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I. Introduction: 
The widespread adoption of Electric Vehicles (EVs) has introduced a paradigm shift in sustainable 

urban mobility, necessitating intelligent systems that enhance energy efficiency while extending battery 

lifespan. Among the prominent research themes in this domain are eco-driving techniques, energy-aware route 

planning, battery degradation modeling, and the application of advanced optimization techniques such as Multi-

Objective Genetic Algorithms (MOGAs).Eco-driving techniques involve modifying driver behavior or control 

algorithms to reduce energy consumption without compromising performance or safety. Several studies have 

demonstrated that eco-driving can yield notable energy savings and reduced emissions. For example, Huang et 

al. [1] showed how connected vehicle technologies can augment eco-driving behaviors in real-time, especially 

in urban environments. Ghaffari et al. [2] proposed a fuzzy-based system to modulate acceleration and 
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deceleration profiles to optimize efficiency. Similarly, Sinha et al. [3] examined the integration of eco-driving 

techniques in autonomous EVs, demonstrating consistent energy reductions over baseline strategies. 

In a broader context, connected and autonomous vehicle frameworks that support eco-driving, such as 

V2I (Vehicle-to-Infrastructure) and predictive controls, have been shown to further amplify energy savings [4]–

[6].Route planning for EVs differs from traditional internal combustion engine vehicles due to unique 

constraints like limited range, terrain sensitivity, and charging availability. Schaltz et al. [7] demonstrated that 

route elevation and regenerative braking potential greatly influence total energy consumption. Fiori et al. [8] 

proposed models that incorporated road gradients and traffic lights to evaluate optimal paths. In a related work, 

Wang et al. [9] explored real-time traffic data and congestion levels to assess dynamic rerouting strategies for 

energy minimization. 

Other approaches have integrated geographic information systems (GIS) with EV routing logic to 

enhance real-world applicability [10], [11]. Furthermore, the availability of charging stations and battery SOC 

(State-of-Charge) levels are increasingly being factored into route optimization frameworks [12], [13]. 

Battery health is a critical parameter in EV performance optimization. High-discharge patterns and 

thermal stress significantly influence battery lifespan. Research by Li et al. [14] used electrochemical models to 

predict degradation based on drive cycles, while Wang et al. [15] developed control strategies to minimize 

capacity fade during high-load operations. Peukert’s law and similar aging models have been incorporated into 

predictive systems to guide route and drive behavior [16], [17].Recent work by Zhou et al. [18] investigated 

thermal-aware energy management systems that ensure both driving efficiency and battery longevity. The 

integration of battery temperature and charging frequency data into energy management systems has become a 

central theme in next-generation EVs [19], [20].Multi-objective optimization (MOO) techniques are essential 

when managing conflicting objectives such as minimizing energy consumption, travel time, and battery 

degradation. GAs are well-suited for these tasks due to their global search capability and flexibility. Deb et al. 

[21] introduced NSGA-II, a widely used algorithm in transportation optimization, capable of generating Pareto-

optimal solutions.In the context of EVs, GAs have been employed to optimize charging schedules [22], vehicle 

design parameters [23], and drive cycle strategies [24]. Ahmed et al. [25] demonstrated the application of 

MOGAs for real-time route planning in autonomous EVs, while Zhang et al. [26] extended these techniques to 

include weather and traffic variability.Hybrid methods combining GAs with machine learning have also 

emerged, offering improved convergence speed and solution diversity [27], [28]. Reinforcement learning 

models are now being fused with MOGAs to support online adaptation in dynamic traffic environments [29], 

[30]. 

 

II. The Proposed Dynamic Energy-Efficient Eco-Driving Route Planning and Battery Efficiency for 

Electric Vehicles Using MOGA. 

The proposed system shown in Figure 1 addresses a critical challenge in electric vehicle (EV) 

operation: how to maximize energy efficiency and battery longevity while navigating complex and dynamic 

urban environments. Traditional navigation systems prioritize either shortest distance or fastest route without 

fully accounting for energy costs, elevation profiles, traffic conditions, and battery degradation dynamics. Our 

system introduces an intelligent, adaptive routing mechanism that dynamically adjusts to real-time inputs and 

long-term battery health objectives using a Multi-Objective Genetic Algorithm (MOGA).At its core, this 

architecture is built around a multi-objective optimization engine, which evaluates multiple, sometimes 

conflicting, criteria: minimizing energy usage, reducing battery wear, managing travel time, and optimizing 

route efficiency. The inclusion of battery efficiency as a design parameter, rather than a byproduct, distinguishes 

this approach from conventional energy-saving techniques.The system begins by integrating with the EV’s 

onboard diagnostics (OBD-II) and battery management system (BMS). This module collects:State of Charge 

