. Automated GUI Testing

includes automating manual testing taskswhich are mostly

time consuming and error prone. Automated GUI Testing is a

more accurate,efficient, reliable and cost effective replacement

to manual testing. Automated GUI Testing involves carrying

set of tasks automatically and comparing the result of same

with the expected output andability to repeat same set of tasks

multiple times with different data input and same level of

accuracy.

Implementing GUI Testing for your application early in the

software development cycle speeds updevelopment improves

quality and reduces risks towards the end of the cycle .

Automated GUI Testing is a solution to all the issues raised

with Manual GUI Testing. An

Automated GUI Testing tool can playback all the recorded set

of tasks, compare the results of

execution with the expected behavior and report success or

failure to the test engineers. Once the GUItests are created they

can easily be repeated for multiple number of times with

different data sets andcan be extended to cover additional

features at a later time. Most of the software organizations

considerGUI Testing as critical to their functional testing

process and there are many things which should beconsidered

before selecting an Automated GUI Testing tool. A company

can make great strides usingfunctional test automation. The

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1088

important benefits include, higher test coverage levels,

greaterreliability, shorted test cycles, ability to do multi user

testing at no extra cost, all resulting in increasedlevels of

confidence in the software.

2. Existing models :
 Testing for functional correctness of EDS such as stand-alone

GUI and web-based applications is critical to many

organizations. These applications share several important

characteristics. Both are particularly challenging to test

because users can invoke many different sequences of events

that affect application behavior. Earlier research has shown

that existing conventional testing techniques do not apply to

either GUIs or web applications, primarily because the number

of permutations of input events leads to a large number of

states, and for adequate testing, an event may need to be tested

in many of these states, thus requiring a large number of test

cases (each represented as an event sequence). Researchers

have developed several models for automated GUI testing and

web application testing.

2.1. Performance Testing and Analysis (PTA)

It is practical to automatically test the performance of

interactive rich-client Java applications when thefollowing two

issues are addressed.

1) A metric need a measurement approach to quantify the

performance of an interactive

application, and

2) A way to automatically perform realistic interactive sessions

on an application, without

perturbing the measured performance .

This kind of GUI performance test automation has two key

requirements that go beyond

traditional GUI test automation: (a) the need to replay

realistically complex interactive sessions and (b)the minimal

perturbation of the measured performance by the tool [1].

To find performance problemsin real applications, the length

of the event sequences played during testing is important.

Sequencesrepresenting only one or two events are often used

for functional testing. They represent a form of unittest.

Slightly longer sequences could be considered integration

tests, as they often cover someinteractions between

components. To find performance problems, however, event

sequences need to besignificantly longer, so that the

underlying system can reach the steady-state behavior that is

normal inreal world usage. Using the GUI testing tools for

performance testing is their use of harnesses andmock objects.

Those artifacts represent deviations from the real-world setup

and thus can affect theobserved performance [1].

2.2. Model Based Testing (MBT)

The new feedback-based technique has been used in a fully

automatic end-to-end process for a specific type of GUI

testing. The seed test suite (in this case, the smoke tests) is

generated automatically using an existing event interaction

graph model of the GUI, which represents all possible

sequences of events that may be executed on the GUI.[2]. It

utilizes runtime information as feedback for model-based GUI

test case generation. However, runtime information has

previously been employed for various aspects of test

automation, and model-based testing has been applied to

conventional software as well as event driven software

(EDS).It presents an overview of related research in the areas

of model-based and EDS testing, GUI testing, and the use of

runtime information as feedback for test generation.

Model-based testing automates some aspect of software testing

by employing a model of the

software. The model is an abstraction of the software’s

behavior from a particular perspective (e.g.,software states,

configuration, values of variables, etc.); it may be at different

levels of abstraction,such as abstract states, GUI states,

internal variable states, or path predicates, State machine

models.

