
Deepa Saini, Bijender M’dia /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |972-976 Page 972

Floating Point Unit Implementation on FPGA

Deepa Saini
 1
, Bijender M’dia

2

1, 2
(Electronics & Communication, M.D.University, INDIA

ABSTRACT
As densities of FPGA are increasing day by day, the

feasibility of doing floating point calculations on FPGAs

has improved. Moreover, recent works in FPGA

architecture have changed the design tradeoff space by

providing new fixed circuit functions which may be

employed in floating-point computations. By using high

density multiplier blocks and shift registers efficient

computational unit can be developed. This paper evaluates

the use of such blocks for the design of floating-point units

including adder, subtractor, multiplier and divider.

1. Introduction:
Floating-point unit is a part of a computer system specially

designed to carry out operations on floating

point numbers. Addition, subtraction, multiplication, divisio

n are the typical operation of floating point unit.Floating-

point operations are often pipelined. In

superscalar architectures without general out-of-order

execution, floating-point operations were sometimes

pipelined separately from integer operations.

Over the past few years the use of FPGAs in compute-

intensive applications has been growing. The vast majority

of applications have employed fixed-point arithmetic due to

its smaller size. The key advantage of floating-point over

fixed-point is its ability to automatically scale to

accommodate a wide range of values using its exponent.

Floating-point is thus preferred by programmers for non-

integer computations when it is available on CPUs due to

its ease of use. However, this scaling behavior comes at the

cost of reduced accuracy. A 64-bit fixed point

Representation can have more accuracy (but less range)

than a 64-bit floating-point representation.

2. Floating Point Unit Organization:
The FPU chip performs all floating-point functions for

microprocessor chip set. The FPU has two fully- pipelined

execution units, allowing two floating-point mathematical

operations and two floating-point memory operations every

cycle. The FPU register file contains 32, 64-bit entries and

has eight read ports and four write ports. Load and store

data queues provide a pipelined interface between the IU

and the FPU, streamlining data flow and minimizing

unused cycles. The FPU offers peak performance of 300

double-precision MFLOPS with a clock frequency of 75

MHz The IU places floating-point instructions in the

floating-point instruction queue in the IU. Each entry in the

floating-point instruction queue is arranged as a quad word.

The dispatch mechanism is similar to that of the IU: from

Zero to four floating-point instructions can be dispatched by

the IU to the FPU each cycle. Instructions are dispatched

only when the FPU has adequate resources available to

execute the instructions. The floating-point instruction

queue provides temporary storage for floating-point

instructions while any dependencies that might prevent the

floating-point instructions from being executed (such as

waiting for dependent loads to complete, etc.) are cleaned

up.

Floating-point instruction dispatches and floating-point

loads and stores to the data streaming cache are controlled

by the IU. The IU is responsible for generating all address

and control signals for floating-point loads and stores to the

data streaming cache. Accesses that miss in the data

streaming cache and require interfacing to main memory

are handled by the off-chip cache controller. During these

miss cycles, the FPU continues to execute floating point

instructions already in the queue.

Once floating-point data is retrieved from the data

streaming cache, it is placed in the load data queue. For

store operations, the result is placed in the store data queue.

As soon as the corresponding address information from the

tag RAM is available, the data is written out to the data

streaming cache. Figure 1 diagrams the floating-point data

path.

Figure1: Floating Point data path

3. Conceptual Overview:
The input operands are separated into their mantissa and

exponent components. The comparison of the operands to

determine which is larger only compares the exponents of

the two operand, so in fact, if the exponents are equal then

both the input numbers are treated equally to populate the

registers.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Addition
http://en.wikipedia.org/wiki/Subtraction
http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Instruction_pipelining
http://en.wikipedia.org/wiki/Superscalar
http://en.wikipedia.org/wiki/Out-of-order_execution
http://en.wikipedia.org/wiki/Out-of-order_execution

Deepa Saini, Bijender M’dia /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |972-976 Page 973

This is not an issue because the reason the operands are

compared is to find the operand with the larger exponent, so

that the mantissa of the operand with the smaller exponent

can be right shifted before performing the addition. If the

exponents are equal, the mantissas are added without

shifting.

