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 Abstract: 
 Paired domination is a relatively interesting concept introduced by Teresa W. Haynes [9] recently with the following 

application in mind. If we think of each vertex s ∈ S, as the location of a guard capable of protecting each vertex 

dominated by S, then for a paired domination the guards location must be selected as adjacent pairs of vertices so that 

each guard is assigned one other  and they are designated as a backup for each other. A set S  V is a paired dominating 

set if S is a dominating set of G and the induced subgraph <S> has a perfect matching. The paired domination number 

pr(G) is the minimum cardinality taken over all paired dominating sets in G. The minimum  number of colours required 

to colour all the vertices so that adjacent vertices do not receive the same colour and is denoted by . In [3], 

Mahadevan G proved that pr +   2n  1, and characterized the corresponding extremal graphs of order up to  2n  5.  

In this paper we characterize the classes of all graphs whose sum of paired domination number and chromatic number 

equals to 2n  6, for any n ≥ 4. 

Keywords: Paired domination number, Chromatic number AMS (2010)  05C69 

1. Introduction 

Throughout this paper, by a graph we mean a finite, simple, connected and undirected graph G(V, E). For notations and 

terminology, we follow [11]. The number of vertices in G is denoted by n. Degree of a vertex v is denoted by deg(v). We 

denote a cycle on n vertices by Cn, a path of n vertices by Pn, complete graph on n vertices by Kn. If S is a subset of V, then 

<S> denotes the vertex induced subgraph of G induced by S.  A subset S of V is called a dominating set of G if every 

vertex in V-S is adjacent to at least one vertex in S.  The domination number (G) of G is the minimum cardinality of all 

such dominating sets in G. A dominating set S is called a total dominating set ,if the induced subgraph <S> has no 

isolated vertices. The minimum cardinality taken over all total dominating sets in G is called the total domination number 

and is denoted by t(G).  One can get a comprehensive survey of results on various types of domination number of a graph 

in [10]. The chromatic number χ(G) is defined as the minimum number of colors required to color all the vertices such 

that adjacent vertices receive the same color.  

Recently many authors have introduced different types of domination parameters by imposing conditions on the 

dominating set and/or its complement. Teresa W. Haynes [9] introduced the concept of paired domination number of a 

graph. If we think of each vertex s ∈ S, as the location of a guard capable of protecting each vertex dominated by S,  then 

for domination a guard protects itself, and for total domination each guard must be protected by another guard. For a 

paired domination the guards location must be selected as adjacent pairs of vertices so that each guard is assigned one 

other and they are designated as a backup for each other. Thus  a paired dominating set S with matching M is a 

dominating set S = { v1, v2, v3,…v2t-1, v2t } with independent edge set M = { e1, e2, e3, …. et } where each edge ei is 

incident to two vertices of S, that is M is a perfect Matching in <S>.  A set S  V is a paired dominating set if S is a 

dominating set of G and the induced subgraph <S> has a perfect matching. The paired domination number pr(G) is the 

minimum cardinality taken over all paired dominating sets in G 

 Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and 

a graph theoretic parameter and characterized the corresponding extremal graphs. In [8], Paulraj Joseph J and Arumugam 

S proved that γ +   ≤ p, where                       denotes the vertex connectivity of the graph. In [7], Paulraj Joseph J and 

Arumugam S proved that c +   p + 1 and characterized the corresponding extremal graphs. They also proved similar 

results for  and t. In [6],  Mahadevan G  Selvam A, Iravithul Basira A characterized the extremal of graphs for which the 

sum of the  complementary connected domination number and chromatic number.  In [3], Mahadevan G proved that pr +  

 2n  1, and characterized the corresponding extremal graphs of order up to  2n  5. Motivated by the above results, in 

this paper we characterize all graphs for which pr(G) + (G) = 2n  6 for any n . 

We use the following preliminary results and notations for our consequent characterization:  
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Theorem 1.1[9] For any connected graph G of order n pr(G)   n  1 and equality holds  if and only if G = C3, C5 or 

subdivided star S*(K1,n) 

Notation 1.2  C3(n1 , n2 , n3 ) is a graph obtained from C3 by attaching n1 times the pendent vertex of  (Path 

on m1 vertices) to a vertex ui of C3 and attaching n2 times  the pendent vertex of  (Path on m2 vertices) to a vertex uj for 

i  j of C3 and attaching n3 times the pendent vertex of  (Path on m3 vertices) to a vertex uk for i  j  k of C3. 

