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Abstract: 
Modulo   multiplier is one of the critical components 

in applications in the area of digital signal processing, data 

encryption and residue arithmetic that demand high-speed 

and low-power operation. Ultra low power and low area 

modulo  multiplier is designed using the GDI 

technology. modulo  multiplier has three major 

functional modules including partial products generation 

module, partial products reduction module and final stage 

addition module. The partial products reduction module is 

completely redesigned using the novel compressors and the 

final addition module is implemented using a new less 

complex sparse tree based inverted end-around-carry adder. 

The resulting modulo  multiplier is implemented in 

GDI cell technology and compared both qualitatively and 

quantitatively with the existing hardware implementations. 

  

Keywords: Modulo multipliers, Residue Number System 

(RNS), Compressors, Sparse Tree Adder, GDI technology  

 

I. Introduction 
Modulo arithmetic has been widely used in various 

applications such as digital signal processing where the 

residue arithmetic is used for digital filter design [1, 2]. 

Also, the number of wireless and internet communication 

nodes has grown rapidly. The confidentiality and the 

security of the data transmitted over these channels have 

becoming increasingly important. Cryptographic algorithms 

like International Data Encryption Algorithm (IDEA) [5, 6, 

7, 8] are frequently used for secured transmission of data.  

 In IDEA there are three major components that’s 

decide the overall power area and performance. They are 

modulo addition, bitwise-xor and modulo  

multiplier. Modulo addition and bitwise-xor will take 

less time and easy to implement improving the area and 

power efficiency of the modulo  multiplication  

operation leads to significant decrease in area and power 

consumption of the IDEA cipher. 

 Here we introducing new low power design 

technique called GDI (Gate-Diffusion-Input) technology 

Instead of CMOS technology. The modulo multiplier has 

three major blocks partial product generation, partial 

product reduction, and final stage addition. The partial 

product reduction block use the GDI EXOR gates this the 

area of the partial product block which will reduced to 65%  

 

 

 

 

 

 

 

 

 

 

 

of  the area. In the partial product generation blocks we will 

use GDI based AND and OR gates. 

 

II. COMPRESSORS 

A. GDI  Vs  CMOS: 

A new low power design technique that solves most of the 

problems known as Gate-Diffusion-Input (GDI) is proposed 

[17]. This technique allows reducing power consumption, 

propagation delay, and area of digital circuits. The GDI 

method is based on the simple cell shown in Figure.1. A 

basic GDI cell contains four terminals – G (common gate 

input of nMOS and pMOS transistors), P (the outer 

diffusion node of pMOS transistor), N (the outer diffusion 

node of nMOS transistor), and D (common diffusion node 

of both transistors) 

                      
                    Fig.1 basic gdi cell 

 

B. Description of compressors: 

A (p,2) compressor[8,9] with p inputs , , ...  and two 

output bits Sum and Carry along with carry input bits and 

carry output bits is governed by the equation:  

 

 
 For example, a (5:2) compressor takes five inputs 

and two carry inputs and generates a Sum and Carry bit 

along with two carryout bits. Diagrams of 5:2 and 7:2 

compressors are shown in Fig. 2 & 3. Are designed using 

the GDI multiplexers.  

 

 The Boolean equation of carry generator block is 

given by 
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TABLE:1  different operations using  GDI 

N P G D Function 

 0  B  A  A’B F1 

B 1 A A’+B F2 

1 B A A+B OR 

B 0 A AB AND 

B A S S’A+SB MUX 

0 1 A A’ NOT 

  

 
FIG 2 5:2 compressor 

 

Iii. Algorithm For Implementation Of Modulo 2n+1 

Multiplier 

The algorithm for computation of X·Y mod  is 

described below. From the architectural characteristic 

comparisons, the algorithm presented in is considered as the 

best existing algorithm for the computation of X·Y mod 

 in the literature. Hence, this algorithm is used for the 

proposed implementation of the modulo multiplier. 

