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Abstract— The problem of mining frequent itemsets in streaming data has attracted a lot of attention lately. Even 

though numerous frequent itemsets mining algorithms have been developed over the past decade, new solutions for 

handling stream data are still required due to the continuous, unbounded, and ordered sequence of data elements 

generated at a rapid rate in a data stream. The main challenge in data streams will be constrained by limited 

resources of time, memory, and sample size. Data mining has traditionally been performed over static datasets, 

where data mining algorithms can afford to read the input data several times. The goal of this article analysing  the  

mining frequent itemsets in theoretical manner in the large windows. By comparing previous algorithms we propose 

new method using analytical modelling to determine the factors over data streams. 
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I. Introduction 
 Recently the data stream, which is an unbounded sequence of data elements generated at a rapid rate, 

provides a dynamic environment for collecting data sources. It is likely that the embedded knowledge in a data 

stream will change quickly as time goes by. Therefore, catching the recent trend of data is an important issue when 

mining frequent itemsets from data streams. Although the sliding window model proposed a good solution for this 

problem, the appearing information of the itemsets within the sliding window has to be maintained completely in the 

traditional approach. In this paper, for estimating the approximate supports of patterns within the current sliding 

window, two data structures are proposed to maintain the average time stamps and frequency Changing points of 

patterns, respectively. 

The main challenge is that ‘data-intensive’ mining is constrained by limited resources of time, memory, and 

sample size. Data mining has traditionally been performed over static datasets, where data mining algorithms can 

afford to read the input data several times. When the source of data items is an open-ended data stream, not all data 

can be loaded into the memory and off-line mining with a fixed size dataset is no longer technically feasible due to 

the unique features of streaming data [2]. 

 Data from sensors like weather stations is an example of fixed-sized data, whereas again, market basket data are an 

example of variable size data, because each basket contains a different number of items. By contrast, sensor 

measurements have a fixed size, as each set of measurements contains a fixed set of dimensions, like temperature, 

precipitation, etc. 

       We classify the stream-mining techniques into two categories based on the window model that they adopt 

in order to provide insights into how and why the techniques are useful. Then, we further analyze the algorithms 

according to whether they are exact or approximate and, for approximate approaches, whether they are false-positive 

or false-negative. First, each element in the datastream can be examined only once or twice, making traditional 

multiple-scan approaches infeasible. Second, the consumption of memory space should be confined in a range, 

despite that data elements are continuously streaming into the local site. Third, not with standing the data 

characteristics of incoming stream may be unpredictable; the mining task should proceed normally and offer 

acceptable quality of results. Fourth, the latest analysis result of the data stream should be available as soon as 

possible when the user invokes a query 
 

II .RELATED WORK 
There are a number of research works which study the problem of data-stream mining in the first decade of 21

st
 

century. Many previous studies contributed to the efficient mining of frequent itemsets (FI) in streaming data [4, 5]. 

According to the stream processing model [20], the research of mining frequent itemsets in data streams can be 

divided into three categories: landmark windows [15, 12, 19, 11, 13], sliding windows [5, 6, 14, 16, 17, 18], and 

damped windows [7, 4], as described briefly as follows. In the landmark window model, knowledge discovery is 

performed based on the values between a specific timestamp called landmark and the present. In the sliding window 

model, knowledge discovery is performed over a fixed number of recently generated data elements which is the 

target of data mining. 
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 Two types of sliding widow, i.e., transaction- sensitive sliding window and time-sensitive sliding window, are 

used in mining data streams. The basic processing unit of window sliding of first type is an expired transaction while 

the basic unit of window sliding of second one is a time unit, such as a minute or a hour. In the damped window 

model, recent sliding windows are more important than previous ones. 

 

Besides, there are still some interesting research works [9] [10] [11] on the sliding window model. In [9] a 

false-negative approach named LSWIM was proposed. By employing a progressively increasing function of ms, 

LSWIM greatly reduces the number of potential itemsets and would approximate the set of FIs over a sliding 

window. According to this definition, each transaction could be represented by the product of the corresponding 

prime numbers of individual items into the transaction. As the product of the prime numbers unique we can easily 

check the inclusion of two itemsets by performing a modulo division on itemsets (Y MOD X). If the remainder is 0 

then X ⊆Y, otherwise X is not included in Y.  

LSWIM is an approximate approach based on the application of the Principle of Inclusion and Exclusion in 

Combinatorial Mathematics [7]. One of the most notable features of LSWIM is that it would approximate the count 

of an arbitrary itemset, through an equation (i.e., Equation (4) in [12]), by only the sum of counts of the first few 

orders of its subsets over the data stream. There are also two techniques named counts bounding and correction, 

respectively, integrated within LSWIM. Both techniques are of the purpose to improve the quality of LSWIM’s 

approximation, while they adopt different means to achieve the purpose. By working together with these original 

techniques, the mining result of DSCA reaches good accuracy. The concept of Inclusion and Exclusion Principle [7] 

is valuable that it may also be applied in mining FIs under different window models other than the landmark 

window. Based on the theory of Approximate Inclusion–Exclusion [8], we devise and propose a novel algorithm, 

called SWIM, to approximate dynamically and discover FIs over the sliding window in a transactional data stream 

III. MINING LARGE SLIDING WINDOWS 

LSWIM (Large Sliding Window Incremental Miner) algorithm relies on a verifier function and it is an exact and 

efficient algorithm for mining very large sliding windows over data streams. The performance of LSWIM improves 

when small delays are allowed in reporting new frequent itemsets, however this delay can be set to 0 with a small 

performance overhead. 

