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Abstract: --  
One of the substantial techniques in the field of digital image processing is image segmentation. It is excessively used in the 

field of medicine provides visual means for identification, inspection and tracking of diseases for surgical planning and 

simulation. Active contours or a snake is an image segmentation technique which is widely used for boundary detection. 

They are regarded as promising and vigorously researched model-based approach to computer assisted medical image 

analysis. However, its utility is limited due some problems caused in the traditional methods, i.e.  Poor convergence of 

concavities and small capture range. This paper shows the application a new model for active contours, which comprises of 

the Balloon Model and the GVF model.  This model helps in improving the detection quality of closed edges, thereby 

resolving the limitations of the traditional snake model. 

 

Index Terms —Active contour models, balloon model, edge detection, gradient vector flow 

 

1. Introduction 

Segmentation is the process of splitting the image into several parts like objects (also called foreground or background. 

Active contours [1] or snakes provide an effective way of segmentation [2] of curves defined within the image domain that 

can move under the influence of external and internal forces. These forces are defined such that the snake will shrink wrap to 

an object boundary. This method is widely used in many applications, including motion tracking, edge detection and 

segmentation.  

There are two types of active contour models in literature today: - parametric active contours and geometric active contours 

[3][4]. Our main focus here is on parametric contours. Parametric active contours synthesize parametric curves within an 

image domain and allow them to move towards desired features, usually edges. Typically the curves are drawn towards the 

edges by potential forces, which are defined to be the negative gradient of a potential function. Additional forces like the 

potential forces and pressure forces together comprise the external forces. There are also internal forces designed to hold the 

curve together (elastic forces) and to keep it from bending too much (bending forces). 

There are two main difficulties we face during the parametric active contour algorithm. First, the active contours have 

difficulties progressing into boundary concavities. The second problem is that the initial contour must in general, be close to 

the true boundary or else it will predict an incorrect result. Most of the methods that are proposed to solve the above 

problems are ineffective in solving both issues and end up creating more difficulties.  

In this paper we present two distinct models to help resolve the problems mentioned above. Firstly, the balloon model or the 

expanding snake model helps resolve the problem of small capture range. When the approximate boundary of an object is 

unknown the traditional model fails to provide accurate results, in such situations using the balloon model shows robustness. 

Secondly, the gradient vector flow (GVF) model[5] which forces active contours into concave regions. GVF is computed as a 

diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. Since the external forces cannot 

be written as the negative gradient of a potential function, GVF snake is different from all other snake models used before. 

The major advantages of using these models over the traditional model are that it can be initialized far from the boundary 

since it has a large capture range. And unlike pressure forces, it does not require prior knowledge about when to shrink or 

expand towards the boundary. 

 

2. Literature survey 
A. Parametric snake model  

The contour [1] is defined in the (x, y) plane of an image as a parametric curve 

v(s) = (x(s), y(s)) 

Contour is said to possess energy (Esnake) which is defined as the sum of the three energy terms.  

 

 

 

The energy terms are defined cleverly in a way such that the final position of the contour will have a minimum energy (Emin) 

Therefore our problem of detecting objects reduces to an energy minimization problem. 

Internal Energy (Eint) depends on the intrinsic properties of the curve and is the sum of elastic energy and bending energy. 

 

Elastic Energy (Eelastic) of the curve is treated as an elastic rubber band possessing elastic potential energy. It discourages 

stretching by introducing tension. 

 

 

int intsnake ernal external constraE E E E  
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Weight (s) allows us to control elastic energy along different parts of the contour. Considered to be constant  for many 

applications.  

 

Bending Energy (Ebending): The snake is also considered to behave like a thin metal strip giving rise to bending energy. It is 

defined as sum of squared curvature of the contour.  

 

 

(s) plays a similar role to (s). Bending energy is minimum for a circle.  

Total internal energy of the snake can be defined as:-  

 

 

 

 

 

 

 

 

 

External energy (Eext) of the contour is derived from the image so that it takes on its smaller values at the function of interest 

such as boundaries. Define a function Eimage(x,y) so that it takes on its smaller values at the features of interest, such as 

boundaries. 

 

 

Key rests on defining Eimage(x,y).  

 

                                                                                   

  

 

Energy and force equations: The problem currently on hand is to find a contour v(s) that minimize the energy functional 

 

 

 

Using variational calculus and by applying Euler-Lagrange differential equation we get following equation 

 

 

 

Equation can be interpreted as a force balance equation. 

    Fint + Fimage  = 0  
 

Each term corresponds to a force produced by the respective energy terms. The internal force Fint discourages stretching and 

bending while the external potential force Fimage pulls the snake toward the desired image edges.  

Solving the Euler equation:- 

Consider the snake to also be a function of time i.e. 

