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ABSTRACT 
As densities of FPGA are increasing day by day, the 

feasibility of doing floating point calculations on FPGAs 

has improved. Moreover, recent works in FPGA 

architecture have changed the design tradeoff space by 

providing new fixed circuit functions which may be 

employed in floating-point computations. By using high 

density multiplier blocks and shift registers efficient 

computational unit can be developed. This paper evaluates 

the use of such blocks for the design of floating-point units 

including adder, subtractor, multiplier and divider.  

 

1. Introduction: 
Floating-point unit is a part of a computer system specially 

designed to carry out operations on floating 

point numbers. Addition, subtraction, multiplication, divisio

n are the typical operation of floating point unit.Floating-

point operations are often pipelined. In 

superscalar architectures without general out-of-order 

execution, floating-point operations were sometimes 

pipelined separately from integer operations.  

Over the past few years the use of FPGAs in compute-

intensive applications has been growing. The vast majority 

of applications have employed fixed-point arithmetic due to 

its smaller size. The key advantage of floating-point over 

fixed-point is its ability to automatically scale to 

accommodate a wide range of values using its exponent. 

Floating-point is thus preferred by programmers for non-

integer computations when it is available on CPUs due to 

its ease of use. However, this scaling behavior comes at the 

cost of reduced accuracy. A 64-bit fixed point 

Representation can have more accuracy (but less range) 

than a 64-bit floating-point representation.  

2. Floating Point Unit Organization: 
The FPU chip performs all floating-point functions for 

microprocessor chip set. The FPU has two fully-  pipelined 

execution units, allowing two floating-point mathematical 

operations and two floating-point memory operations every 

cycle. The FPU register file  contains 32, 64-bit entries and 

has eight read ports and four write ports. Load and store 

data queues provide a pipelined interface between the IU 

and the FPU, streamlining data flow and minimizing 

unused cycles. The FPU offers peak performance of 300 

double-precision MFLOPS with a clock frequency of 75 

MHz  The IU places floating-point instructions in the 

floating-point instruction queue in the IU. Each entry in the 

floating-point instruction queue is arranged as a quad word. 

The dispatch mechanism is similar to that of the IU: from  

 

 

Zero to four floating-point instructions can be dispatched by 

the IU to the FPU each cycle. Instructions are dispatched 

only when the FPU has adequate resources available to 

execute the instructions. The floating-point instruction 

queue provides temporary storage for floating-point 

instructions while any dependencies that might prevent the 

floating-point instructions from being executed (such as 

waiting for dependent loads to complete, etc.) are cleaned 

up. 

Floating-point instruction dispatches and floating-point 

loads and stores to the data streaming cache are controlled 

by the IU. The IU is responsible for generating all address 

and control signals for floating-point loads and stores to the 

data streaming cache. Accesses that miss in the data 

streaming cache and require interfacing to main memory 

are handled by the off-chip cache controller. During these 

miss cycles, the FPU continues to execute floating point 

instructions already in the queue. 

Once floating-point data is retrieved from the data 

streaming cache, it is placed in the load data queue. For 

store operations, the result is placed in the store data queue. 

As soon as the corresponding address information from the 

tag RAM is available, the data is written out to the data 

streaming cache. Figure 1 diagrams the floating-point data 

path. 

 

Figure1: Floating Point data path 

3. Conceptual Overview: 
The input operands are separated into their mantissa and 

exponent components. The comparison of the operands to 

determine which is larger only compares the exponents of 

the two operand, so in fact, if the exponents are equal then 

both the input numbers are treated equally to populate the 

registers. 

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Subtraction
http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Instruction_pipelining
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Out-of-order_execution
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This is not an issue because the reason the operands are 

compared is to find the operand with the larger exponent, so 

that the mantissa of the operand with the smaller exponent 

can be right shifted before performing the addition. If the 

exponents are equal, the mantissas are added without 

shifting. 

 

 

Figure 2: Conceptual overview of FPU 

4.  Floating Point Numbers 
There are several ways to represent real numbers on 

computers. Floating-point representation - the most 

common solution - basically represents real in scientific 

notation. Scientific notation represents numbers as a base 

number and an exponent. For example, 123.456 could be 

represented as 1.23456 × 10
2
. In hexadecimal, the number 

123.abc might be represented as 1.23abc × 16
2
. 

Floating-point solves a number of representation problems. 

Fixed-point has a fixed window of representation, which 

limits it from representing very large or very small 

numbers. Also, fixed-point is prone to a loss of precision 

when two large numbers are divided. Floating point on the 

other hand, employs a sort of "sliding window" of precision 

appropriate to the scale of the number. This allows it to 

represent numbers from 1,000,000,000,000 to 

0.0000000000000001 with ease. 

 4.1 STORAGE LAYOUT 
IEEE floating point numbers have three basic components: 

the sign, the exponent, and the mantissa. The mantissa is 

composed of the fraction and an implicit leading digit 

(explained below). The exponent base (2) is implicit and 

need not be stored. 

