
Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 449

Abstract:
Modulo multiplier is one of the critical components

in applications in the area of digital signal processing, data

encryption and residue arithmetic that demand high-speed

and low-power operation. Ultra low power and low area

modulo multiplier is designed using the GDI

technology. modulo multiplier has three major

functional modules including partial products generation

module, partial products reduction module and final stage

addition module. The partial products reduction module is

completely redesigned using the novel compressors and the

final addition module is implemented using a new less

complex sparse tree based inverted end-around-carry adder.

The resulting modulo multiplier is implemented in

GDI cell technology and compared both qualitatively and

quantitatively with the existing hardware implementations.

Keywords: Modulo multipliers, Residue Number System

(RNS), Compressors, Sparse Tree Adder, GDI technology

I. Introduction
Modulo arithmetic has been widely used in various

applications such as digital signal processing where the

residue arithmetic is used for digital filter design [1, 2].

Also, the number of wireless and internet communication

nodes has grown rapidly. The confidentiality and the

security of the data transmitted over these channels have

becoming increasingly important. Cryptographic algorithms

like International Data Encryption Algorithm (IDEA) [5, 6,

7, 8] are frequently used for secured transmission of data.

 In IDEA there are three major components that’s

decide the overall power area and performance. They are

modulo addition, bitwise-xor and modulo

multiplier. Modulo addition and bitwise-xor will take

less time and easy to implement improving the area and

power efficiency of the modulo multiplication

operation leads to significant decrease in area and power

consumption of the IDEA cipher.

 Here we introducing new low power design

technique called GDI (Gate-Diffusion-Input) technology

Instead of CMOS technology. The modulo multiplier has

three major blocks partial product generation, partial

product reduction, and final stage addition. The partial

product reduction block use the GDI EXOR gates this the

area of the partial product block which will reduced to 65%

of the area. In the partial product generation blocks we will

use GDI based AND and OR gates.

II. COMPRESSORS

A. GDI Vs CMOS:

A new low power design technique that solves most of the

problems known as Gate-Diffusion-Input (GDI) is proposed

[17]. This technique allows reducing power consumption,

propagation delay, and area of digital circuits. The GDI

method is based on the simple cell shown in Figure.1. A

basic GDI cell contains four terminals – G (common gate

input of nMOS and pMOS transistors), P (the outer

diffusion node of pMOS transistor), N (the outer diffusion

node of nMOS transistor), and D (common diffusion node

of both transistors)

 Fig.1 basic gdi cell

B. Description of compressors:

A (p,2) compressor[8,9] with p inputs , , ... and two

output bits Sum and Carry along with carry input bits and

carry output bits is governed by the equation:

 For example, a (5:2) compressor takes five inputs

and two carry inputs and generates a Sum and Carry bit

along with two carryout bits. Diagrams of 5:2 and 7:2

compressors are shown in Fig. 2 & 3. Are designed using

the GDI multiplexers.

 The Boolean equation of carry generator block is

given by

ULTRA LOW POWER MODULO MULTIPLIER USING GDI

TECHNOLOGY

Pavankumar Reddy S
Dept Of Ece

Srm Univesity

Mrs.N.SARASWATHI
Assistant Prof. (S.G)
Dept Of Ece
Srm Univesity

Gnanavargin Rokkala
Assistant Professor

Dept Of Ece

Aditya Engineering College

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 450

TABLE:1 different operations using GDI

N P G D Function

 0 B A A’B F1

B 1 A A’+B F2

1 B A A+B OR

B 0 A AB AND

B A S S’A+SB MUX

0 1 A A’ NOT

FIG 2 5:2 compressor

Iii. Algorithm For Implementation Of Modulo 2n+1

Multiplier

The algorithm for computation of X·Y mod is

described below. From the architectural characteristic

comparisons, the algorithm presented in is considered as the

best existing algorithm for the computation of X·Y mod

 in the literature. Hence, this algorithm is used for the

proposed implementation of the modulo multiplier.