Figure 2: Conceptual overview of FPU

4. Floating Point Numbers
There are several ways to represent real numbers on

computers. Floating-point representation - the most

common solution - basically represents real in scientific

notation. Scientific notation represents numbers as a base

number and an exponent. For example, 123.456 could be

represented as 1.23456 × 10
2
. In hexadecimal, the number

123.abc might be represented as 1.23abc × 16
2
.

Floating-point solves a number of representation problems.

Fixed-point has a fixed window of representation, which

limits it from representing very large or very small

numbers. Also, fixed-point is prone to a loss of precision

when two large numbers are divided. Floating point on the

other hand, employs a sort of "sliding window" of precision

appropriate to the scale of the number. This allows it to

represent numbers from 1,000,000,000,000 to

0.0000000000000001 with ease.

 4.1 STORAGE LAYOUT
IEEE floating point numbers have three basic components:

the sign, the exponent, and the mantissa. The mantissa is

composed of the fraction and an implicit leading digit

(explained below). The exponent base (2) is implicit and

need not be stored.

The following figure shows the layout for single (32-bit)

and doubles (64-bit) precision floating-point values. The

number of bits for each field are shown (bit ranges are in

square brackets):

Figure 3: Layout for single and double bit precision

floating point values

4.1.1 THE SIGN BIT

The sign bit is as simple as it gets. 0 denotes a positive

number; 1 denotes a negative number. Flipping the value of

this bit flips the sign of the number.

4.1.2 THE EXPONENT

The exponent field needs to represent both positive and

negative exponents. To do this, a bias is added to the actual

exponent in order to get the stored exponent. For IEEE

single-precision floats, this value is 127. Thus, an exponent

of zero means that 127 is stored in the exponent field. A

stored value of 200 indicates an exponent of (200-127), or

73. The exponents of -127 (all 0s) and +128 (all 1s) are

reserved for special numbers.

For double precision, the exponent field is 11 bits, and has a

bias of 1023.

4.1.3 THE MANTISSA

The mantissa, also known as the significand, represents the

precision bits of the number. It is composed of an implicit

leading bit and the fraction bits.

In order to maximize the quantity of representable numbers,

floating-point numbers are typically stored

in normalized form. This basically puts the radix point after

the first non-zero digit. In normalized form, five is

represented as 5.0 × 10
0
.

A nice little optimization is available to us in base two,

since the only possible non-zero digit is 1. Thus, we can

just assume a leading digit of 1, and don't need to represent

it explicitly. As a result, the mantissa has effectively 24 bits

of resolution, by way of 23 fraction bits.

4.2 Double Precision Floating Point Number

The IEEE 754 standard defines how double precision

floating point number are represented. 64 bits are used to

represent a double precision floating point number.

Figure 4: Double precision floating point number bit

format

Deepa Saini, Bijender M’dia /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |972-976 Page 974

The sign bit occupies bit 63. ‘1’ signifies a negative

number, and ‘0’ is a positive number. The exponent field is

11 bits long, occupying bits 62-52. The value in this 11-bit

field is offset by 1023, so the actual exponent used to

calculate the value of the number is 2^(e-1023). The

mantissa is 52 bits long and occupies bits 51-0. There is a

leading ‘1’ that is not included in the mantissa, but it is part

of the value of the number for all double precision floating

point numbers with a value in the exponent field greater

than 0. A 0 in the exponent field corresponds to a

denormalized number, which is explained in the next

section. The actual value of the double precision floating

point number is the following:

Value = -1^(sign bit) * 2^(exponent – 1023) *

1.(mantissa)

(1.mantissa) being a base 2 representation of a number

between 1 and 2, with 1 followed by a decimal point and

the 52 bits of the mantissa.

