

Characterization of Paired Domination Number of a Graph

G. Mahadevan¹, A. Nagarajan² A. Rajeswari³ ¹Department of Mathematics, Anna University of Technology, Tirunelveli -627 002

Department of Mathematics, Anna University of Technology, Tirunelveli -627 002
²Department of Mathematics, V.O.Chidambaram College, Tuticorin- 628 008
³Aarupadai Veedu Institute of Technology, Paiyanoor, Chennai -603 104

Abstract:

Paired domination is a relatively interesting concept introduced by Teresa W. Haynes [9] recently with the following application in mind. If we think of each vertex $s \in S$, as the location of a guard capable of protecting each vertex dominated by S, then for a paired domination the guards location must be selected as adjacent pairs of vertices so that each guard is assigned one other and they are designated as a backup for each other. A set $S \subseteq V$ is a paired dominating set if S is a dominating set of G and the induced subgraph $\langle S \rangle$ has a perfect matching. The paired domination number $\gamma_{pr}(G)$ is the minimum cardinality taken over all paired dominating sets in G. The minimum number of colours required to colour all the vertices so that adjacent vertices do not receive the same colour and is denoted by $\chi(G)$. In [3], Mahadevan G proved that $\gamma_{pr} + \chi \leq 2n - 1$, and characterized the corresponding extremal graphs of order up to 2n - 5. In this paper we characterize the classes of all graphs whose sum of paired domination number and chromatic number equals to 2n - 6, for any $n \geq 4$.

Keywords: Paired domination number, Chromatic number AMS (2010) 05C69

1. Introduction

Throughout this paper, by a graph we mean a finite, simple, connected and undirected graph G(V, E). For notations and terminology, we follow [11]. The number of vertices in G is denoted by n. Degree of a vertex v is denoted by deg(v). We denote a cycle on n vertices by $C_{n,}$ a path of n vertices by P_n , complete graph on n vertices by K_n . If S is a subset of V, then $\langle S \rangle$ denotes the vertex induced subgraph of G induced by S. A subset S of V is called a dominating set of G if every vertex in V-S is adjacent to at least one vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of all such dominating sets in G. A dominating set S is called a total dominating sets in G is called the total domination number and is denoted by $\gamma_t(G)$. One can get a comprehensive survey of results on various types of domination number of a graph in [10]. The chromatic number $\chi(G)$ is defined as the minimum number of colors required to color all the vertices such that adjacent vertices receive the same color.

Recently many authors have introduced different types of domination parameters by imposing conditions on the dominating set and/or its complement. Teresa W. Haynes [9] introduced the concept of paired domination number of a graph. If we think of each vertex $s \in S$, as the location of a guard capable of protecting each vertex dominated by S, then for domination a guard protects itself, and for total domination each guard must be protected by another guard. For a paired domination the guards location must be selected as adjacent pairs of vertices so that each guard is assigned one other and they are designated as a backup for each other. Thus a paired dominating set S with matching M is a dominating set $S = \{v_1, v_2, v_3, \dots v_{2t-1}, v_{2t}\}$ with independent edge set $M = \{e_1, e_2, e_3, \dots, e_t\}$ where each edge e_i is incident to two vertices of S, that is M is a perfect Matching in $\langle S \rangle$. A set $S \subseteq V$ is a paired dominating set if S is a dominating set of G and the induced subgraph $\langle S \rangle$ has a perfect matching. The paired domination number $\gamma_{pr}(G)$ is the minimum cardinality taken over all paired dominating sets in G

Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and a graph theoretic parameter and characterized the corresponding extremal graphs. In [8], Paulraj Joseph J and Arumugam S proved that $\gamma + \kappa \leq p$, where κ denotes the vertex connectivity of the graph. In [7], Paulraj Joseph J and Arumugam S proved that $\gamma_c + \chi \leq p + 1$ and characterized the corresponding extremal graphs. They also proved similar results for γ and γ_t . In [6], Mahadevan G Selvam A, Iravithul Basira A characterized the extremal of graphs for which the sum of the complementary connected domination number and chromatic number. In [3], Mahadevan G proved that $\gamma_{pr} + \chi \leq 2n - 1$, and characterized the corresponding extremal graphs of order up to 2n - 5. Motivated by the above results, in this paper we characterize all graphs for which $\gamma_{pr}(G) + \chi(G) = 2n - 6$ for any $n \geq 4$.