The following figure shows the layout for single (32-bit) 

and doubles (64-bit) precision floating-point values. The 

number of bits for each field are shown (bit ranges are in 

square brackets):  

 
Figure 3: Layout for single and double bit precision 

floating point values 

4.1.1 THE SIGN BIT 

The sign bit is as simple as it gets. 0 denotes a positive 

number; 1 denotes a negative number. Flipping the value of 

this bit flips the sign of the number. 

4.1.2 THE EXPONENT 

The exponent field needs to represent both positive and 

negative exponents. To do this, a bias is added to the actual 

exponent in order to get the stored exponent. For IEEE 

single-precision floats, this value is 127. Thus, an exponent 

of zero means that 127 is stored in the exponent field. A 

stored value of 200 indicates an exponent of (200-127), or 

73. The exponents of -127 (all 0s) and +128 (all 1s) are 

reserved for special numbers. 

For double precision, the exponent field is 11 bits, and has a 

bias of 1023. 

4.1.3 THE MANTISSA 

The mantissa, also known as the significand, represents the 

precision bits of the number. It is composed of an implicit 

leading bit and the fraction bits.  

In order to maximize the quantity of representable numbers, 

floating-point numbers are typically stored 

in normalized form. This basically puts the radix point after 

the first non-zero digit. In normalized form, five is 

represented as 5.0 × 10
0
. 

A nice little optimization is available to us in base two, 

since the only possible non-zero digit is 1. Thus, we can 

just assume a leading digit of 1, and don't need to represent 

it explicitly. As a result, the mantissa has effectively 24 bits 

of resolution, by way of 23 fraction bits. 

4.2 Double Precision Floating Point Number 

The IEEE 754 standard defines how double precision 

floating point number are represented. 64 bits are used to 

represent a double precision floating point number. 

 
Figure 4: Double precision floating point number bit 

format 
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The sign bit occupies bit 63. ‘1’ signifies a negative 

number, and ‘0’ is a positive number. The exponent field is 

11 bits long, occupying bits 62-52. The value in this 11-bit 

field is offset by 1023, so the actual exponent used to 

calculate the value of the number is 2^(e-1023). The 

mantissa is 52 bits long and occupies bits 51-0. There is a 

leading ‘1’ that is not included in the mantissa, but it is part 

of the value of the number for all double precision floating 

point numbers with a value in the exponent field greater 

than 0. A 0 in the exponent field corresponds to a 

denormalized number, which is explained in the next 

section. The actual value of the double precision floating 

point number is the following: 

 

Value = -1^(sign bit) * 2^(exponent – 1023) * 

1.(mantissa) 

 

(1.mantissa) being a base 2 representation of a number 

between 1 and 2, with 1 followed by a decimal point and 

the 52 bits of the mantissa.  

 

For an example, how would the number 3.5 be represented 

in a double precision floating point format? The sign bit 63 

is 0 to represent a positive number. The exponent will be 

1024. This is calculated by breaking down 3.5 as (1.75) * 

2^(1). The exponent offset is 1023, so you add 1023 + 1 to 

calculate the value for the exponent field. Therefore, bits 

62-52 will be “1000000000”. The mantissa corresponds to 

the 1.75, which is multiplied by the power of 2 (2^1) to get 

3.5. The leading ‘1’ is implied in the mantissa but not 

actually included in the 64-bit format. So .75 is represented 

by the mantissa. Bit 51, the highest bit of the mantissa, 

corresponds to 2^(-1). Bit 50 corresponds to 2^(-2), and this 

continues down to Bit 0 which corresponds to 2^(-52). To 

represent .75, bits 51 and 50 are 1’s, and the rest of the bits 

are 0’s. So 3.5 as a double-precision floating point number 

is: 

 

 
Figure5: Double precision representation of 3.5 

 

4.3 BASIC FLOATING POINT       

ARITHMETIC                                                                       
The floating-point multiplier unit is the simplest of the 

arithmetic operations—the significand of the two operands 

are multiplied using a fixed-point multiplier and the 

exponents summed (the extra bias must be removed in the 

process). After multiplication the possibility of a one-bit 

overflow exists. Handling this and doing the desired 

rounding are then completed. In all our designs the 

rounding mode implemented is round to nearest even, 

which is the default for the IEEE standard. The sign bit of 

the result is the XOR of the operand sign bits. Note that in  

This and all other operations described below, the implied 

’1’ of each significand is prepended at the outset of the 

computation then removed after its completion before the 

result is packed into the result word. Figure 6(a) shows a 

notional layout of a floating-point multiplier. It is drawn to 

reflect the relative sizes of its sub-parts  that the majority of 

the area is consumed by the fixed-point significand 

multiplier when built from LUTs and flip flops. 

 
Figure 6: Floating Point Unit Floor Plan 

 

Floating-point addition is much more complicated than 

multiplication. The first step is to compare the two 

operands’ exponents to determine which is larger. The 

significand of the operand with the smaller exponent is then 

shifted right dictated by the difference in exponents. The 

two matched significands are then added or subtracted, 

depending 

on the operands’ sign bits. The result significand is then 

normalized to fall within the range by shifting and the 

exponent adjusted. Finally, rounding is done and the result 

packed into the output word. Figure 6(b), shows a notional 

layout for a floating point adder. Note that the exponent 

matching and normalization hardware dominate the area 

resources of the unit. Since the above adder requires an 

adder/subtractor as its core, subtraction of floating-point 

numbers is readily incorporated into the above design at the 

cost of a few gates’ logic to determine when to add and 

when to subtract the significands. 