Notation 1.3 C3(u( , )) is a graph obtained from C3 by attaching the pendent vertex of  (Path on m1 vertices) and 

the pendent vertex of  (Paths on m2 vertices) to any vertex u of C3.  

Notation 1.4 K5(n1 , n2 , n3 , n4 , n5 ) is a graph obtained from K5 by attaching n1 times the pendent vertex 

of  (Paths on m1 vertices) to a vertex ui of K5 and attaching n2 times the pendent vertex of  (Paths on m2 vertices) to 

a vertex uj for i  j of K5 and attaching  n3 times the pendent vertex of  (Paths on m3 vertices) to a vertex uk for i  j  

k of K5 and attaching n4 times the pendent vertex of  (Paths on m4 vertices) to a vertex ul for i  j  k  l of K5 and 

attaching n5 times  the pendent vertex of  (Paths on m5 vertices) to a vertex um for     i  j  k  l  m of K5. 

Notation 1.5 C3(Pn) is the graph obtained from C3 by attaching the pendant edge of Pn to any one vertices of C3 and 

Kn(Pm) is the graph obtained from Kn by attaching the pendant edge of Pm to any one vertices of Kn. For n ≤ p, Kp(n) is the 

graph obtained from Kp  by adding a new vertex and join it with n vertices of Kp.  

2. Main Result  
Theorem 2.1 For  any  connected  graph  G  of  order n, n ≥ 3, γpr + χ = 2n - 6 if only if               G  K8, C6, P6, S*(K 1,3), 

K1,4, K4(P4), K4(P3), K4(2P2), K4(P3, P2, 0, 0), K4(P2, P2, 0, 0), P5(0, P2, 0, 0, 0), C4(P3), C4(P2), C4(P2, P2, 0, 0), C4(P2, 0, 

P2, 0), K4(, P2, P2, P2, 0), K6(1), K6(2), K6(3), K6(4), K6(5) or any one of the graphs shown in Figure 2.1. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 2.1 

Proof: If G is any one the graphs given in the Figure 2.1, then it can be verified that                γpr(G) + χ(G) = 2n - 6. 

Conversely, let  γpr(G) + χ(G) = 2n - 6 .Then  the various  possible cases are (i) γpr(G) = n - 1 and χ(G) = n - 5 (ii) γpr(G) = 

n - 2 and χ(G) = n - 4 (iii) γpr(G) = n - 3 and χ(G) = n - 3 (iv) γpr(G) = n - 4 and χ(G) = n - 2 (v) γpr(G) = n - 5 and χ(G) = n 

- 1                       (vi) γpr(G) = n - 6 and χ(G) = n. 
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Case i. γpr(G) = n - 1 and χ(G) = n – 5. 

Since γpr(G) = n – 1, By theorem 1.1, G is isomorphic to C3, C5 or subdivided star S*(K1,n). Hence χ(G) = 2 or 3. 

If χ(G) = 3 we have n = 8, which is a contradiction. If χ(G) = 2 we have n = 7. Hence  G is isomorphic to S*(K 1,3). 

Case ii. γpr(G)  = n - 2 and χ(G) = n – 4. 

Since χ(G) = n - 4, G contains a clique on n - 4 vertices or does not contain clique on n-4 vertices.  Let G 

contains a clique on n - 4 vertices. Let S = {v1, v2, v3, v4}. Then the  induced subgraph <S> has the following possible  

cases.  <S> = K4, , P4, C4, K1,3, K2  K2,                          K3  K1, {K4 - e},) C3(1, 0, 0), P3  K1, K2  2. 

Subcase i. Let <S> = K4. 

Since  G  is  connected, there exists a vertex ui of Kn-4 which is adjacent to any one of             {v1, v2, v3, v4}. Let 

ui  be adjacent to v1 for some i in Kn-4. Then {v1, ui} is an γpr set of G, so that γpr  = 2 and n = 4, which is a contradiction. 

