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Abstract:   
Software development, design and testing have become very intricate with the advent of modern highly distributed 

systems, networks, middleware and interdependent application. The demand for complex software systems has increased 

more rapidly than the ability to design, implement, test, and maintain them and the reliability of software systems has 

become a major concern for our modern society. Software reliability modeling and measurements have drawn quite a bit 

of attention recently in various industries due to concerns about the quality of software. In few years of 21
st
 century, many 

reported system outages or machine crashes were traced back to computer software failures. 

                       In this paper, I have many challenges in getting wide spread use of software reliability models. I am focus 

on software reliability models and measurements. A software reliability model specifies the general form of the 

dependence of the failure process on the principal factors that affect it: fault introduction, fault removal and the 

operational environment. During the test phase, the failure rate of a software system is generally decreasing due to 

discovery and correction of software faults. With careful record-keeping procedures in place, it is possible to use 

statistical methods to analyze the historical record. The purpose of these analyses is twofold:(1) to predict the additional 

time needed to achieve a specified reliability objective; (2) to predict the expected reliability when testing is finished.       
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Introduction: 
In few year of century, many reported system outages or machine crashes were traced back to computer software failures. 

Consequently, recent literature is replete with horror stories due to software problems. Software failure has impaired 

several high visibility programs in space, telecommunications and defense and health industries. The Mars Climate 

Orbiter crashed in 1999. The Mars Climate Orbiter Mission failure investigation Board [1] concluded that “The root cause 

of the loss of the spacecraft was the failed translation of English unit into metric units in a segment of ground based, 

navigation related mission software. Current versions of the Osprey aircraft, developed at a cost of billions of dollars, are 

not deployed because of software induced field failure. In the health industry [2], the Yherac-25 radiation therapy 

machine was hit by software errors in its sophisticated control systems and claimed several patients’ lives in 1985 &1986. 

Even in the telecommunications industry, known for its five nines reliability, the nationwide long distance network of a 

major carrier suffered an embarrassing network outage on January 1990, due to software problem. In 1991, a series of 

local network outage occurred in a number of US cities due to software problems in central office switches [3]. 

                                Software reliability is defined as the probability of failure free software operations for a specified 

period of time in a specified environment [4]. The software reliability field discusses ways of quantifying it and using it 

for improvement and control of the software development process.. Software reliability is operationally measured by the 

number of field failures, or failures seen in development, along with a variety of ancillary information. The ancillary 

information includes the time at which the failure was found, in which part of the software it was found, the state of 

software at that time, the nature of the failure. ISO9000-3 [5] is the weakest amongst the recognized standards, in that it 

specifies measurement of field failures as the only required quality metric. 

                                In this paper, I take a narrower view and just look at models that are used in software reliability-their 

efficacy and adequacy without going into details of the interplay between testing and software reliability models. 

Software reliability measurement includes two types of model: static and dynamic reliability estimation, used typically in 

the earlier and later stages of development respectively. These will be discussed in the following two sections. One of the 

main weaknesses of many of the models is that they do not take into account ancillary information, like churn in system 

during testing. Such a model is described in Growth reliability. A key use of the reliability models is in the area of when 

to stop testing. An economic formulation is discussed in next paragraph. 

 

 Static Models: 

One purpose of reliability models is to perform reliability prediction in an early stage of software development. This 

activity determines future software reliability based upon available software metrics and measures. Particularly when field 

failure data are not available (e.g. software is in design or coding stage), the metrics obtained from the software 

development process and the characteristics of the resulting product can be used to estimate the reliability of the software 
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upon testing or delivery. I am discussing two prediction models: the phase based model by Gaffney and Davis [10] and a 

predictive development life cycle model from Telcordia Technologies by Dalal and Ho [11]. 

(a) Phase based Model:   
Gaffney and Davis [10] proposed the phase based model, which divides the software development cycle into different 

phases (e.g. requirement review, design, implementation, unit test, software integration, system test, operation etc.) 

and assumes that code size estimates are available during the early phases follow a Raleigh density function when 

normalized by the lines of code. The idea is to divide the stage of development along a continuous time (i.e. t=0-

1means requirements analysis and so on) and overlay the Raleigh density function with a scale parameter, known as 

fault discovery phase constant, is estimate by equating the area under the curve between earlier phases with observed 

error rates normalized by the lines of code. This method gives an estimate of the fault density for any later phase. The 

model also estimates the number of faults in a given phase by multiplying the fault density by the number of lines of 

code. 