We use the following preliminary results and notations for our consequent characterization:

Issn 2250-3005(online)	August 2012	Page 1070
------------------------	--------------	-----------

Theorem 1.1[9] For any connected graph G of order $n \ge 3$, $\gamma_{pr}(G) \le n - 1$ and equality holds if and only if $G = C_3$, C_5 or subdivided star $S^*(K_{1,n})$

Notation 1.2 $C_3(n_1P_{m_1}, n_2P_{m_2}, n_3P_{m_3})$ is a graph obtained from C_3 by attaching n_1 times the pendent vertex of P_{m_1} (Path on m_1 vertices) to a vertex u_i of C_3 and attaching n_2 times the pendent vertex of P_{m_2} (Path on m_2 vertices) to a vertex u_j for $i \neq j$ of C_3 and attaching n_3 times the pendent vertex of P_{m_3} (Path on m_3 vertices) to a vertex u_k for $i \neq j \neq k$ of C_3 .

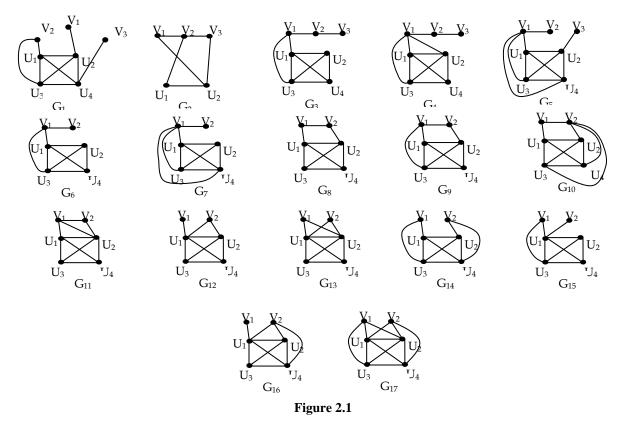
Notation 1.3 $C_3(u(P_{m_1}, P_{m_2}))$ is a graph obtained from C_3 by attaching the pendent vertex of P_{m_1} (Path on m_1 vertices) and the pendent vertex of P_{m_2} (Paths on m_2 vertices) to any vertex u of C_3 .

Notation 1.4 $K_5(n_1P_{m_1}, n_2P_{m_2}, n_3P_{m_3}, n_4P_{m_4}, n_5P_{m_5})$ is a graph obtained from K_5 by attaching n_1 times the pendent vertex of P_{m_1} (Paths on m_1 vertices) to a vertex u_i of K_5 and attaching n_2 times the pendent vertex of P_{m_2} (Paths on m_2 vertices) to a vertex u_j for $i \neq j$ of K_5 and attaching n_3 times the pendent vertex of P_{m_3} (Paths on m_3 vertices) to a vertex u_k for $i \neq j \neq k \neq l$ of K_5 and attaching n_4 times the pendent vertex of P_{m_4} (Paths on m_4 vertices) to a vertex u_l for $i \neq j \neq k \neq l$ of K_5 and attaching n_5 times the pendent vertex of P_{m_4} (Paths on m_4 vertices) to a vertex u_l for $i \neq j \neq k \neq l$ of K_5 and attaching n_5 times the pendent vertex of P_{m_4} (Paths on m_5 vertices) to a vertex u_m for $i \neq j \neq k \neq l \neq m$ of K_5 .

Notation 1.5 $C_3(P_n)$ is the graph obtained from C_3 by attaching the pendant edge of P_n to any one vertices of C_3 and $K_n(P_m)$ is the graph obtained from K_n by attaching the pendant edge of P_m to any one vertices of K_n . For $n \le p$, $K_p(n)$ is the graph obtained from K_p by adding a new vertex and join it with n vertices of K_p .

2. Main Result

Theorem 2.1 For any connected graph G of order n, $n \ge 3$, $\gamma_{pr} + \chi = 2n - 6$ if only if $G \cong K_8$, C_6 , P_6 , $S^*(K_{1,3})$, $K_{1,4}$, $K_4(P_4)$, $K_4(P_3)$, $K_4(2P_2)$, $K_4(P_3, P_2, 0, 0)$, $K_4(P_2, P_2, 0, 0)$, $P_5(0, P_2, 0, 0, 0)$, $C_4(P_3)$, $C_4(P_2)$, $C_4(P_2, P_2, 0, 0)$, $C_4(P_2, 0, P_2, 0)$, $K_4(P_2, P_2, P_2, 0)$, $K_6(1)$, $K_6(2)$, $K_6(3)$, $K_6(4)$, $K_6(5)$ or any one of the graphs shown in Figure 2.1.