According to the algorithm it takes two n+1 bit unsigned

numbers as inputs and gives one n+1 bit output. The

proposed implementation can be adapted to IDEA cipher, in

which the mod multiplication module takes two n-bit

inputs and gives one n-bit output, by assigning the most

significant bits of the inputs zeros and neglecting the most

significant bit of the output Let |A| B denote the residue of

A modulo B. Let X and Y be two inputs represented as

X= . . . and Y= . . . where the most

significant bits and are ’1’ only when the inputs are

 and respectively. X·Y mod can be represented

as follows:

FIG 3 7:2 compressors

 The n×n partial product matrix in Fig. 6 is derived

from the initial partial product matrix in Fig. 4, based on

several observations. First observation is, the initial partial

product matrix can be divided into four groups A, B, C and

D in which the terms in only one group can be different

from ’0’. Groups A, B, D and C are different from ’0’, if

inputs (X,Y) are in the form of (0Z,0Z),(1Z,0Z),(0Z,1Z) and

(10. . .0,10. . .0) respectively (here ’Z’ is a 16-bit vector).

Hence the four groups can be integrated into a single group

by performing logical OR operation (denoted by v) instead

of adding the bits arithmetically. Logical OR operation is

performed on the terms of the groups B, D and A in the

columns with weight up to and on the two terms

of the groups B and D with weight (the ORed

terms of the groups B and D are represented by , where

). Since +1, the term

with weight , , can be substituted by two terms

qn−1 in the columns with weight and 1, respectively,

and ORed with any term of the group A there. Moreover,

since =1, the term can be ORed with p0,0.

The modified partial product matrix is shown in Fig. 5.

Second observation is repositioning of the partial product

terms in the modified partial product matrix, with weight

greater than based on the following equation:

Equation (1) shows that the repositioning of each bit results

in a correction factor of . In the first partial product

vector, there is only one such bit and in the second partial

product vector 2 bits need to be repositioned and so on.

Hence the correction factor for the entire partial product

matrix would be:

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 451

The n×n partial product matrix along with the equation (2)

results in n+1 operands. These partial product terms can be

reduced into two final summands Sum array and Carry array

using a Carry Save Adder (CSA) array. Suppose the carry

out bit at stage of CSA is with weight 2n, this carryout

can be reduced into:

Therefore the carry output bits at the most significant bit

position of each stage can be used as carry input bits of the

next stage. In an n-1 stage CSA array in areproduced n-1

such carry out bits. Hence there will be a second correction

factor. And the overall correction factor using this algorithm

is:

The final correction factor will be the sum of COR1 and

COR2. The constant ’3’ in equation (5) will be the final

partial product.

….. (5)

Iv. Proposed Implementation Of The Mod 2n+1

Multiplier

The proposed implementation of the modulo multiplier

consists of three modules. First module is to generate partial

products, second module is to reduce the partial products to

two final operands and the last module is to add the Sum

and Carry operands from partial products reduction to get

the final result.

A. Partial products generation

From the above n × n partial product matrix (shown in Fig.

6), it is possible to observe that the partial product

generation requires AND, OR and NOT gates. The most

complex function of partial product generation module is

 where = and = V .

B. Partial products reduction

The partial product reduction unit is the most important

module which mainly determines the critical path delay and

the overall performance of the multiplier. Hence this module

needs to be designed so as to get minimum area and

consume less power.

 In the partial products reduction module, the n×n

partial product matrix and the constant 3(i.e., correction

factor) need to be added to produce the final sum and carry

vectors. Zimmerman demonstrated that (Sum+Carry+1)

modulo (final stage addition module) can also be

calculated by (Sum + Carry) modulo using inverted End-

Around-Carry (EAC) adders, where Sum and Carry are n-bit

vectors generated by the partial products reduction module.