Hence no graph exists.    

Subcase ii. Let <S> = .    

Let {v1,v2,v3,v4} be the vertices of . Since G is connected, two vertices of the  are adjacent to one vertex say 

ui and  the remaining  two vertices of  are  adjacent to one vertex say uj for  i ≠ j. In this case {ui ,uj} for i ≠ j is a γpr set 

of G, so that γpr = 2 and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, one vertex of    is 

adjacent to ui and  the remaining three vertices of  are adjacent to vertex say uj for i ≠ j . In this case {ui ,uj} for  i ≠ j 

forms a γpr set of G, so that γpr = 2 and n = 4 , which is a contradiction. Hence no graph exists. Since G is connected, all 

the vertices of  are adjacent to one vertex say ui  in the vertices of Kn-4 . In this case {ui, uj} for i ≠ j is a γpr set of G,  so 

that  γpr = 2 and n = 4,  which is a contradiction. Hence no graph exists.  Since G is connected, two vertices of  is 

adjacent to ui and one vertex is adjacent to uj for i ≠ j and the remaining one vertex is adjancent to a vertex say uk for  i ≠ j 

≠ k. In this case γpr set does not exist. If ui is adjacent to v1 and uj for i ≠ j is adjacent to v2 and uk for i ≠ j ≠ k is adjacent to 

v3 and us for i ≠ j ≠ k ≠ s is adjacent to v4. In this case    {ui, uj, ur, us} for i ≠ j ≠ k ≠ s is a γpr set of G, so that   γpr = 4 and n 

= 6,  which is a contradiction. 

Subcase iii. Let <S> = P4 = v1v2v3v4. 

 Since G is connected, there exists a vertex ui in Kn-4 which is adjacent to v1(or v4) or v2(or v3). If ui  is adjacent to 

v1, then  {ui, v1, v2, v3} forms a γpr set of G, so that γpr = 4 and n = 6. Hence K = K2 = u1u2. If u1 is adjacent to v1. If deg(v1) 

= 2 = deg(v2) = deg(v3), deg(v4) = 1, then G  P6. Let u1 be adjacent to v1 and u2 be adjacent to v4. If deg(v1) = 2 = 

deg(v2),                deg(v3) = 2 = deg(v4), then G  C6. Let u1 be adjacent to v1 and u2 be adjacent to v2. If        deg(v1) = 2 = 

deg(v3), deg(v2) = 3, deg(v4) = 1, then G  C4(P3). If ui is adjacent to v2, then       {uj, uk, v2, v3} forms a γpr set of G, so 

that γpr = 4 and n = 6 and hence K = K2 = u1u2. Let u1 be adjacent to v2. If deg(v1) = 1, deg(v2) = deg(v3) = 2, deg(v4) = 1, 

then G  S*(K1,3). Let u1 be adjacent to v2 and u2 be adjacent to v3. If deg(v1) = 1, deg(v2) = deg(v3) = 3, deg(v4) = 1, then     

G  C4(P2, P2, 0, 0). 

Subcase iv. Let <S> = K2  K2.  

Let v1, v2 be the vertices of K2 and v3, v4 be the vertices of K2. Since G is connected, there exists a vertex ui in 

Kn-4 which is adjacent to any one of {v1, v2} and any one of {v3, v4}. Let ui be adjacent to v1 and v3. In this case {ui, uj, v1, 

v3} forms an γpr set of G so that γpr = 4 and n = 6 and hence K = K2 = u1u2. Let u1 be adjacent to v1 and u1 be adjacent to v3, 

then                   G  S*(K1,3). Let u1 be adjacent to v1 and v3 and u2 be adjacent to v4, then G  C4(P3). Let u2 be  adjacent 

to v2 and u1 be  adjacent to v1 and v3, then G  S*(K1,3). Since G is connected, there exists a vertex ui in kn-4 which is 

adjacent to v1 and uj for i ≠ j is adjacent to v3. In this case       {ui, uj, v1, v3} forms an γpr set of G so that γpr = 4 and n = 6 

and hence K = K2 = u1u2.  Let u1 be adjacent to v3 and u2 be adjacent to v1, then G  P6. Let u1 be adjacent to v3 and u2 be 

adjacent to v1 and v4, then G  C4(P3). 