Proof: If G is any one the graphs given in the Figure 2.1, then it can be verified that $\gamma_{pr}(G) + \chi(G) = 2n - 6$. Conversely, let $\gamma_{pr}(G) + \chi(G) = 2n - 6$. Then the various possible cases are (i) $\gamma_{pr}(G) = n - 1$ and $\chi(G) = n - 5$ (ii) $\gamma_{pr}(G) = n - 2$ and $\chi(G) = n - 4$ (iii) $\gamma_{pr}(G) = n - 3$ and $\chi(G) = n - 3$ (iv) $\gamma_{pr}(G) = n - 4$ and $\chi(G) = n - 2$ (v) $\gamma_{pr}(G) = n - 5$ and $\chi(G) = n - 4$ (v) $\gamma_{pr}(G) = n - 6$ and $\chi(G) = n$.

Issn 2250-3005(online)	August 2012	Page 1071

Case i. $\gamma_{pr}(G) = n - 1$ and $\chi(G) = n - 5$.

Since $\gamma_{pr}(G) = n - 1$, By theorem 1.1, G is isomorphic to C₃, C₅ or subdivided star S*(K_{1,n}). Hence $\chi(G) = 2$ or 3. If $\chi(G) = 3$ we have n = 8, which is a contradiction. If $\chi(G) = 2$ we have n = 7. Hence G is isomorphic to S*(K_{1,3}). **Case ii.** $\gamma_{pr}(G) = n - 2$ and $\chi(G) = n - 4$.

Since $\chi(G) = n - 4$, G contains a clique on n - 4 vertices or does not contain clique on n-4 vertices. Let G contains a clique on n - 4 vertices. Let $S = \{v_1, v_2, v_3, v_4\}$. Then the induced subgraph $\langle S \rangle$ has the following possible cases. $\langle S \rangle = K_4, \overline{K_4}, P_4, C_4, K_{1,3}, K_2 \cup K_2$, $K_3 \cup K_1, \{K_4 - e\}, C_3(1, 0, 0), P_3 \cup K_1, K_2 \cup \overline{K_2}$.

Subcase i. Let $\langle S \rangle = K_4$.

Since G is connected, there exists a vertex u_i of K_{n-4} which is adjacent to any one of $\{v_1, v_2, v_3, v_4\}$. Let u_i be adjacent to v_1 for some i in K_{n-4} . Then $\{v_1, u_i\}$ is an γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists

Subcase ii. Let $\langle S \rangle = \overline{K_4}$.

Let $\{v_1, v_2, v_3, v_4\}$ be the vertices of $\overline{K_4}$. Since G is connected, two vertices of the $\overline{K_4}$ are adjacent to one vertex say u_i and the remaining two vertices of $\overline{K_4}$ are adjacent to one vertex say u_j for $i \neq j$. In this case $\{u_i, u_j\}$ for $i \neq j$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, one vertex of $\overline{K_4}$ is adjacent to u_i and the remaining three vertices of $\overline{K_4}$ are adjacent to vertex say u_j for $i \neq j$. In this case $\{u_i, u_j\}$ for $i \neq j$ forms a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, all the vertices of $\overline{K_4}$ are adjacent to one vertex say u_i in the vertices of K_{n-4} . In this case $\{u_i, u_j\}$ for $i \neq j$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, all the vertices of $\overline{K_4}$ are adjacent to one vertex say u_i in the vertices of K_{n-4} . In this case $\{u_i, u_j\}$ for $i \neq j$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, two vertices of $\overline{K_4}$ is adjacent to u_i and one vertex is adjacent to u_j for $i \neq j$ and the remaining one vertex is adjacent to a vertex say u_k for $i \neq j$ is adjacent to u_i and one vertex is adjacent to u_j for $i \neq j$ and the remaining one vertex is adjacent to a vertex say u_k for $i \neq j$ is adjacent to v_2 and u_k for $i \neq j \neq k$ is adjacent to v_3 and u_s for $i \neq j \neq k \neq s$ is adjacent to v_4 . In this case $\{u_i, u_j, u_r, u_s\}$ for $i \neq j \neq k \neq s$ is a $\gamma_{pr} = 4$ and n = 6, which is a contradiction.