According to the algorithm it takes two n+1 bit unsigned 

numbers as inputs and gives one n+1 bit output. The 

proposed implementation can be adapted to IDEA cipher, in 

which the mod  multiplication module takes two n-bit 

inputs and gives one n-bit output, by assigning the most 

significant bits of the inputs zeros and neglecting the most 

significant bit of the output  Let |A| B denote the residue of 

A modulo B. Let X and Y be two inputs represented as  

X=  . . .  and Y=  . . .  where the most 

significant bits  and  are ’1’ only when the inputs are 

 and  respectively. X·Y mod  can be represented 

as follows: 

 

 
 

FIG 3 7:2 compressors 

 

 The n×n partial product matrix in Fig. 6 is derived 

from the initial partial product matrix in Fig. 4, based on 

several observations. First observation is, the initial partial 

product matrix can be divided into four groups A, B, C and 

D in which the terms in only one group can be different 

from ’0’. Groups A, B, D and C are different from ’0’, if 

inputs (X,Y) are in the form of (0Z,0Z),(1Z,0Z),(0Z,1Z) and 

(10. . .0,10. . .0) respectively (here ’Z’ is a 16-bit vector). 

Hence the four groups can be integrated into a single group 

by performing logical OR operation (denoted by v) instead 

of adding the bits arithmetically. Logical OR operation is 

performed on the terms of the groups B, D and A in the 

columns with weight  up to  and on the two terms 

of the groups B and D with weight  ( the ORed 

terms of the groups B and D are represented by , where 

 ). Since  +1, the term 

with weight , , can be substituted by two terms 

qn−1 in the columns with weight  and 1, respectively, 

and ORed with any term of the group A there. Moreover, 

since =1, the term  can be ORed with p0,0. 

The modified partial product matrix is shown in Fig. 5. 

Second observation is repositioning of the partial product 

terms in the modified partial product matrix, with weight 

greater than  based on the following equation: 

 

 
 

Equation (1) shows that the repositioning of each bit results 

in a correction factor of . In the first partial product 

vector, there is only one such bit and in the second partial 

product vector 2 bits need to be repositioned and so on. 

Hence the correction factor for the entire partial product 

matrix would be:  
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The n×n partial product matrix along with the equation (2) 

results in n+1 operands. These partial product terms can be 

reduced into two final summands Sum array and Carry array 

using a Carry Save Adder (CSA) array. Suppose the carry 

out bit at  stage of CSA is  with weight 2n, this carryout 

can be reduced into: 

 

  

Therefore the carry output bits at the most significant bit 

position of each stage can be used as carry input bits of the 

next stage. In an n-1 stage CSA array in areproduced n-1 

such carry out bits. Hence there will be a second correction 

factor. And the overall correction factor using this algorithm 

is: 

 

 
 

The final correction factor will be the sum of COR1 and 

COR2. The constant ’3’ in equation (5) will be the final 

partial product. 

 

 

 

….. (5) 

Iv. Proposed Implementation Of The Mod 2n+1 

Multiplier 

The proposed implementation of the modulo multiplier 

consists of three modules. First module is to generate partial 

products, second module is to reduce the partial products to 

two final operands and the last module is to add the Sum 

and Carry operands from partial products reduction to get 

the final result. 

 

A. Partial products generation 

From the above n × n partial product matrix (shown in Fig. 

6), it is possible to observe that the partial product 

generation requires AND, OR and NOT gates. The most 

complex function of partial product generation module is 

 where =  and  = V . 

 

B. Partial products reduction 

The partial product reduction unit is the most important 

module which mainly determines the critical path delay and 

the overall performance of the multiplier. Hence this module 

needs to be designed so as to get minimum area and 

consume less power. 

 In the partial products reduction module, the n×n 

partial product matrix and the constant 3(i.e., correction 

factor) need to be added to produce the final sum and carry 

vectors. Zimmerman demonstrated that (Sum+Carry+1) 

modulo  (final stage addition module) can also be  

calculated by (Sum + Carry) modulo  using inverted End-

Around-Carry (EAC) adders, where Sum and Carry are n-bit 

vectors generated by the partial products reduction module. 