For an example, how would the number 3.5 be represented

in a double precision floating point format? The sign bit 63

is 0 to represent a positive number. The exponent will be

1024. This is calculated by breaking down 3.5 as (1.75) *

2^(1). The exponent offset is 1023, so you add 1023 + 1 to

calculate the value for the exponent field. Therefore, bits

62-52 will be “1000000000”. The mantissa corresponds to

the 1.75, which is multiplied by the power of 2 (2^1) to get

3.5. The leading ‘1’ is implied in the mantissa but not

actually included in the 64-bit format. So .75 is represented

by the mantissa. Bit 51, the highest bit of the mantissa,

corresponds to 2^(-1). Bit 50 corresponds to 2^(-2), and this

continues down to Bit 0 which corresponds to 2^(-52). To

represent .75, bits 51 and 50 are 1’s, and the rest of the bits

are 0’s. So 3.5 as a double-precision floating point number

is:

Figure5: Double precision representation of 3.5

4.3 BASIC FLOATING POINT

ARITHMETIC
The floating-point multiplier unit is the simplest of the

arithmetic operations—the significand of the two operands

are multiplied using a fixed-point multiplier and the

exponents summed (the extra bias must be removed in the

process). After multiplication the possibility of a one-bit

overflow exists. Handling this and doing the desired

rounding are then completed. In all our designs the

rounding mode implemented is round to nearest even,

which is the default for the IEEE standard. The sign bit of

the result is the XOR of the operand sign bits. Note that in

This and all other operations described below, the implied

’1’ of each significand is prepended at the outset of the

computation then removed after its completion before the

result is packed into the result word. Figure 6(a) shows a

notional layout of a floating-point multiplier. It is drawn to

reflect the relative sizes of its sub-parts that the majority of

the area is consumed by the fixed-point significand

multiplier when built from LUTs and flip flops.

Figure 6: Floating Point Unit Floor Plan

Floating-point addition is much more complicated than

multiplication. The first step is to compare the two

operands’ exponents to determine which is larger. The

significand of the operand with the smaller exponent is then

shifted right dictated by the difference in exponents. The

two matched significands are then added or subtracted,

depending

on the operands’ sign bits. The result significand is then

normalized to fall within the range by shifting and the

exponent adjusted. Finally, rounding is done and the result

packed into the output word. Figure 6(b), shows a notional

layout for a floating point adder. Note that the exponent

matching and normalization hardware dominate the area

resources of the unit. Since the above adder requires an

adder/subtractor as its core, subtraction of floating-point

numbers is readily incorporated into the above design at the

cost of a few gates’ logic to determine when to add and

when to subtract the significands.

 A number of methods may be used for floating-point

division in FPGAs. Division by reciprocal multiplication is

discussed in both [1] and [2]. To accomplish this, the

reciprocal of the denominator is computed via table lookup

and then multiplied by the numerator. An bit significand

requires a table with entries. This is problematic for

anything other than small word sizes. A second approach

that uses repeated multiplications to converge to the

reciprocal of the denominator. In addition, for comparison

purposes we present a restoring array divider design. The

core of this array divider is the significand divider which

consists of a series of stages, one per significand bit. Each

stage consists of a subtractor and a multiplexor and two

registers. As shown Figure 6(c) the array divider consumes

the majority of the circuit area.

Deepa Saini, Bijender M’dia /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |972-976 Page 975

5 Floating Point Unit Ip Core
The floating point IP core is separated into 9 source files:

1. fpu_double.vhd (top level)

2. fpu_add.vhd

3. fpu_sub.vhd

4. fpu_mul.vhd

5. fpu_div.vhd

6. fpu_round.vhd

7. fpu_exceptions.vhd

8. fpupack.vhd

9. comppack.vhd

5.1 HIERARCHY:

Figure 7: Hierarchy of various source file

5.2 TOP LEVEL

Figure 8: Top level module of Floating point unit

The input signals to the top level module are the following:

1. clk (global)

2. rst (global)

2. enable (set high to start operation)

3. rmode (rounding mode, 2 bits, 00 = nearest, 01 = zero,10

= pos inf, 11 = neg inf)

4. fpu_op (operation code, 3 bits, 000 = add, 001 = subtract,

010 = multiply, 011 = divide, others are not used)

5. opa, opb (input operands, 64 bits)

The output signals from the module are the following:

6. out_fp (output from operation, 64 bits)

7. ready (goes high when output is available)

8. underflow

9. overflow

10. inexact

11. exception

12. invalid

The top level, fpu_double, starts a counter (count_ready)

one clock cycle after enable goes high. The counter

(count_ready) counts up to the number of clock cycles

required for the specific operation that is being performed.