Subcase iii. Let $\langle S \rangle = P_4 = v_1 v_2 v_3 v_4$.

Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to $v_1(\text{or } v_4)$ or $v_2(\text{or } v_3)$. If u_i is adjacent to v_1 , then $\{u_i, v_1, v_2, v_3\}$ forms a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 6. Hence $K = K_2 = u_1u_2$. If u_1 is adjacent to v_1 . If $deg(v_1) = 2 = deg(v_2) = deg(v_3)$, $deg(v_4) = 1$, then $G \cong P_6$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 . If $deg(v_1) = 2 = deg(v_2)$, $deg(v_3) = 2 = deg(v_4)$, then $G \cong C_6$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 . If $deg(v_1) = 2 = deg(v_3)$, $deg(v_2) = 3$, $deg(v_4) = 1$, then $G \cong C_4(P_3)$. If u_i is adjacent to v_2 , then $\{u_j, u_k, v_2, v_3\}$ forms a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 6 and hence $K = K_2 = u_1u_2$. Let u_1 be adjacent to v_2 . If $deg(v_1) = deg(v_3) = 2$, $deg(v_4) = 1$, then $G \cong S^*(K_{1,3})$. Let u_1 be adjacent to v_3 . If $deg(v_1) = 1$, $deg(v_2) = deg(v_3) = 3$, $deg(v_4) = 1$, then $G \cong C_4(P_2, P_2, 0, 0)$.

Subcase iv. Let $\langle S \rangle = K_2 \bigcup K_2$.

Let v_1 , v_2 be the vertices of K_2 and v_3 , v_4 be the vertices of K_2 . Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to any one of $\{v_1, v_2\}$ and any one of $\{v_3, v_4\}$. Let u_i be adjacent to v_1 and v_3 . In this case $\{u_i, u_j, v_1, v_3\}$ forms an γ_{pr} set of G so that $\gamma_{pr} = 4$ and n = 6 and hence $K = K_2 = u_1u_2$. Let u_1 be adjacent to v_1 and u_1 be adjacent to v_3 , then $G \cong S^*(K_{1,3})$. Let u_1 be adjacent to v_1 and v_2 be adjacent to v_2 and u_1 be adjacent to v_1 and v_3 , then $G \cong S^*(K_{1,3})$. Since G is connected, there exists a vertex u_i in k_{n-4} which is adjacent to v_1 and u_j for $i \neq j$ is adjacent to v_3 . In this case $\{u_i, u_j, v_1, v_3\}$ forms an γ_{pr} set of G so that $\gamma_{pr} = 4$ and n = 6 and hence $K = K_2 = u_1u_2$. Let u_1 be adjacent to v_3 and u_2 be adjacent to v_1 , then $G \cong P_6$. Let u_1 be adjacent to v_3 and u_2 be adjacent to v_1 and v_4 , then $G \cong C_4(P_3)$.

Subcase v. $\langle S \rangle = K_2 \cup \overline{K}_2$.

Let v_1, v_2 be the vertices of \vec{K}_2 and v_3 , v_4 be the vertices of K_2 . Since G is connected, there exists a vertex u_i in K_{n-4} , which is adjacent to v_1 and v_2 and any one of $\{v_3, v_4\}$. Let u_i be adjacent to v_1 , v_2 , v_3 . In this case $\{u_i, v_3\}$ is a γ_{pr} set of G so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, there exists a vertex u_i

I	ssn 2250-3005(online)	August 2012	Page 1072

in K_{n-4} which is adjacent to v_1 and there exists a vertex u_j for $i \neq j$ in K_{n-4} is adjacent to v_2 and v_3 . In this case $\{u_i, u_j, u_k, v_3\}$ forms an γ_{pr} set of G so that $\gamma_{pr} = 4$ and n = 6 and hence $K = K_2 = u_1u_2$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 and v_3 , then $G \cong S^*(K_{1,3})$. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent v_1 and u_j for $i \neq j$ is adjacent to v_2 and u_k for $i \neq j \neq k$ is adjacent to v_3 . In this case $\{u_i, u_j, u_k, v_4\}$ forms a γ_{pr} set of G. So that $\gamma_{pr} = 4$ and hence $K = K_2$, which is a ontradiction. Hence no graph exists.

Subcase vi. $\langle S \rangle = P_3 \cup K_1$.