 

 

 

 

 

If RHS=0 we have reached the solution. On every iteration update control point only if new position has a lower external 

energy. Snakes are very sensitive to a false local minimum which leads to wrong convergence. 
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B. Weakness of Traditional Snakes 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                         (b)                                        (a)                                (b) 

Fig. 1 (a) traditional potential forces and (b) close-up     Fig. 2 (a) traditional distance forces and (b) close-up 

 

An example of behavior of traditional snake is shown in fig. 3(b) and fig. 4(b).  In fig. 4(b) we can see that it has boundary 

concavity on the side are left vacant. This snake formulation is a result of Euler’s equation and we can see that it remains split 

across the concave region.  

The reason for the poor convergence of this snake as seen in fig. 1(b) is because the forces point horizontally in opposite 

direction. Another weakness of the traditional snake model is that it has a limited capture range; this can be explained in fig. 

1(b). The magnitudes of the external forces die out quite rapidly away from the object boundary. The boundary localization 

will become less accurate and distinct.  

External forces are a negative gradient of a potential function that is computed using Euclidean distance map. These forces 

are referred to as distance potential forces so as to distinguish them from traditional potential forces  The distance potential 

forces shown in fig. 2(a) have vectors with large magnitudes away from the object, explaining why the capture range is large 

for external force model. In fig.2 (b) the traditional potential forces are horizontally in opposite direction, which pulls the 

snake apart and not downward into the boundary concavity.Hence the problem of convergence is not solved by distance 

potential forces  

 

3. Balloon Model 

The snake model originally introduced by Kass has been further developed by modified in recent years. The balloon model or 

the expanding snake mode [6] is one of the examples of this. Unlike, the traditional snake that shrinks wraps to the image 

boundary, this snake model expands outwards.  

This model is based on an additional inflation force applied to give stable results. A snake which is not close to contours is 

not attracted by them. The curve behaves like a balloon which is inflated. When it passes by edges, will not be trapped by 

spurious edges and only is stopped when the edge is strong. The initial guess of the curve not necessarily is close to the 

desired solution. Pressure force is added to the internal and external forces. 

 

 

The expansive behavior is achieved by modifying the values of fx; fy as followed, 

 

 

 

 

 

 

where n(s) is the unit principal normal vector to the curve at point v(s), and k1 is the amplitude of this force. k1 and k are 

chosen  such that they are of the same order, which is smaller than a pixel size and k is slightly larger than k1 so an edge point 

can stop the Inflation force. The curve then expands and it is attracted and stopped by edges as before. The smoothing effect 

with the help of the inflation force then removes the discontinuity and the curve then passes through the edge. 

                                          

4. Gradient Vector Flow Snake 
 

The overall approach is to use the force balance condition as a starting point to design the snake. This parametric curve thus 

formed is called GVF snake.  

 

Gradient Vector Flow:- The GVF field is defined to be a vector field :-       V(x,y) =  

 

Force equation of GVF snake is, 
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V(x,y) is defined such that it minimizes the energy functional, 

 

 

 

 

f(x,y) is the edge map of the image. 

GVF field can be obtained by solving following equations 

 

 

 


2
 Is the Laplacian operator.  

The above equations are solved iteratively using time derivative of u and v. These equations provide further intuition behind 

the GVF formulation. We note that in the homogenous region the second term in both regions is zero because the gradient of 

f(x, y) is zero.  

 

4. Results and Discussion 
The Expanding snake model increases the capture range of an active contour. After its application we can see that the snake 

can move towards object boundary (fig. 4(b)) whereas in the case of the traditional snakes, they had a smaller capture range 

(fig. 3(b)). 

 

 

 

 

 

 

 

 

 

  

(a)                                                                 (b) 

 

 

 

 

 

 

 

 

 

 

(c)                                                                  (d) 

 

Fig3.(a) snake boundary using traditional snake , (b) small capture range of traditional snake, (c) snake boundary using 

balloon model and (d) problem of the small capture range resolved  

 

 

The application of the GVF snake model shows that the snakes can move into boundary concavities (fig. 4(c)) as compared to 

the traditional snake model (fig. 4(b)). 

 

 

 

 

 

 

 

 

 

 

 

(a)                                        (b)                                                 (c) 

Fig4.(a) Convergence of a snake using,  (b)traditional  snakes and (c)using GVF snake 
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5. Conclusion 
We have presented a model of deformation which can successfully deal with two of the major problems that are encountered 

in the traditional snake model thereby making it more efficient. Firstly, the Balloon Model which enables us to give an initial 

guess of the curve which in turn helps us to deal with the problem of small capture range. . Secondly, the application of the 

Gradient Vector Flow (GVF) model which successfully allows convergence to boundary concavities. This model provides a 

collective way of treating visual problems that were till now treated differently. We can also conclude that although the GVF 

snake model and the Balloon Model are both slower than the traditional snake model in the iteration process they provide us 

with  much more accurate. 
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