                                 This method is clearly motivated by the corresponding model used in hardware reliability and the 

predictions are hardwired in the model based on one parameter. In spite of this criticism, this model is one of the first 

to leverage information available in earlier development life cycle phases. 

 

(b) Predictive Development Life Cycle Model:  
 

In this model the development life cycle is divided into the same phases as in Phase based method. However, it does 

not postulate a fixed relationship (i.e. Raleigh distribution) between the numbers of faults discovered during different 

phases. Instead, it leverages past releases of similar products to determine the relationships. The relationships are not 

postulated beforehand, but are determined from data using only a few releases per product. Similarity is measured by 

using an empirical hierarchical bays framework. The number of releases used as data is kept minimal and, typically, 

only the most recent one or two releases are used for prediction. The lack of data is made up for by using as many 

products as possible that were being developed in a software organization at around the same time. In that sense it is 

similar to meta analysis [12], where a lack of longitudinal data is overcome by using cross-sectional data. 

    

 

 

 

 

 

 

 

22 products and their releases versus observed (+) and predicted Fault Density connected by dash lines. Solid 

vertical lines are 90% predictive intervals for Faulty Density 

Conceptually, the two basic assumptions behind this model are as follows that one is “defect rates from different products 

in the same product life cycle phase are samples from a statistical universe of products coming from that development 

organization” and the second is “different releases from a given product are samples from a statistical universe of 

releases for that product”. 

Dynamic Models: Reliability Growth Models  
Software reliability estimation determines the current software reliability by applying statistical inference techniques to 

failure data obtained during system test or during system operation. Since reliability tends to improve over time during the 

software testing and operation periods because of removal of faults, the models are also called reliability growth models. 

They model the underlying failure process of the software, and use the observed failure history as a guideline, in order to 

estimate the residual number of faults in the software and the test time required to detect them. This can be used to make 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4 

 
 

Issn 2250-3005(online)                                                      August| 2012    Page 1062 
       

 

release and development decisions. Most current software reliability models fall into this category. Details of these 

models can be found in Lyu [9], Musa et al. [8], Singpurwalla and Wilson [13], and Gokhale et al. [14].  

Classes of Models:   

I am describing a general class of models. In binominal models the total number of faults is some number N; the number 

found by time t has a binominal distribution with mean   ( )t NF t  , where F (t) is the probability of a particular fault 

being found by time t. Thus, the number of faults found in any interval of time (including the interval (t, ∞) is also 

binominal. F (t) could be any arbitrary cumulative distribution function. Then, a general class of reliability models is 

obtained by appropriate parameterization of µ (t) and N. 

                                     Letting N be Poisson (with some mean υ) gives the related Poisson model; now, the number of 

faults found in any interval is Poisson, and for disjoint intervals these numbers are independent. Denoting the derivative of 

F by F׳, rate at time t is ( )F t /[1-F(t)]. These models are Markovian but not strongly Markoviaan, except when F is 

exponential; minor variations of this case were studied by Jelinski and Moranda [15], Shooman [16], Schneidewind [17], 

Musa [18], Moranda [19], and Goel and okomoto [20]. Schick and Wolverton [21] and crow [22] made F a Weibull 

distribution; Yamada et al. [23] made F a Gamma distribution; and Littlewood’s model [24] is equivalent to aassuming F 

to be Pareto. Musa and Okumoto [25] assumed the hazard rate to be an inverse linear function of time; for this 

“Logarithmic Poisson” model the total number of failures is infinite. The success of a model is often judged by how well 

it fits an estimated reliability curve µ(t) to the observed “number of faults versus time” function.  

                                   Let us examine the real example plotted in above Figure from testing a large software system at a 

telecommunications research company. The system had been developed over years, and new releases were created and 

tested by the same development and testing groups respectively. In this figure, the elapsed testing time in staff day’s t is 

plotted against the cumulative number of faults found for one of the releases. It is not clear whether there is some “total 

number” of bugs to be found, or whether the number found will continue to increase indefinitely. However, from data 

such as that in figure, an estimation of the tail of a distribution with a reasonable degree of precision is not possible. I also 

fit a special case of the general reliability growth model described above corresponding to N being Poisson and F being 

exponential.  

Reliability Growth Modeling: 

We have so far discussed a number of different kinds of reliability model of varying degrees of plausibility, including 

phase-based models depending upon a Raleigh curve, growth models like the Goel-okumoto model, etc. The growth 

models take us at input either failure time on failure count data, and fit a stochastic process model to reflect reliability 

growth. The differences between the models lie principally in assumptions made on the underlying stochastic process 

generating the data. 