Let v_1 , v_2 , v_3 be the vertices of P_3 and v_4 be the vertex of K_1 . Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to any one of $\{v_1, v_2, v_3\}$ and v_4 . In this case $\{u_i, v_1, v_2, v_4\}$ is a γ_{pr} set of G so that $\gamma_{pr} = 4$ and n = 6. Hence $K = K_2 = u_1u_2$. Let u_1 be adjacent to v_1 and v_4 . If deg $(v_1) = 2$ = deg (v_2) , deg $(v_4) = 1$ = deg (v_3) then $G \cong P_5(0, P_2, 0, 0, 0)$. Let u_1 be adjacent to v_1 and v_4 and u_2 be adjacent to v_2 . If deg $(v_1) = 2$, deg $(v_2) = 3$, deg $(v_3) = 1$ = deg (v_4) , then $G \cong C_4(P_2, 0, P_2, 0)$. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to v_1 and u_j for $i \neq j$ is adjacent to v_4 . In this case $\{u_i, u_j, v_1, v_2\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 6 and hence $K = K_2 = u_1u_2$. Let u_1 be adjacent to v_4 , then $G \cong C_4(P_3)$. Since G is connected, there exists a vertex u_i in K_{n-4} , which is adjacent to v_4 . In this case $\{u_i, v_2\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to v_2 and u_3 for $i \neq j$ is a vertex u_i in K_{n-4} which is adjacent to v_2 and u_3 for $i \neq j$. If $v_3 = 0$, $v_4 = 0$, $v_$

Subcase vii . $\langle S \rangle = K_3 \cup K_1$.

Let v_1 , v_2 , v_3 be the vertices of K_3 and v_4 be the vertices of K_1 . Since G is connected, there exists a vertex u_i in K_{n-4} is adjacent to any one of $\{v_1, v_2, v_3\}$ and v_4 . In this case $\{u_i, v_2\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to v_2 and u_j for $i \neq j$ is adjacent to v_4 . In this case $\{u_i, u_j, u_k, v_2\}$ for $i \neq j \neq k$ is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 6 and hence $K = K_2$, which is a contradiction. Hence no graph exists.

Subcase viii. <S>=K₄-{e}

Let v_1 , v_2 , v_3 , v_4 be the vertices of K_4 . Let {e} be any one the edge inside the cycle C_4 . Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to v_1 . In this case { u_i , v_1 } is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists.

Subcase ix. $\langle S \rangle = C_3(1, 0, 0)$.

Let v_1 , v_2 , v_3 be the vertices of C_3 and let v_4 be adjacent to v_1 . Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to v_2 . In this case $\{u_i, u_j, v_1, v_2\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 6, which is a contradiction. Hence no graph exists.

Subcase x. $\langle S \rangle = K_{1,3}$.

Let v_1 be the root vertex and v_2 , v_3 , v_4 are adjacent to v_1 . Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to v_1 . In this case $\{u_i, v_1\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 4, which is a contradiction. Hence no graph exists. Since G is connected, there exists a vertex u_i in K_{n-4} which is adjacent to any one of $\{v_2, v_3, v_4\}$. Let u_i be adjacent to v_2 . In this case $\{u_i, u_j, v_2, v_1\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 6, and hence $K = K_2 = u_1 u_2$. Let u_1 be adjacent to v_2 . If deg $(v_1) = 3$, deg $(v_3) = deg(v_4) = 1$, deg $(v_2) = 2$, then $G \cong P_5(0, P_2, 0, 0, 0)$. Let u_1 be adjacent to v_2 and v_3 . If deg $(v_1) = 3$, deg $(v_2) = 2 = deg(v_3)$, deg $(v_4) = 1$, then $G \cong C_4(P_2, 0, P_2, 0)$. Let u_1 be adjacent to v_2 and v_4 . If deg $(v_1) = 3$, deg $(v_2) = 2 = deg(v_4)$, deg $(v_3) = 1$, then $G \cong C_4(P_2, 0, P_2, 0)$.

Subcase xi. $\langle S \rangle = C_4$.

In this case it can be verified that no new graph exists.

If G does not contain clique on n-4 vertices, then it can be verified that no new graph exists.

Case iii. $\gamma_{pr} = n - 3$ and $\chi = n - 3$.