 Subcase v. <S> = K2  2.  

Let  v1,v2 be the vertices of 2  and v3, v4 be the vertices of K2. Since G  is connected, there exists a vertex ui in 

Kn-4, which is adjacent to v1 and v2 and any one of {v3,v4}. Let ui be adjacent to v1, v2, v3. In this case {ui,v3} is a γpr set of 

G so that γpr = 2 and n = 4, which is a contradiction . Hence no graph exists. Since G is connected, there exists a vertex ui 
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in Kn-4 which is adjacent to v1 and there exists a vertex uj for i ≠ j in Kn-4 is adjacent to v2 and v3. In this case {ui, uj, uk, v3} 

forms an γpr set of G so that γpr = 4 and n = 6 and hence K = K2 = u1u2. Let u1 be adjacent to v1 and u2 be adjacent to v2 and 

v3, then G  S*(K1,3). Since G is connected, there exists a vertex ui in Kn-4 which is adjacent  v1 and uj for i ≠ j is adjacent 

to v2 and uk for i ≠ j ≠ k is adjacent  to v3. In this case {ui, uj, uk, v4} forms a γpr set of G. So that γpr = 4 and hence K = K2, 

which is a ontradiction. Hence no graph exists.    

 Subcase vi. <S> = P3  K1. 

Let v1, v2, v3 be the vertices of P3 and v4 be the vertex of K1. Since G  is connected, there exists a vertex  ui in Kn-

4 which is adjacent to any one of {v1, v2, v3} and v4. In this case            {ui, v1, v2, v4} is a γpr set of G so that γpr = 4 and  n 

= 6. Hence K = K2 = u1u2. Let u1 be adjacent to v1 and v4. If deg(v1) = 2 = deg(v2), deg(v4) = 1 = deg(v3) then G  P5(0, 

P2, 0, 0, 0). Let u1 be adjacent to v1 and v4 and u2 be adjacent to v2. If deg(v1) = 2, deg (v2) = 3, deg(v3) = 1 = deg(v4), then   

G  C4(P2, 0, P2, 0). Since G is connected, there exists a vertex ui in Kn-4 which  is adjacent to v1 and uj for  i ≠ j  is 

adjacent to v4. In this case {ui, uj, v1, v2} is a γpr set of G, so that γpr = 4 and n = 6 and hence K = K2 = u1u2. Let u1 be 

adjacent to v1 and u2 be adjacent to v4, then           G  P6. Let u1 be adjacent to v1 and v3 and u2 be adjacent to v4, then G 

 C4(P3). Since G is connected, there exists a vertex ui in Kn-4, which is adjacent to v2 and v4. In this case {ui, v2}is a γpr 

set of G, so that γpr = 2 and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, there exists a 

vertex ui in Kn-4 which  is adjacent to v2 and uj for  i ≠ j  is adjacent to v4. In this case {ui, uj, uk, v2} is a γpr set of G, so that 

γpr = 4 and n = 6 and hence K = K2 = u1u2. Let u1 be adjacent to v2 and u2 be adjacent to v4. If deg(v1) = 1 , deg(v2) = 3, 

deg(v3) = deg(v4) = 1, then G  P5(0, P2, 0, 0, 0). 

Subcase vii .  <S> = K3  K1. 

Let v1, v2, v3 be the vertices of  K3 and v4 be the vertices of K1. Since G is connected, there exists a vertex ui in 

Kn-4 is adjacent to any one of {v1, v2, v3} and v4. In this case {ui, v2} is a γpr set of G, so that γpr = 2 and n = 4, which is a 

contradiction. Hence no graph exists. Since     G is connected, there exists a vertex ui in Kn-4 which is adjacent to v2 and uj 

for i ≠ j is adjacent to v4. In this case {ui, uj, uk, v2} for i ≠ j ≠ k is a γpr set of G, so that  γpr = 4 and n = 6 and hence            

K = K2, which is a contradiction. Hence no graph exists.  