The most popular models used for software testing are state

machine models. They model the

software’s behavior in terms of its abstract or concrete states;

they are typically represented as state transition diagrams.

Several types of state machine models have been used for

software testing .

The main inclusions in this test are:

 extension of work on automated, model-based

,systematic GUI test case generation.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1089

 definition of new relationships among GUI events

based on their execution.

 utilization of runtime state to explore a larger input

space and improve fault detection.

 Immersion of the feedback-based technique into a

fully automatic end-to-end GUI

 testing process and demonstration of its effectiveness

on fielded and fault-seeded

 applications.

 Empirical evidence tying fault characteristics to types

of test suites.

 Demonstration that certain faults require well crafted

combinations of test cases and

oracles.

2.3. Combinatorial Interaction Testing (CIT)

Combinatorial Interaction Testing is a method which focuses

on test prioritization techniques for GUI. The specific

contributions of this work include: the first single model for

testing stand-alone GUI and Web-based applications, a shared

prioritization function based on the abstract model, and shared

prioritization criteria. We validate the usefulness of these

artifacts through an empirical study. The results show that GUI

and Web-based applications, when recast using the model,

showed similar behavior, reinforcing our belief that these

classes of applications should be modeled and studied

together. Other results show that GUI and Web applications

behave differently, which has created opportunities for

evolving the model and further experimentation.The generalize

the model by evaluating its applicability and usefulness for

other software testing activities, such as test generation.

It also makes contributions toward test prioritization research.

Many of our prioritization criteria

improve the rate of fault detection of the test cases over

random orderings of tests. We also develop hybrid

prioritization criteria that combine several criteria that work

well individually and evaluate whether the hybrid criteria

result in more effective test orders.

3. Proposed model:
3.1. Modeling Test Cases

A test case is modeled as a sequence of actions. For

eachaction, a user sets a value for one or more parameters.We

provide examples of test cases for both GUI and

webapplications next.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1090

 Previous work treats stand-alone GUI and web-based

applications as separate areas of research. However, these

types of applications have many similarities that allow us to

create a single model for testing such event driven systems.

This model may promote future research to more broadly

focus on stand-alone GUI and web-based applications instead

of addressing them as disjoint topics. Within the context of this

model, we develop and empirically evaluate several

prioritization criteria and apply them to four stand-alone GUI

and three web-based applications and their existing test suites.

Our empirical study evaluates the prioritization criteria. We

present our threats to validity in this section because several

opportunities for future research are created by the threats to

validity of the results of our empirical study. Threats to

construct validity are factors in the study

design that may cause us to inadequately measure concepts of

interest.

Test suit

3.2. Test suites

Models of the TerpOffice applications, called event-flow

graphs [1], were used to generate test cases. The test-case

generation algorithm has also been described earlier [1]; in

summary, the algorithm is based on graph traversal;

starting in one of the events in the application’s main

window,the event-flow graphs were traversed, outputting the

encountered event sequences as test cases. In all, 300 test cases

were generated for each application.

The suites for web applications are based on usage of the

application, also referred to as user-session-based testsuites.

A total of 125 test cases were collected for Book, by asking for

volunteer users by sending emails to local newsgroups and

posting advertisements in the University of Delaware’s

classifieds. For CPM, 890 test cases were collected from

instructors, teaching assistants, and students using CPM during

the 2004-05 and

2005-06 academic years at the University of Delaware. A total

of 169 test cases were collected when our third subject

application, Masplas, was deployed for the Mid-Atlantic

Symposium on Programming Languages .

Table shows the characteristics of the test casesused in our

study, such as the total number of testcases for each

application, and statistics on the lengths

of the test cases. We also report the total numberof unique

parameter-values and the percentage of 2-way parameter-value

interactions covered in the test suites. We compute the

percentage of 2-way parametervalueinteractions by counting

the number of uniqueparameter-values on each window that

can be selectedin combination with unique parameter-values

on otherwindows within the application.