For addition, it counts to 20, for subtraction 21, for

multiplication 24, and for division 71. Once count_ready

reaches the specified final count, the ready signal goes high,

and the output will be valid for the operation being

performed. fpu_double contains the instantiations of the

other 6 modules,

which are 6 separate source files of the 4 operations (add,

subtract, multiply, divide) and the rounding module and

exceptions module. If the fpu operation is addition, and one

operand is positive and the other is negative, the fpu_double

module will route the operation to the subtraction module.

Likewise, if the operation called for is subtraction, and the

A operand is positive and the B operand is negative, or if

the A operand is negative and the B operand is positive, the

fpu_double module will route the operation to the addition

module. The sign will also be adjusted to the correct value

depending on the specific case.

6 Simulation Result
The generic and Spartan3-E optimized designs were similar

for the add/sub and multiplier units, with the optimized

designs simply using shift registers and the 18x18 built-in

multipliers. The divider units were fundamentally different

from one another. The significand divider for the generic

unit was a restoring array divider, while the optimized

design used the 18x18 built-in multipliers. The word sizes

tested which show the best performance for the

optimizations presented include 16-bits (9-bit significand),

23-bits (16-bit significand), and 41-bits (32-bit significand).

This is due to there being a good match between the

significand size and the width of the available multiplier

blocks in Spartan-3E. In addition, a standard IEEE 32-bit

format was run (23-bit significand) which shows less

benefit due to not as good a match between significand size

and multiplier block.

 In a configurable computing environment there

may be no special significance to using the standard IEEE

word sizes other than they match what is used on CPUs,

simplifying validation. In many cases, however, non-

standard word sizes may be profitably employed Three

different versions of each module are represented — the

generic module, an optimized module which uses both

built-in multipliers and shift registers. Of those area

savings, the multiplier and divider the majority of the area

savings was due to the use of the multiplier blocks Results

of of synthesize and simulation are shown in figure 9 ,10

and 11.g

Deepa Saini, Bijender M’dia /International Journal Of Computational Engineering Research / ISSN: 2250–3005

IJCER | May-June 2012 | Vol. 2 | Issue No.3 |972-976 Page 976

Figure 9: Synthesize Result of Floating Point unit

Figure 10: Detailed view of Floating point unit after

synthesize

Figure 11: Simulation Result of Floating Point unit

7, Conclusions

This paper see the effects of new FPGA features like

multiplier blocks and shift registers on the designing

of floating point unit that performs addition,

subtraction ,multiplication and division. And research

shows that area required by Floating point unit for

doing multiplication and division by using newly

added block is much less in comparison to floating

point unit using LUT’s FF’s only.

References
[1] N. Shirazi, A.Walters, and P. Athanas,

“Quantitative analysis of floating point arithmetic

on FPGA-based custom computing machines,” in

Proceedings of IEEE Workshop on FPGAs for

Custom Computing Machines, D. A. Buell and K.

L. Pocek, Eds., Napa, CA, Apr. 1995,pp. 155–163.

[2] Behrooz Parhami, Computer Arithmetic, Oxford

Press, 2000.

[3] Joseph J. F. Cavanagh, Digital Computer

Arithmetic, McGraw-Hill, 1984.

[4] What Every Computer Scientist Should Know

About Floating-Point Arithmetic, by David

Goldberg,

published in the March, 1991 issue of Computing

Surveys. Copyright 1991, Association for

Computing Machinery, Inc., reprinted by

permission.

[5] LOW COST FLOATING-POINT UNIT DESIGN

FOR AUDIO APPLICATIONS by Sung-Won Lee

and In-Cheol Park Division of Electrical

Engineering, Department of EECS, KAIST 373-1

Gusong-dong Yusong-gu, Taejon, 305-701,

KOREA