Since $\chi = n - 3$, G contains a clique K on n - 3 vertices or does not contain a clique K on n - 3 vertices. Let G contains a clique K on n - 3 vertices. Let $S = V(G) - V(K) = \{v_1, v_2, v_3\}$. Then the induced subgraph $\langle S \rangle$ has the following possible cases. $\langle S \rangle = K_3$, \vec{K}_3 , P_3 , $K_2 \cup K_1$.

Subcase i. $\langle S \rangle = K_3$.

Issn 2250-3005(online)

Since G is connected, there exists a vertex u_i in K_{n-3} which is adjacent to any one of $\{v_1, v_2, v_3\}$. Let u_i be adjacent to v_1 , then $\{u_i, v_1\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 5, which is a contradiction. Hence no graph exists.

Subcase ii. $\langle S \rangle = \overline{K}_3$.

Since G is connected, one of the vertices of K_{n-3} say u_i is adjacent to all the vertices of S (or) u_i be adjacent to v_1 , v_2 and u_j be adjacent to v_3 ($i \neq j$) (or) u_i be adjacent v_1 and u_j be adjacent to v_2 and u_k be adjacent to v_3 ($i \neq j \neq k$). If u_i for some i is adjacent to all the vertices of S, then $\{u_i, v\}$ for some v in K_{n-3} is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 5 and hence $K = K_2 = u_1 u_2$. If u_1 is adjacent to v_1 , v_2 and v_3 , then $G \cong K_{1,4}$. If u_i is adjacent to v_1 and u_j for $i \neq j$ is adjacent to v_2 and v_3 , then $\{u_i, u_j\}$ is an γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 5. Hence $K = K_2 = u_1 u_2$. If u_1 is adjacent to v_1 and v_2 and u_2 is adjacent to v_3 , then $G \cong S^*(K_{1,3})$. Since G is connected, there exists a vertex u_i in K_{n-3} which is adjacent to v_1 and u_j for $i \neq j$ is adjacent to v_2 and u_k for $i \neq j \neq k$ in K_{n-3} , which is adjacent to v_3 . In this case $\{u_i, u_j, u_k, v\}$ for some v in K_{n-3} is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 7, and hence $K = K_4 = \langle u_1, u_2, u_3, u_4 \rangle$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 and u_4 be adjacent to v_3 . If deg $(v_1) = deg(v_2) = deg(v_3) = 1$, then $G \cong K_4(P_2, P_2, P_2, P_2, Q_3)$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 and u_3 be adjacent to v_1 and u_4 be adjacent to v_3 . If deg $(v_1) = 2$, deg $(v_3) = 1$, then $G \cong G_1$.

Subcase iii. $< P_3 > = v_1 v_2 v_3$.

Since G is connected, there exists a vertex u_i in K_{n-3} which is adjacent to v_1 (or equivalently v_3) or v_2 . If u_i is adjacent to v_2 , then $\{u_i, v_2\}$ is a γ_{pr} set of G, so that $\gamma_{ip} = 2$ and n = 5. Hence $K = K_2 = u_1 u_2$. If u_1 is adjacent to v_2 , then $G \cong S^*(K_{1,3})$. If u_1 is adjacent to v_2 and u_2 is adjacent to v_3 , then $G \cong C_4(P_2)$. If u_1 is adjacent to v_2 and u_2 is adjacent to v_1 and v_3 . If deg $(v_1) = 2$, deg $(v_2) = 3$, deg $(v_3) = 2$, then $G \cong G_2$. Since G is connected, there exists a vertex u_i in K_{n-3} which is adjacent to v_1 , then $\{u_i, u_j, v_1, v_2\}$ for some $i \neq j$ is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 7 and hence $K = K_4 = \langle u_1, u_2, u_3, u_4 \rangle$. Let u_1 be adjacent to v_1 and u_3 be adjacent to v_1 . If deg $(v_1) = 3$, deg $(v_2) = 2$, deg $(v_3) = 1$, then $G \cong G_4$.

Subcase iv. $\langle S \rangle = K_2 \cup K_1$.