Modulo inverted EAC adders have a regular structure

that can be easily laid out for efficient VLSI

implementation. Hence, instead of directly adding the

correction factor of 3 to the n×n partial product matrix in

the partial products reduction module, an intermediate

correction factor of 2 has to added to the n×n partial product

matrix to save a constant 1 for the final stage addition

module. Since there is a saved constant 1 available in the

final stage addition module, modulo inverted EAC adder

can be used instead of the complex modulo adder.

Fig-4: normal partial products

Fig 5: modified partial product matrix

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 452

B. Partial products reduction

Table 1: final partial product matrix

…. …. …. ….

FIG:6 final N×N partial matrix

(b)

FIG 7 : (a) 16-bit Sparse-tree-based Inverted EAC adder and (b) 4-bit conditional sum generator.

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 453

Along with the constant 2, the n partial products should be

added to produce the final n-bit Sum and Carry vectors. In a

single stage of the Carry Save Addition, series of n full

adders take 3 input operands and produce two n-bit output

vectors. To add n+1 input operands, n-1 Carry Save

Addition stages are required in the partial products

reduction module. As the first partial product is the constant

2, in the first stage of the n-1 CSA stages, half adders can be

used instead of full adders except for the for the second bit.

The n-1 stage CSA can be implemented using n full adders

in each column of the n-1 stages. In this regular

implementation, series of full adders in the CSA adder

columns can be replaced by the proposed GDI EXOR-based

compressors that take the same number of inputs, which

leads less power implementation of the multiplier. For

example, for a modulo multiplier the existing CSA

design uses 7 full adder stages in a single column to reduce

the 9 partial products, the same reduction can be done by

more efficient designs based on the proposed compressors.

 In the proposed compressor-based architecture, use

of suggested compressors not only reduces power

consumption but also the area of the circuit. For example,

the full adder implementation requires fifteen full adders in

series in any column for a modulo multiplier.

However, these fifteen full adders can be replaced by two

7:2 compressors, one 5:2 compressor and two 3:2

compressors .

V. Final stage addition

In binary addition operation, the critical path is determined

by the carry computation module. Among various

formulations to design carry computation module, parallel

prefix formulation [18] is delay effective and has regular

structure suitable for efficient hardware implementation.

The binary addition of two numbers using a parallel prefix

network is done as follows: and

 be two weighted input operands

to the network. The generate bit () and the propagate bit

() are defined as and

these generate bits can be associated using the prefix

operator as follows:

 Where + is logical OR operation and * is logical

AND operation. The carryout’s () for all the bit positions

can obtained from the group generate

where

.

 The function of End around Carry (EAC) adder is

to feed back the carryout of the addition and add it to the

least significant bit of the sum vector. Similarly, in inverted

End Around Carry adders, the carryout is inverted and fed

back to the least significant bit of the sum vector. The

parallel prefix-network-based Inverted EAC [19] adder

achieves the addition of the input operands by recirculating

the generate and the propagate bits at each existing level in

stages. Let be the carry at bit position i in

the inverted EAC, this can be related to as follows:

 ………………….(5)

In the above equation where

and

In some cases, it is not possible to compute

In stages, then in these cases, the equations in (5) are

transformed into the equivalent ones as shown in (7) by

using the following property [19]:

 suppose that and

…..(6) Therefore and in

(2), is computed as p.P. To implement the

parallel prefix computation efficiently, these

transformations have to be applied j number of times

recursively on using the

fallowing relation:

…….(7)

\

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 454

 The new carryout’s can be computed using the

following equation:

 ………(8)

 Hence, the transformations used above to

achieve the parallel prefix computation in stages

result in more number of carry merge cells and thereby

adding more number of interstage wires. Parallel prefix

adders suffer from excessive interstage wiring complexity

and large number of cells, and these factors make parallel

prefix based adders inefficient choices for VLSI

implementations. Therefore, a novel sparse-tree-based EAC

and inverted EAC adders are used as the primitive blocks in

this work.