Subcase viii. <S>=K4-{e} 

Let v1, v2, v3, v4 be the vertices  of K4. Let {e} be any one the edge inside  the cycle C4. Since G is connected, 

there exists a vertex ui in Kn-4 which is adjacent to v1. In this case {ui, v1} is a  γpr set of G, so that  γpr = 2 and n = 4, which 

is a contradiction. Hence no graph exists.  

Subcase  ix. <S> = C3(1, 0, 0). 

Let v1, v2, v3 be the vertices of C3 and let v4 be adjacent to v1. Since G is connected, there exists a vertex ui in Kn-4 which is 

adjacent to v2. In this case {ui, uj, v1, v2} is a γpr set of G, so that γpr = 4 and n = 6, which is a contradiction. Hence no 

graph exists.  

Subcase  x. <S> = K1,3. 

Let v1 be the root vertex and v2, v3, v4 are adjacent to v1. Since G is connected, there exists a vertex ui in Kn-4 

which is adjacent to v1. In this case {ui, v1} is a γpr set of G, so that       γpr = 2 and  n = 4, which is a contradiction. Hence 

no graph exists. Since G is connected, there exists a vertex ui in Kn-4 which is adjacent to any one of  {v2, v3, v4}. Let ui  

be adjacent to v2. In this case  {ui, uj, v2, v1}is a γpr set of G, so that  γpr = 4 and  n = 6, and hence K = K2 = u1u2. Let u1 be 

adjacent to v2. If deg (v1) = 3, deg(v3) = deg(v4) = 1, deg(v2) = 2, then G  P5(0, P2, 0, 0, 0). Let  u1 be adjacent to v2 and 

v3. If deg(v1) = 3, deg(v2) = 2 = deg(v3), deg(v4) = 1, then                        G  C4(P2, 0, P2, 0). Let u1 be adjacent to v2 and 

v4. If deg(v1) = 3, deg(v2) = 2 = deg(v4), deg(v3) = 1, then G  C4(P2, 0, P2, 0). 

Subcase  xi. <S> = C4. 

 In this case it can be verified that no new graph exists. 

If G does not contain clique on n-4 vertices, then it can be verified that no new graph exists. 

Case iii. γpr = n - 3  and  χ = n – 3.    

Since  χ = n - 3, G contains a clique K on n - 3 vertices or does not contain a clique K on n - 3 vertices. Let G 

contains a clique K on n - 3 vertices. Let S = V(G) - V(K) = {v1, v2, v3}. Then the  induced  subgraph  <S>  has the 

following possible cases. <S> = K3 , 3, P3, K2  K1.  

Subcase i. <S> = K3. 
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Since G is connected, there exists a vertex ui in Kn-3 which is adjacent to any one of      {v1, v2, v3}. Let ui be 

adjacent to v1, then {ui, v1}is a γpr set of G, so that γpr = 2 and n = 5, which is a contradiction. Hence no graph exists. 

Subcase ii. <S> = 3. 

Since G  is connected, one of the vertices of Kn-3 say ui  is adjacent to all the vertices of  S (or) ui be adjacent to 

v1 ,v2 and uj be adjacent  to v3 (i ≠ j) (or) ui be adjacent v1 and uj be adjacent to v2 and uk be adjacent to v3 (i ≠ j ≠ k). If ui 

for some i is adjacent to all the vertices of S, then     {ui, v} for some v in Kn-3 is a γpr set of G, so that γpr  = 2 and n = 5 and 

hence K = K2 = u1u2. If u1  is adjacent to v1, v2 and v3, then G  K1,4. If ui is adjacent to v1 and uj  for i ≠ j  is adjacent to v2 

and v3, then {ui,uj} is an γpr set of G, so that γpr = 2 and n = 5. Hence K = K2 = u1u2. If u1 is adjacent to v1 and v2 and u2 is 

adjacent to v3, then G  S*(K1,3). Since G is connected, there exists a vertex ui in Kn-3 which is adjacent to v1 and uj for i ≠ 

j  in Kn-3 is adjacent to v2 and uk for i ≠ j ≠ k in Kn-3, which is adjacent to v3. In this case {ui, uj, uk, v} for some v in Kn-3 is 

a γpr set of G, so that  γpr = 4 and  n = 7, and hence K = K4 = <u1, u2, u3, u4> . Let u1 be adjacent to v1 and u2 be adjacent to 

v2 and u4 be adjacent to v3. If deg(v1) = deg(v2) = deg(v3) = 1, then                        G  K4(, P2, P2, P2, 0). Let u1 be adjacent 

to v1 and u2 be adjacent to v2 and u3 be adjacent to v1 and u4 be adjacent to v3. If deg(v1) = 2, deg(v2) = deg(v3) = 1, , then 

G  G1. 