Let v_1 , v_2 be the vertices of K_2 and v_3 be the isolated vertex. Since G is connected, there exists a vertex u_i in K_{n-3} which is adjacent to any one of $\{v_1, v_2\}$ and $\{v_3\}$ (or) u_i is adjacent to any one of $\{v_1, v_2\}$ and u_j for $i \neq j$ is adjacent to v_3 . In this case $\{v_1, v_2, v_3, u_j\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 4$ and n = 7 and hence $K = K_4 = \langle u_1, u_2, u_3, u_4 \rangle$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_3 . If $deg(v_1) = 2$, $deg(v_2) = 1 = deg(v_3)$, then $G \cong K_4(P_3, P_3, 0, 0)$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_3 and u_3 be adjacent to v_1 and u_4 be adjacent to v_1 . If $deg(v_1) = 4$, $deg(v_2) = 1 = deg(v_3)$, then $G \cong G_5$. If a vertex u_i in K_{n-3} is adjacent to v_1 and u_4 be adjacent to v_1 . If $deg(v_1) = 4$, $deg(v_2) = 1 = deg(v_3)$, then $G \cong G_5$. If a vertex u_i in K_{n-3} is adjacent to v_1 and v_3 . If $deg(v_1) = 2$, $deg(v_2) = 1 = deg(v_3)$ then $\{u_i, v_1\}$ is a γ_{pr} set of G, so that $\gamma_{pr}=2$ and n=5 and hence $K = K_2 = \langle u_1, u_2 \rangle$. Let u_1 be adjacent to v_1 and v_3 . If $deg(v_1) = 2$, $deg(v_2) = 1 = deg(v_3)$ then $G \cong S^*(K_{1,3})$.

If G does not contain a clique K on n - 3 vertices, then it can be verified that no new graph exists.

Case v. $\gamma_{\rm pr} = n - 4$ and $\chi = n - 2$.

Since $\chi = n - 2$, G contains a clique K on n - 2 vertices or does not contain a clique K on n - 2 vertices. Let G contains a clique K on n - 2 vertices. Let $S = V(G) - V(K) = \{V_1, V_2\}$. Then $\langle S \rangle = K_2, \vec{K}_2$.

Subcase i. $\langle S \rangle = K_2$.

Since G is connected, there exists a vertex u_i in K_{n-2} is adjacent to any one of $\{v_1, v_2\}$ then $\{u_i, v_1\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 6 and hence $K = K_4 = \langle u_1, u_2, u_3, u_4 \rangle$. Let u_1 be adjacent to v_1 . If $deg(v_1) = 2$, $deg(v_2) = 1$, then $G \cong K_4(P_3)$. Let u_1 be adjacent to v_1 and u_3 be adjacent to v_1 . If $deg(v_1) = 3$, $deg(v_2) = 1$, then $G \cong G_6$. Let u_1 be adjacent to v_1 and u_3 be adjacent to v_1 . If $deg(v_1) = 3$, $deg(v_2) = 1$, then $G \cong G_6$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 . If $deg(v_1) = 2 = deg(v_2)$, then $G \cong G_8$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 and u_3 be adjacent to v_2 . If $deg(v_2) = 2$, then $G \cong G_9$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 and u_3 be adjacent to v_2 . If $deg(v_1) = 2$, $deg(v_2) = 4$, then $G \cong G_{10}$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 . If $deg(v_1) = 2$, $deg(v_2) = 4$, then $G \cong G_{10}$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_1 and u_2 be adjacent to v_2 . If $deg(v_1) = 2$, $deg(v_2) = 4$, then $G \cong G_{10}$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_1 and u_2 be adjacent to v_1 and u_2 be adjacent to v_1 . If $deg(v_1) = 3$, $deg(v_2) = 2$, $G \cong G_{11}$.

Subcase ii. Let
$$\langle S \rangle = \overline{K}_2$$
.