 In sparse-tree-based inverted EAC adders, instead

of calculating the carry term Gi for each and every bit

position, every Kth (K=4,8 . .) carry is computed. The

value of K is chosen based on the sparseness of the tree,

generally for 16 and 32-bit adders, K is chosen as four. The

higher value of K results in higher value of noncritical path

delay compared to critical path delay of O() which

should not be the case. The proposed implementation of the

sparse-tree-based Inverted End Around Carry Adder (IEAC)

is explained below clearly for 16-bit operands. For a 16-bit

sparse IEAC with sparseness factor (i.e., K) equal to four,

the carries are computed for bit positions -1,2,3 and 11.

Here, bit position -1 corresponds to the inverted carryout

 of the bit position 15. The carryout equation

for the 16-bit sparse tree IEAC are as fallows

 Fig 8 : proposed implimentation of modulo multiplier using compressors with GDI technology

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 455

 Fig. 7 shows the finalized 16-bit sparse tree

Inverted EAC adder. From Fig. 7, we can observe that all

the carryouts are computed in stages with less

number of carry merge cells and reduced interstage wiring

intensity. The implementation of the sparse-tree-based EAC

is similar to IEAC shown in Fig. 7, except the carry is not

inverted.

 The Conditional Sum Generator (CSG) shown in

Fig. 2C is implemented using ripple carry adder logic, and

two separate rails are run to calculate the carries

 assuming the input carry as 0

and 1. Four 2:1 multiplexers using the carry from sparse

tree network as one-in-four select line generate the final sum

vector. The conditional sum generator is shown in Fig. 7b.

The final sum is generated in log2n stages in IEAC sparse

tree adder with less number of cells and less interstage

wiring. Hence, this approach results in low power and

smaller area while providing better performance.

VI. SIMULATION RESULTS:

7:2 compressor:

5:2 compressor:

Spare tree adder:

Final output :

V. CONCLUSIONS:

 An ultra low power implementation of the modulo

 multiplier is presented in this paper. The proposed

novel implementation takes advantage of newly designed

low power compressors using GDI technology and sparse

tree based Inverted End-Around-Carry (EAC) adders. The

proposed design of the modulo multiplier uses

compressors in the partial products reduction stage, the use

of the GDI compressors in place of CMOS compressors

resulted in considerable improvements in terms of area and

power. An efficient sparse tree based inverted EAC adder in

the final stage addition, which has less wiring complexity

and sparse carry merge cells compared to parallel prefix

network based implementations. The proposed multiplier is

compared with the most efficient modulo multiplier

implementations available in the literature. The unit gate

model analysis and EDA-based parametric simulation are

carried out on the proposed implementation and the existing

implementations to clearly demonstrate and verify potential

benefits from the proposed design. The proposed multiplier

is verified to outperform the existing implementations with

respect to three major design criteria (i.e., area and power).

Pavankumar Reddy S, Mrs.N.Saraswathi, Gnanavargin Rokkala /International Journal Of Computational

Engineering Research / ISSN: 2250–3005

IJCER | Mar-Apr 2012 | Vol. 2 | Issue No.2 |449-456 Page 456

REFERENCES

1. Zimmermann, R., Curiger, A., Bonnenberg, H.,

Kaeslin, H., Felber,N., and Fichtner, W. ”A 177

Mb/s VLSI implementation of the international

data encryption algorithm”, IEEE J. Solid-State

Circuits, 1994, 29, (3), pp. 303-307

2. Zimmerman, R., ”Efficient VLSI implementation

of modulo (2n ± 1) addition and multiplication”

IEEE trans. Comput., 2002, 51, pp. 1389- 1399.

3. Sousa, L., and Chaves, R., ”A universal

architecture for designing efficient modulo 2n + 1

multipliers”, IEEE Trans. Circuits Syst. I., 2005,

52, pp. 1166-1178.

4. Efstathiou, C., Vergos, H.T., Dimitrakopoulos, G.,

and Nikolos, D., ”Efficient diminished-1 modulo

2n + 1 multipliers”, IEEE Trans. Comput., 2005,

54, pp. 491-496.