A. Problem Statement and Notations 

Let D be the dataset to be mined (a window in our case); D contains several transactions (baskets), where each 

basket contains one or more items. Let I = i1, i2, ・ ・ ・ , in be the set of all such distinct items in D. Each subset 

of I is called an itemset, and by k-itemset we mean an itemset containing k different items. The frequency of an 

itemset p is the number of transactions in D that contain itemset p, and is denoted as Count(p,D). The support of p, 

sup(p,D), is defined as its frequency divided by the total number of transactions in D. Therefore, 0 ≤ sup(p,D) ≤ 1 

for each itemset p. The goal of frequent itemsets mining2 is to find all such itemsets p, whose support is greater than 

(or equal to) some given minimum support threshold α. The set of frequent itemsets in D is  denoted as σα(D). 

Here we consider frequent itemsets mining over a data stream, thus D is defined as a sliding window over the 

continuous stream. D moves forward by a certain amount3 by adding the new slide (δ+) and dropping the expired 

one (δ−). Therefore, the successive instances of D are shown as W1,W2, ・ ・ ・ . The number of transactions that 

are added to (and removed from) each window is called its slide size. In this paper, for the purpose of simplicity, we 

assume that all slides have the same size, and also each window consists of the same number of slides. Thus, n = 

|W|/|S| is the number of slides (a.k.a. panes) in each window, where |W| denotes the window size and |S| denotes the 

size of the slides. 

B. The LSWIM Algorithm 

Large Sliding Window Incremental Miner (LSWIM) always maintains a union of the frequent itemsets of 

all slides in the current window W, called Pattern Tree (PT), which is guaranteed to be a superset of the frequent 

itemsets over W. Upon arrival of a new slide and expiration of an old one, we update the true count of each pattern 

in PT, by considering its frequency in both the expired slide and the new slide. To assure that PT contains all 

itemsets that are frequent in at least one of the slides of the current window ∪i(σα(Si)), we must also mine the new 

slide and add its frequent itemsets to PT. The difficulty is that when a new pattern is added to PT for the first time, 

its true frequency in the whole window is not known, since this pattern wasn’t frequent in the previous n−1 slides. 

To address this problem, LSWIM uses an auxiliary array, aux array, for each new pattern in the new slide. 

The aux array stores the frequency of a pattern in each window starting at a particular slide in the current 

window. In other words, the aux array stores frequency of a pattern for each window, for which the frequency is not 

known. The key point is that this counting can either be done eagerly (i.e., immediately) or lazily. Under the laziest 

approach, we wait until a slide expires and then compute the frequency of such new itemsets over this slide and 

update the aux arrays accordingly. This saves many additional passes through the window. The pseudo code for the 

LSWIM algorithm is given in Figure 1. At the end of each slide, LSWIM outputs all itemsets in PT whose frequency 
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at that time is ≥ α ・ n ・ |S|. However we may miss a few itemsets due to lack of knowledge at the time of output, 

but we will report them as delayed when other slides expire. The following mini-example shows how LSWIM 

works. 

For Each New Slide S 

1:   For each pattern p ∈ PT 

      update p.freq over S 

2:  Mine S to compute σα(S) 

3:  For each existing pattern p ∈ σα(S) ∩ PT 

remember S as the last slide in which p is frequent 

4:  For each new pattern p ∈ σα(S)\PT 

     PT ← PT ∈ {p} 

        remember S as the first slide in which p is frequent 

        create auxiliary array for p and start monitoring it 

For Each Expiring Slide S 

5: For each pattern p ∈ PT 

        update p.freq, if S has been counted in 

update p.aux array, if applicable 

report p as delayed, if frequent but not reported 

at query time 

delete p.aux array, if p has existed since arrival of S 

delete p, if p no longer frequent in any of the current 

slides 

Fig. 1. LSWIM pseudo code. 

Max Delay. The maximum delay allowed by LSWIM is n −1 slides. Indeed, after expiration of n − 1 slides, 

LSWIM will have a complete history of the frequency of all frequent itemsets of W and can report them. Moreover, 

the case in which a pattern is reported after (n − 1) slides of time, is rare. For this to happen, pattern’s support in all 

previous n−1 slides must be less than α but very close to it, say α・ |S|−1, and suddenly its occurrence goes up in 

the next slide to say β, causing the total frequency over the whole window to be greater than the support threshold. 

Formally, this requires that (n − 1) ・ (α ・ |S| − 1) + β ≥ α ・ n ・ |S|, which implies β ≥ n+α ・ |S|−1. This is not 

impossible, but in real-world such events are very rare, especially when n is a large number (i.e., a large window 

spanning many slides). While LSWIM(Delay=L) represents an efficient incremental mining algorithm, counting 

frequencies of itemsets over a given dataset (n − L + 1 slides in our case) remains a bottleneck. Therefore, faster 

algorithms are required to compute these counts efficiently. 

IV. CONCLUSION 
Mining data streams for association rules has proven to be a difficult problem, since techniques developed to mine 

frequent itemsets on stored data result in excessive costs and time delays. This paper has made two important 

contributions to the solution of this problem. The first is the introduction of a very fast algorithm to verify the 

frequency of a given set of itemsets. In fact, our algorithm outperforms the existing state of- the-art counting 

algorithms by an order of magnitude. The second contribution is to use our fast verifier to solve the 

association-rule mining problem under the realistic assumption that we are mostly interested in the new/expiring 

itemsets. 

This delta-maintenance approach effectively mines very large windows with slides, which was not possible 

before. However, we also explored a second approach that further improves the performance by simply allowing a 

small reporting delay. Clearly this approach would become desirable in situations where modest delays in reporting 

new itemsets are acceptable. Such delays are negligible when compared to the time needed for the experts to 

validate the new rules before they are actually put into use. In summary we have proposed an approach of great 

efficiency, flexibility, and scalability to solve the frequent pattern mining problem on data streams with very large 

windows. 
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