Issn 2250-3005(online)	August 2012	Page 1074

Since G is connected, v_1 and v_2 are adjacent to a common vertex say u_i of K_{n-2} (or) v_1 is adjacent to u_i for some $i \neq j$ in K_{n-2} . In both cases $\{u_i, u_j\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 6 and hence K = $K_4 = \langle u_1, u_2, u_3, u_4 \rangle$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 . If deg $(v_1) = 1 = \text{deg}(v_2)$, then $G \cong K_4(P_2, P_2, 0, 0)$. Let u_1 be adjacent to v_1 and v_2 . If deg $(v_1) = 1 = \text{deg}(v_2)$, then $G \cong K_4(2P_2)$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_2 . If deg $(v_2) = 2$, then $G \cong G_{12}$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_1 and v_2 . If deg $(v_1) = 2 = \text{deg}(v_2)$, then $G \cong G_{13}$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_2 and u_3 be adjacent to v_1 and u_4 be adjacent to v_2 . If deg $(v_1) = 2 = \text{deg}(v_2)$, then $G \cong G_{13}$. Let u_1 be adjacent to v_1 and v_2 and u_3 be adjacent to v_1 . If deg $(v_1) = 2$, deg $(v_2) = 1$, then $G \cong G_{15}$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_2 . If deg $(v_1) = 1$, deg $(v_2) = 3$, then $G \cong G_{16}$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_1 and v_2 . If deg $(v_1) = 1$, deg $(v_2) = 3$, then $G \cong G_{16}$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_1 and v_2 and u_3 be adjacent to v_1 and u_4 be adjacent to v_1 . If deg $(v_1) = 1$, deg $(v_2) = 3$, then $G \cong G_{16}$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_1 and v_2 and u_3 be adjacent to v_1 and u_4 be adjacent to v_1 and v_4 be adjacent to v_1 . If deg $(v_1) = 1$, deg $(v_2) = 3$, then $G \cong G_{16}$. Let u_1 be adjacent to v_1 and v_2 and u_2 be adjacent to v_1 and v_2 and u_3 be adjacent to v_1 and u_4 be adjacent to v_2 . If deg $(v_1) = \text{deg}(v_2) = 3$, then $G \cong G_{17}$.

If G does not contain a clique K on n - 2 vertices, then it can be verified that no new graph exits.

Case v. $\gamma_{pr} = n - 5$ and $\chi = n - 1$.

Since $\chi = n - 1$, G contains a clique K on n - 1 vertices. Let v_1 be the vertex not on K_{n-1} . Since G is connected, there exists a vertex v_1 is adjacent to one vertex u_i of K_{n-1} . In this case $\{u_i, v_1\}$ is a γ_{pr} set of G, so that $\gamma_{pr} = 2$ and n = 7 and hence $K = K_6 = \langle u_1, u_2, u_3, u_4, u_5, u_6 \rangle$. Let u_1 be adjacent to v_1 . If deg $(v_1) = 1$, then $G \cong K_6(1)$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_1 . If deg $(v_1) = 2$, then $G \cong K_6(2)$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_1 and u_3 be adjacent to v_1 . If deg $(v_1) = 3$, then $G \cong K_6(3)$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_1 and u_4 be adjacent to v_1 . If deg $(v_1) = 4$, then $G \cong K_6(4)$. Let u_1 be adjacent to v_1 and u_2 be adjacent to v_1 and u_3 be adjacent to v_1 and u_4 be adjacent to v_1 and u_5 be adjacent to v_1 . If deg $(v_1) = 5$, then $G \cong K_6(5)$.

Case vi. $\gamma_{pr} = n - 6$ and $\chi = n$.

Since $\chi = n$, $G = K_n$. But for K_n , $\gamma_{pr} = 2$, so that n = 8. Hence $G \cong K_8$.

References:

- [1] Berge C. (1962): Theory of graphs and its applications, Methuen London.
- [2] Harary F. (1972): Graph Theory, Addison Wesley Reading Mass.
- [3] Mahadevan G. (2005): On domination theory and related concepts in graphs, Ph.D. thesis, Manonmaniam Sundaranar University, Tirunelveli, India.
- [4] Mahadevan G, Selvam Avadayappan and Amra Parveen M. (2008): Graphs whose sum of independent domination number and chromatic number equals to 2n-6 for any n > 3, International Journal of Physical Sciences, (Ultra Science), Vol. 20(3)M, 757-762.
- [5] Mahadevan G, Selvam A. and Hajmeral (2008): On connected efficient domination number of a graph, International Journal of Intelligent Information Processing, 2(2), July-December, pp.313-319.
- [6] Mahadevan G, Selvam Avadayappan and Iravithual Basira A. (2008): Sum of complementary connected domination number and chromatic number of a graph, International Journal of Computing and Mathematical Applications, Vol. 2, No. 1-2, pp.159-169.
- [7] Paulraj Joseph J. and Arumugam. S. (1995): Domination in graphs. International Journal of Management Systems, 11: 177-182.
- [8] Paulraj Joseph J. and Arumugam S. (1992): Domination and connectivity in graphs, International Journal of Management and systems, 8 No.3: 233-236.
- [9] Teresa W. Haynes (2001): Paired domination in graphs, Congr. Numer 150.
- [10] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater (1998): Domination in graphs, Advanced Topics, Marcel Dekker, New York.
- [11] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J.Slater (1998): Fundamentals of domination in graphs, Marcel Dekker, New York.