Subcase iii. <P3> = v1v2v3. 

  Since G is connected, there exists a vertex ui in Kn-3 which is adjacent to v1 (or equivalently v3)  or v2. If  ui is 

adjacent to v2, then {ui, v2} is a γpr set of G, so that γip = 2 and       n = 5. Hence K = K2 = u1u2.  If u1 is adjacent to v2, then  

G  S*(K1,3). If u1 is adjacent to v2 and u2 is adjacent to v3, then  G  C4(P2). If u1 is  adjacent  to v2 and u2 is adjacent to 

v1 and v3. If deg (v1) = 2, deg(v2) = 3, deg(v3) = 2, then G  G2. Since G is connected, there exists a vertex ui in Kn-3 

which is adjacent to v1, then {ui,uj,v1,v2}  for some i ≠ j is a γpr set of G, so that γpr = 4 and   n = 7 and hence K = K4 = < u1, 

u2, u3, u4 >. Let u1 be adjacent to v1, then G  K4(P4). Let u1 be adjacent to v1 and u3 be adjacent to v1. If deg(v1) = 3, 

deg(v2) = 2, deg(v3) = 1, then G  G3 . Let u1 be adjacent to v1 and u3  be adjacent to v1 and u2 be adjacent to v1. If deg(v1) 

= 4, deg(v2) = 2, deg(v3) = 1, then  G  G4. 

Subcase iv. <S> = K2  K1.  

Let v1, v2 be the vertices of  K2 and  v3 be the  isolated vertex. Since G is connected, there exists a vertex  ui in 

Kn-3 which is adjacent to any one of {v1, v2} and {v3} (or) ui  is adjacent to any one of {v1, v2} and uj for  i ≠ j is adjacent 

to v3. In this case {v1, v2, v3, uj} is a γpr set of G, so that    γpr = 4 and n = 7 and hence  K = K4 = <u1,u2,u3,u4>. Let u1 be 

adjacent to v1 and u2 be adjacent to v3.  If deg(v1) = 2, deg(v2) = 1 = deg(v3), then G  K4(P3, P3, 0, 0). Let u1 be adjacent 

to v1 and u2 be adjacent to v3 and u3 be adjacent to v1 and u4 be adjacent to v1.  If deg(v1) = 4, deg(v2) = 1 = deg(v3), then 

G  G5. If a vertex ui in Kn-3 is adjacent to v1&v3  then {ui,v1}  is a  γpr set of G, so that  γpr=2  and  n=5  and hence K = K2 

= <u1, u2>. Let  u1 be adjacent to v1 and v3. If deg(v1) = 2, deg(v2) = 1 = deg(v3) then  G  S*(K1,3). 

If G does not contain a clique K on n - 3 vertices, then it can be verified that no new graph exists. 

Case v. γpr = n - 4   and  χ = n – 2. 

Since χ = n - 2, G contains a clique K on n - 2 vertices or does not contain a clique K on n - 2 vertices. Let  G 

contains a clique K on n - 2 vertices. Let  S = V(G) - V(K) = {V1, V2}. Then     <S> = K2, 2. 

Subcase i. <S> = K2. 