Modulo  inverted EAC adders have a regular structure 

that can be easily laid out for efficient VLSI 

implementation. Hence, instead of  directly adding the 

correction factor of 3 to the n×n partial product matrix in 

the partial products reduction module, an intermediate 

correction factor of 2 has to added to the n×n partial product 

matrix to save a constant 1 for the final stage addition 

module. Since there is a saved constant 1 available in the 

final stage addition module, modulo  inverted EAC adder 

can be used instead of the complex modulo  adder. 

 

 

 
 

Fig-4: normal partial products 

 

  

Fig 5: modified partial product matrix 
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B. Partial products reduction 

  

 

 

 

 

 

 

 

 

 

 

 

Table 1: final partial product matrix 

       
       

       
       

…. .... .... .... …. …. …. 

       
         

 

 

 

 

FIG:6 final N×N partial matrix 

            

 

(b) 

FIG 7 : (a) 16-bit Sparse-tree-based Inverted EAC adder and (b) 4-bit conditional sum generator. 
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Along with the constant 2, the n partial products should be 

added to produce the final n-bit Sum and Carry vectors. In a 

single stage of the Carry Save Addition, series of n full 

adders take 3 input operands and produce two n-bit output 

vectors. To add n+1 input operands, n-1 Carry Save 

Addition stages are required in the partial products 

reduction module. As the first partial product is the constant 

2, in the first stage of the n-1 CSA stages, half adders can be 

used instead of full adders except for the for the second bit. 

The n-1 stage CSA can be implemented using n full adders 

in each column of the n-1 stages. In this regular 

implementation, series of full adders in the CSA adder 

columns can be replaced by the proposed GDI EXOR-based 

compressors that take the same number of inputs, which 

leads less power implementation of the multiplier. For 

example, for a modulo  multiplier the existing CSA 

design uses 7 full adder stages in a single column to reduce 

the 9 partial products, the same  reduction can be done by 

more efficient designs based on the proposed compressors.  

 In the proposed compressor-based architecture, use 

of suggested compressors not only reduces power 

consumption but also the area of the circuit. For example, 

the full adder implementation requires fifteen full adders in 

series in any column for a modulo  multiplier. 

However, these fifteen full adders can be replaced by two 

7:2 compressors, one 5:2 compressor and two 3:2 

compressors . 

 

 

V. Final stage addition 

 

In binary addition operation, the critical path is determined 

by the carry computation module. Among various 

formulations to design carry computation module, parallel 

prefix formulation [18] is delay effective and has regular 

structure suitable for efficient hardware implementation. 

The binary addition of two numbers using a parallel prefix 

network is done as follows:  and 

  be two weighted input operands 

to the network. The generate bit ( ) and the propagate bit 

( ) are defined as and 

these generate bits can be associated using the prefix 

operator as follows:             

 

 
  Where + is logical OR operation and * is logical 

AND operation. The carryout’s ( ) for all the bit positions 

can obtained from the group generate  

where

. 

 The function of End around Carry (EAC) adder is 

to feed back the carryout of the addition and add it to the 

least significant bit of the sum vector. Similarly, in inverted 

End Around Carry adders, the carryout is inverted and fed 

back to the least significant bit of the sum vector. The 

parallel prefix-network-based Inverted EAC [19] adder 

achieves the addition of the input operands by recirculating 

the generate and the propagate bits at each existing level in 

stages. Let  be the carry at bit position i in 

the inverted EAC, this can be related to  as follows: 

 

 
 

                                                        ………………….(5) 

 

In the above equation   where 

 

and 

 

 

In some cases, it is not possible to compute  

In  stages, then in these cases, the equations in (5) are 

transformed into the equivalent ones as shown in (7) by 

using the following property [19]:                           

 suppose that   and  

   