 

 A number of methods may be used for floating-point 

division in FPGAs. Division by reciprocal multiplication is 

discussed in both [1] and [2]. To accomplish this, the 

reciprocal of the denominator is computed via table lookup 

and then multiplied by the numerator. An bit significand 

requires a table with entries. This is problematic for 

anything other than small word sizes. A second approach 

that uses repeated multiplications to converge to the 

reciprocal of the denominator. In addition, for comparison 

purposes we present a restoring array divider design. The 

core of this array divider is the significand divider which 

consists of a series of stages, one per significand bit. Each 

stage consists of a subtractor and a multiplexor and two 

registers. As shown Figure 6(c) the array divider consumes 

the majority of the circuit area. 
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5   Floating Point Unit Ip Core 
The floating point IP core is separated into 9 source files: 

1. fpu_double.vhd (top level) 

2. fpu_add.vhd 

3. fpu_sub.vhd 

4. fpu_mul.vhd 

5. fpu_div.vhd 

6. fpu_round.vhd 

7. fpu_exceptions.vhd 

8. fpupack.vhd 

9. comppack.vhd 

 

5.1 HIERARCHY: 

 

Figure 7: Hierarchy of various source file 

5.2 TOP LEVEL 

 

Figure 8: Top level module of Floating point unit 

 

The input signals to the top level module are the following: 

1. clk (global) 

2. rst (global) 

2. enable (set high to start operation) 

3. rmode (rounding mode, 2 bits, 00 = nearest, 01 = zero,10 

= pos inf, 11 = neg inf) 

4. fpu_op (operation code, 3 bits, 000 = add, 001 = subtract, 

010 = multiply, 011 = divide, others are not used) 

5. opa, opb (input operands, 64 bits) 

 

The output signals from the module are the following: 

6. out_fp (output from operation, 64 bits) 

7. ready (goes high when output is available) 

8. underflow 

9. overflow 

10. inexact 

11. exception 

12. invalid 

The top level, fpu_double, starts a counter (count_ready) 

one clock cycle after enable goes high. The counter 

(count_ready) counts up to the number of clock cycles 

required for the specific operation that is being performed. 

For addition, it counts to 20, for subtraction 21, for 

multiplication 24, and for division 71. Once count_ready 

reaches the specified final count, the ready signal goes high, 

and the output will be valid for the operation being 

performed. fpu_double contains the instantiations of the 

other 6 modules, 

which are 6 separate source files of the 4 operations (add, 

subtract, multiply, divide) and the rounding module and 

exceptions module. If the fpu operation is addition, and one 

operand is positive and the other is negative, the fpu_double 

module will route the operation to the subtraction module. 

Likewise, if the operation called for is subtraction, and the 

A operand is positive and the B operand is negative, or if 

the A operand is negative and the B operand is positive, the 

fpu_double module will route the operation to the addition 

module. The sign will also be adjusted to the correct value 

depending on the specific case. 

 

6 Simulation  Result 
The generic and Spartan3-E optimized designs were similar 

for the add/sub and multiplier units, with the optimized 

designs simply using shift registers and the 18x18 built-in 

multipliers. The divider units were fundamentally different 

from one another. The significand divider for the generic 

unit was a restoring array divider, while the optimized 

design used the 18x18 built-in multipliers. The word sizes 

tested which show the best performance for the 

optimizations presented include 16-bits (9-bit significand), 

23-bits (16-bit significand), and 41-bits (32-bit significand). 

 

This is due to there being a good match between the 

significand size and the width of the available multiplier 

blocks in Spartan-3E. In addition, a standard IEEE 32-bit 

format was run (23-bit significand) which shows less 

benefit due to not as good a match between significand size 

and multiplier block. 

 In a configurable computing environment there 

may be no special significance to using the standard IEEE 

word sizes other than they match what is used on CPUs, 

simplifying validation. In many cases, however, non-

standard word sizes may be profitably employed Three 

different versions of each module are represented — the 

generic module, an optimized module which uses both 

built-in multipliers and shift registers. Of those area 

savings, the multiplier and divider the majority of the area 

savings was due to the use of the multiplier blocks Results 

of of synthesize and simulation are shown in figure 9 ,10 

and 11.g 
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Figure 9: Synthesize Result of Floating Point unit 

 

 
Figure 10: Detailed view of Floating point unit after 

synthesize 

 

 
Figure 11: Simulation Result of Floating Point unit 

 

7, Conclusions  

This paper see the effects of new FPGA features like 

multiplier blocks  and shift registers on the designing 

of floating point unit that performs addition, 

subtraction ,multiplication  and division. And research 

shows that area required by Floating point unit for 

doing multiplication and division by using newly 

added   block  is much less in comparison to floating 

point unit using LUT’s FF’s only. 
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