Since  G  is  connected, there  exists a vertex ui in Kn-2 is adjacent to any one of {v1, v2} then    {ui, v1} is a γpr set 

of G, so that γpr = 2 and n = 6 and  hence  K = K4 = <u1, u2, u3, u4>. Let u1 be adjacent to v1. If deg(v1) = 2, deg(v2) = 1, 

then G  K4(P3). Let u1 be adjacent to v1 and u3 be adjacent to v1. If  deg(v1) = 3, deg(v2) = 1, then G  G6. Let u1 be 

adjacent to v1 and u3 be adjacent to v1 and u4 be adjacent to v1. If deg(v1) = 4, deg(v2) = 1 then G  G7. Let u1 be adjacent  

to v1 and u2  be adjacent to v2. If deg(v1) = 2 = deg(v2),  then G  G8. Let u1 be  adjacent to v1 and u2 be  adjacent to v2 and  

u3 be adjacent to v1. If deg(v1) = 3, deg(v2) = 2, then G  G9. Let u1 be adjacent  to v1 and  u2 be adjacent to v2 and u3 be 

adjacent  to v2 and u4 be adjacent to v2. If deg(v1) = 2, deg(v2) = 4, then G  G10. Let u1 be adjacent to v1 and u2 be 

adjacent to v1 and v2. If deg(v1) = 3, deg(v2) = 2, G  G11. 

Subcase ii. Let <S> = 2. 
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Since G is connected, v1 and v2 are adjacent to a common vertex say ui of Kn-2 (or) v1 is adjacent to ui for some i 

and v2 is adjacent to uj for some i ≠ j  in Kn-2. In both cases {ui, uj}  is a γpr set of  G, so that γpr = 2 and n = 6 and  hence K 

= K4 = <u1, u2, u3, u4>. Let u1 be adjacent  to  v1 and u2 be adjacent to v2. If deg(v1) = 1 = deg(v2), then  G  K4(P2,P2,0,0). 

Let u1 be adjacent to v1 and v2. If deg (v1) = 1 = deg(v2), then  G  K4(2P2). Let u1 be adjacent to v1 and v2 and u2 be 

adjacent to v2. If deg(v2) = 2, then G  G12. Let u1 be adjacent to v1 and v2 and u2 be adjacent to v1 and v2. If deg(v1) = 2 = 

deg(v2), then G  G13. Let u1 be adjacent to v1 and u2 be adjacent to v2 and u3 be adjacent to v1 and u4 be adjacent to v2. If 

deg(v1) = 2 = deg(v2), then G  G14. Let u1 be adjacent to v1 and v2 and u3 be adjacent to v1. If deg(v1) = 2, deg(v2) = 1, 

then G  G15. Let u1 be adjacent to v1 and v2 and u2 be adjacent to v2 and u4 be adjacent to v2. If deg(v1) = 1, deg(v2) = 3, 

then      G  G16. Let u1 be adjacent to v1 and v2 and u2 be adjacent to v1 and v2 and u3 be adjacent to v1 and u4 be adjacent 

to v2. If deg(v1) = deg(v2) = 3, then G  G17. 

 If G does not contain a clique K on n - 2 vertices, then it can be verified that no new graph exits. 

Case v. γpr = n - 5  and  χ = n – 1.  

Since χ = n - 1, G contains  a clique  K on n - 1 vertices. Let v1 be the vertex not on Kn-1. Since G is connected, 

there exists a vertex v1 is adjacent to one vertex ui of Kn-1. In this case {ui,v1} is a γpr set of G, so that γpr = 2 and  n = 7 and 

hence K = K6 = <u1,u2,u3,u4,u5,u6>. Let u1 be adjacent to  v1. If deg(v1) = 1, then G  K6(1). Let u1 be adjacent to v1 and u2 

be adjacent to v1. If deg(v1) = 2, then G   K6(2). Let u1 be adjacent to v1 and u2 be adjacent to v1 and u3 be  adjacent to v1. 

If  deg(v1) = 3, then G  K6(3). Let u1 be adjacent to v1 and u2 be adjacent to v1 and u3 be adjacent to v1 and u4 be adjacent 

to v1. If deg (v1) = 4, then  G  K6(4). Let  u1 be adjacent to v1 and u2 be adjacent to v1 and u3 be adjacent to v1 and u4 be  

adjacent to v1 and u5 be adjacent to v1. If deg(v1) = 5, then G  K6(5). 

Case vi. γpr = n - 6 and  χ = n. 

Since  χ = n, G = Kn. But for Kn, γpr = 2, so that n = 8. Hence G  K8. 
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