Most existing models assume that no explanatory variables are available. This assumption is assuredly simplistic, when 

the models are used to model a testing process, for all but small systems involving short development and life cycles. For 

large systems (e.g. greater than 100 KNCSL, i.e. thousands of non-commentary source lines) there are variables, other 

than time, that are very relevant. For example, it is typically assumed that the number of faults (found and unfound) in a 

system under test remains stable during testing. This implies that the code remains frozen during testing. However, this is 

rarely the case for large systems, since aggressive delivery cycles force the final phases of development to overlap with 

the initial stages of system test. Thus, the size of code and, consequently, the number of faults in a large system can vary 

widely during testing. If these changes in code size are not considered as a covariate, one is , at best, likely to have an 

increase in variability and a loss in predictive performance; at worst, a poor fitting model with unstable parameter 

estimates is likely. I briefly describe a general approach proposed by Dalal and McIntosh [28] for incorporating covariates 

along with a case study dealing with reliability modeling during product testing when code is changing. 

 

 

 

                                     3000 

                    NCNCSL                                

 

                                          0      200   400     600     800      1000      1200    1400 

          Staff days 

 

 



                     International Journal Of Computational Engineering Research (ijceronline.com) Vol. 2 Issue. 4 

 
 

Issn 2250-3005(online)                                                      August| 2012    Page 1063 
       

 

                                       800 

     Cumulative faults     400                 

 

                                          0              800        1000         1500        2000 

                                                         Staff days Model fit 

 

As an example, consider a new release of a large telecommunications system with approximately 7 million NCSL and 300 

KNCNCSL (i.e. thousands of lines off non-commentary new or changed source lines). For a faster delivery cycle, the 

source code used for system test was updated every night throughout the test period. At the end of each of 198 calendar 

days in the test cycle, the number of faults found, NCNCSL, and thee staff time spent on testing were collected. Above 

figure portrays the growth of the system in terms of NCNCSL and of faults against staff time. The corresponding 

numerical data are providing in Dalal and McIntosh [28]. 

                                    Assume that the testing process is observed at time ti , i=0, 1,. . ., h, and at any given time the 

amount of time it takes to find specific bug is exponential with rate m. At time ti, the total number of faults remaining in 

the system is Poisson with mean li+1, and NCNCSL is increased by an amount Ci. This change adds a Poisson number of 

faults with mean proportional to C, say qCi, These assumption lead to the mass blance equation, namely that the expected 

number of faults in the system at ti (after possible modification) is the expected number of faults in the system at ti-1 

adjusted by the expected number found in the interval (ti-1, ti) plus the faults introduced by the changes made at ti:  

                                                             
 1

1
i im t t

i i il l e qC 

    

 

for i= 1, 2, 3….h. Note that q represent the number of new faults entering the system per additional NCNCSL, and l1 

represent the number of faults in the code at the starts of system test. Both of these parameters make it possible to 

differentiate between the new code added in the current release and the older code. For the example, the estimated 

parameters are q=0.025, m=0.002, and l1=41. The fitted and the observed data are plotted against staff time in the given 

above figure (bottom). The fit is evidently very good. Of course, assessing the model on independent or new data is 

required for proper validation.  

                                       Now, I examine the efficacy of creating a statistical model. The estimate of q in the example is 

highly significant, both statistically and practically, showing the need for incorporating changes in NCNCSL as a 

covariate. Its numerical value implies that for every additional 10000 NCNCSL added to the system, 25 faults are being 

added as well. For these data, the predicted number of faults at the end of the test period is Poisson distributed with mean 

145. Dividing this quantity by the total NCNCSL, gives 4.2 per 10000 NCNCSL as an estimated field fault density. These 

estimates of the incoming and outgoing quality are valuable in judging the efficacy of system testing and for deciding 

where resources should be allocated to improve the quality. Here, for example, system testing was effective, in that it 

removed 21 of every 25 faults. However, it raises another issue: 25 faults per 10000 NCNCSL entering system test may 

be too high and a plan ought to be considered to improve the incoming quality.    

                                   None of the above conclusion could have been made without using a statistical model. These 

conclusions are valuable for controlling and improving the process. 

 

Conclusion:     
In this paper, I am described key software reliability models for early stages, as well as for the test and operational phases 

and have given some examples of their uses. I have also proposed some new research directions useful to practitioners, 

which will lead to wider use of software reliability models.  
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