 International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4

Issn 2250-3005(online) August| 2012 Page 1091

4. Conclusion
stand-alone GUI and web-based applications as separate areas

of research. However, these types of applications have many

similarities that allow us to create a single model for testing

such eventdriven systems. This model may promote future

research to more broadly focus on stand-alone GUI and

webbased applications instead of addressing them as disjoint

topics. Other researchers can use our common model to apply

testing techniques more broadly. their existing test suites. Our

empirical study evaluates the prioritization criteria. Our ability

to develop prioritization

criteria for two types of event-driven software indicates the

usefulness of our combined model for the

problem of test prioritization. Our results are promising as

many of the prioritization criteria that we use improve

the rate of fault detection over random ordering of test cases.

We learn that prioritization by 2-way and PV-LtoS

generally result in the best improvement for the rate of fault

detection in our GUI applications and one of our

web applications. However, for our web applications

,frequency-based techniques provide the best rate of fault

detection in 2 out of the 3 subjects. We attribute this to the

source of the test cases. The test suites for the

web applications come from real user-sessions, whereas the

GUI test cases were automatically generated without

influence from users.

REFERENCES
[1] A. M. Memon and Q. Xie, “Studying the fault-detection

effectiveness of GUI test cases for rapidly evolving

software,” IEEE Trans. Softw. Eng., vol. 31, no. 10, pp.

884–896, Oct. 2005.

[2] A. Andrews, J. Offutt, and R. Alexander, “Testing web

applications by modeling with FSMs,” Software and

Systems Modeling, vol. 4, no. 3, pp. 326–345, Jul. 2005.

[3] G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini,

“Testing web applications,” in the IEEE Intl. Conf. on

Software Maintenance. Montreal, Canada: IEEE

Computer Society, Oct. 2002, pp. 310–319.

[4] F. Ricca and P. Tonella, “Analysis and testing of web

applications,” inthe Intl. Conf. on Software Engineering.

Toronto, Ontario, Canada: IEEE Computer Society,

May 2001, pp. 25–34.

[5] R. C. Bryce and A. M. Memon, “Test suite

prioritization by interactioncoverage,” in Proceedings of

The Workshop on Domain-Specific Approaches to

Software Test Automation (DoSTA 2007); co-located

with The 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software

Engineering. Dubrovnik, Croatia: ACM, Sep. 2007, pp.

1–7.

[6] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and

A. G. Koru, “Prioritizing user-session-based test cases

for web application testing,” in the International

Conference on Software Testing, Verification and

Validation. Lillehammer, Norway: IEEE Computer

Society, Apr. 2008, pp. 141–150. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 37, NO. 1, JAN/FEB 2011 IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. X, NO. X, JANUARY 2010 18

[7] P. Brooks, B. Robinson, and A. M. Memon, “An initial

characterization of industrial graphical user interface

systems,” in Proceedings of the International Conference

on Software Testing, Verification and Validation, 2009,

pp. 11–20.

[8] L. White, “Regression testing of GUI event interactions,”

in Proceedings of the International Conference on

Software Maintenance. IEEE Computer Society, Nov.

1996, pp. 350–358.

[9] “Web site test tools and site management tools,”

accessed on

 <http://www.softwareqatest.com/qatweb1.html>,

accessed on Apr. 5, 2009.

[10] D. C. Kung, C.-H. Liu, and P. Hsia, “An object-oriented

web test model for testing web applications,” in The First

Asia-Pacific Conf. on Quality Software. Singapore: IEEE

Computer Society, Oct. 2000, pp. 111–120.

Authors Description

Manas Kumar Yogi
Pursuing Mtech.(CSE Dept.)

Malla Reddy College of Engineering and

Technology, Hyderabad.

Mr.J.Praveen Kumar

Asst.Prof. CSE Dept.

 Malla Reddy College of Engineering and

Technology, Hyderabad.