…..(6) Therefore   and in 

(2),  is computed as p.P.   To implement the 

parallel prefix computation efficiently, these 

transformations have to be applied  j number of times 

recursively on    using the 

fallowing relation: 

 

…….(7) 

 

 

\ 
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 The new carryout’s can be computed using the 

following equation: 

 

 

                                                                              ………(8) 

 

 Hence, the transformations used above to 

achieve the parallel prefix computation in  stages 

result in more number of carry merge cells and thereby 

adding more number of interstage wires. Parallel prefix 

adders suffer from excessive interstage wiring complexity  

and large number of cells, and these factors make parallel 

prefix based adders inefficient choices for VLSI 

implementations. Therefore, a novel sparse-tree-based EAC 

and inverted EAC adders are used as the primitive blocks in 

this work. 

 In sparse-tree-based inverted EAC adders, instead 

of calculating the carry term Gi for each and every bit 

position, every Kth (K=4,8  . . ) carry is computed. The 

value of K is chosen based on the sparseness of the tree, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generally for 16 and 32-bit adders, K is chosen as four. The 

higher value of K results in higher value of noncritical path 

delay compared to critical path delay of O( ) which 

should not be the case. The proposed implementation of the 

sparse-tree-based Inverted End Around Carry Adder (IEAC) 

is explained below clearly for 16-bit operands. For a 16-bit 

sparse IEAC with sparseness factor (i.e., K) equal to four, 

the carries are computed for bit positions -1,2,3 and 11. 

Here, bit position -1 corresponds to the inverted carryout 

 of the bit position 15. The carryout equation 

for the 16-bit sparse tree IEAC are as fallows   

 

 
        

 

 

 

 

 

 

 

 

           

   

  Fig 8 : proposed implimentation of modulo  multiplier using compressors with GDI technology 
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 Fig. 7 shows the finalized 16-bit sparse tree 

Inverted EAC adder. From Fig. 7, we can observe that all 

the carryouts are computed in  stages with less 

number of carry merge cells and reduced interstage wiring 

intensity. The implementation of the sparse-tree-based EAC 

is similar to IEAC shown in Fig. 7, except the carry is not 

inverted.  

 The Conditional Sum Generator (CSG) shown in 

Fig. 2C is implemented using ripple carry adder logic, and 

two separate rails are run to calculate the carries 

 assuming the input carry as 0 

and 1. Four 2:1 multiplexers using the carry  from sparse 

tree network as one-in-four select line generate the final sum 

vector. The conditional sum generator is shown in Fig. 7b. 

The final sum is generated in log2n stages in IEAC sparse 

tree adder with less number of cells and less interstage 

wiring. Hence, this approach results in low power and 

smaller area while providing better performance. 

 

VI. SIMULATION RESULTS: 

7:2 compressor: 

 

 
 

5:2 compressor: 

 

 
 

 

 

 

Spare tree adder: 

 

 
 

Final output : 

 

 
 

V. CONCLUSIONS: 

  

 An ultra low power implementation of the modulo 

 multiplier is presented in this paper. The proposed 

novel implementation takes advantage of newly designed 

low power compressors using GDI technology and sparse 

tree based Inverted End-Around-Carry (EAC) adders. The 

proposed design of the modulo  multiplier uses 

compressors in the partial products reduction stage, the use 

of the GDI compressors in place of CMOS compressors 

resulted in considerable improvements in terms of area and 

power. An efficient sparse tree based inverted EAC adder in 

the final stage addition, which has less wiring complexity 

and sparse carry merge cells compared to parallel prefix 

network based implementations. The proposed multiplier is 

compared with the most efficient modulo  multiplier 

implementations available in the literature. The unit gate 

model analysis and EDA-based parametric simulation are 

carried out on the proposed implementation and the existing 

implementations to clearly demonstrate and verify potential 

benefits from the proposed design. The proposed multiplier 

is verified to outperform the existing implementations with 

respect to three major design criteria (i.e., area and  power). 
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