5. Vergos, H.T.; Efstathiou, C., ”Design of efficient

modulo 2n + 1 multipliers”, IET Comput. Digit.

Tech., 2007, 1, (1), pp. 49-57.

6. R. Zimmermann and W. Fichtner., ”Low power

logic styles: CMOS versus pass-transistor logic”

IEEE J. Solid- State Circuits, vol. 32, pp. 1079-

1090, July 1997.

7. Veeramachaneni, S.; Avinash, L.; Rajashekhar

Reddy M; Srinivas, M.B., ”Efficient Modulo (2k ±

1) Binary to Residue Converters System on- Chip

for Real-Time Applications” The 6th International

Workshop on Dec. 2006 pp.195 - 200.

8. C-H Chang, J Gu, MZhang ”Ultra low-voltage

lowpower CMOS 4-2 and 5-2 compressors for fast

arithmetic circuits ” IEEE J. Circuits and Systems

I, Volume: 51, Issue: 10 pp: 1985- 1997,2004

9. Rouholamini, M.; Kavehie, O.; Mirbaha, A. P.;

Jasbi, S.J.; Navi, K., ”A New Design for 7:2

Compressors” Computer Systems and

Applications, 2007. AICCSA ’07. IEEE/ACS

International Conference on 13-16 May 2007

Page(s):474 – 478

10. Mathew, S.; Anders, M.; Krishnamurthy, R.K.;

Borkar, S.; ”A 4-GHz 130-nm address generation

unit with 32-bit sparse-tree adder core” In IEEE

Journal of Solid-State Circuits, Volume 38, Issue 5,

May 2003 Page(s):689 - 695.

11. Zhongde Wang, Graham A. Jullien, William C.

Miller., ”An efficient tree architecture for modulo

2n +1 multiplication” VLSI Signal Processing

14(3): 241-248 (1996).

12. P. Kogge and H. S. Stone., ”A parallel algorithm

for the efficient solution of a general class of

recurrence equations” IEEE Trans. Comput., vol.

C-22, pp. 786-793, Aug 1973.

13. Sklavos N and Koufopavlou O, ”Asynchronous

Low Power VLSI Implementation of the

InternationalData Encryption Algorithm” proc. of

8th IEEE International Conference on Electronics,

Circuits 346 and Systems (ICECS’01) (Malta 2-5

September 2001) Vol. III pp 1425-1428

14. A. Curiger et. al., ”VINCI: VLSI Implementation

of the New SecretkeyBlock Cipher IDEA”, Proc.

of the Custom Integrated Circuits Conference, San

Diego, USA, May 1993

15. Yan Sun, Dongyu Zheng, Minxuan Zhang, and

Shaoqing Li ”High Performance Low-Power

Sparse-Tree Binary Adders” 8th International

Conference on Solid state and Integrated Circuit

Technology, ICSICT 2006.

16. Haridimos T. Vergos, Costas Efstathiou, Dimitris

Nikolos: ”Diminished- One Modulo 2n+1 Adder

Design” IEEE Trans. Computers 51(12): 1389-

1399 (2002)

17. A. Morgenshtein, A. Fish, I. A. Wagner. Gate

Diffusion Input (GDI) – A Novel Power Efficient

Method for Digital Circuits: A Design

Methodology. 14th ASIC/SOC Conference,

Washington D.C., USA, September 2001.

18. P. Kogge and H.S. Stone, “A Parallel Algorithm

for the Efficient Solution of a General Class of

Recurrence Equations,” IEEE Trans. Computers,

vol. 22, no. 8, pp. 786-793, Aug. 1973.

19. H.T. Vergos, C. Efstathiou, and D. Nikolos,

“Diminished-One Modulo 2n+1 Adder Design,”

IEEE Trans. Computers, vol. 51, no. 12, pp. 1389-

1399, Dec. 2002.