(SOC), Depth of Discharge (DoD), Charge/Discharge rates, Battery temperature, Vehicle mass (influenced by 

cargo/passengers), Current and historical energy consumption patterns 

These parameters establish a dynamic baseline for energy demand forecasting and battery stress 

modeling.The next layer ingests data from various sources:Traffic APIs for real-time congestion and incident 

reporting.Weather APIs for temperature, precipitation, and wind conditions that influence battery 

performance.Road-grade mapping services (via digital elevation models) to assess elevation 

gain/loss.Charging station networks, providing location, availability, charging rates, and queue times.This 

information is continuously updated, ensuring that route recommendations reflect current and anticipated 

driving conditions.At the center of the architecture is the MOGA optimizer, tasked with solving the route 

planning problem across four dimensions: 

1. Minimize Energy Consumption 

2. Minimize Travel Time 

3. Minimize Battery Degradation 

4. Minimize Route Variability 
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In the proposed system, each potential route is encoded as a chromosome, with individual genes 

representing specific segments of the route. These genes carry attributes such as slope, length, speed limit, 

surface type, and congestion level. This encoding forms the foundation for the optimization process handled by 

the Multi-Objective Genetic Algorithm (MOGA).Each route undergoes a detailed fitness evaluation using a cost 

function that integrates several key factors: energy usage estimation derived from vehicle telemetry and terrain 

data; battery degradation modeling based on principles like Peukert’s law and thermal stress factors; predicted 

travel time, which accounts for speed limits, traffic flow, and anticipated stops; and the vehicle's SOC (State of 

Charge) trajectory, including considerations for regenerative braking and charging requirements.Routes that 

demonstrate better overall performance in these evaluations are selected for the next generation of candidate 

solutions through crossover—where route segments are swapped—and mutation, which introduces minor route 

adjustments or detours. Through iterative optimization, the algorithm constructs a Pareto front, presenting a set 

of non-dominated route options. These routes offer different trade-offs among energy efficiency, travel time, 

and battery longevity, allowing users or fleet operators to select options that align best with their 

objectives.Once an optimal route is chosen, the system applies eco-driving strategies tailored to that route. 

These include speed modulation for smoother acceleration and deceleration, identification of zones where 

regenerative braking can be maximized, predictive behavior adjustments for hills (such as coasting before 

descents), and suggestions for activating eco-driving modes in the vehicle. Drivers receive these prompts 

through an in-vehicle dashboard interface, while autonomous vehicles implement them directly via control 

systems.Battery health modeling plays a central role in the system. It considers factors like charge and discharge 

cycles, depth of discharge, thermal variation, and the C-rate (rate of current draw). A hybrid model is used to 

predict battery wear for each proposed route. This model combines empirical degradation data from aging 

studies, thermal stress simulations for high-speed or elevated routes, and calendar aging effects for vehicles with 

sporadic use. Each route is therefore evaluated not only by its immediate energy cost but also by its long-term 

impact on battery lifespan—ensuring sustainable decision-making that avoids hidden degradation costs.To 

enhance accuracy and adaptability, the system incorporates reinforcement learning. It records trip logs and 

performance data, learns from observed driver behavior patterns, and factors in charging habits and preferences. 

For example, whether a driver tends to accelerate aggressively or prefers to avoid frequent charging stops is 

learned and incorporated into future route planning. This self-learning loop continuously refines the system’s 

cost functions and route predictions.Charging station integration is another critical function. The planner 

evaluates when and where to charge based on the estimated SOC upon arrival, the status and availability of 

nearby charging stations (whether free, occupied, or queued), the expected wait times, and the type of charging 

power available (Level 2 or fast DC). If a stop is deemed necessary, the system selects the station that offers the 

best balance of proximity, wait time, and charging power. It also accounts for peak grid usage periods to reduce 

strain on the energy infrastructure and align with smart grid optimization strategies.To validate route planning 

before implementation, the system includes a real-time simulation engine. This engine mimics vehicle dynamics 

over time, tracks energy flow within the battery, simulates SOC variations, anticipates heat accumulation, and 

estimates delays due to congestion. These simulations provide users, especially fleet managers, with a preview 

of energy consumption, trip efficiency, and battery impact, which supports more informed operational 

decisions.The system’s architecture is built for flexibility and integration. For everyday drivers, a mobile app 

interface presents optimized routes, SOC forecasts, and battery health metrics. For fleet operators, a centralized 

dashboard displays real-time vehicle statuses, predictive cost assessments, and energy health scores across the 

entire fleet. Additionally, open API integration enables seamless connectivity with OEM systems, third-party 

navigation apps, and smart city platforms. The architecture supports both edge computing for real-time feedback 

and cloud computing for data-intensive model training and large-scale analytics, ensuring responsive and 

scalable performance.This comprehensive approach not only enhances the individual driving experience but also 

enables smart, sustainable fleet and infrastructure management in the evolving landscape of electric mobility. 

The proposed system introduces several key innovations that collectively elevate the potential of eco-

driving optimization for electric vehicles. First, it offers holistic optimization by treating route efficiency and 

battery health not as separate concerns but as interconnected components of a unified problem. This enables the 

system to make smarter decisions that benefit both real-time performance and long-term vehicle sustainability. 

The model leverages real-time and predictive fusion, combining live traffic and weather data with predictive 

modeling of energy consumption and battery degradation. This dynamic interplay ensures routes are both 

efficient and responsive to evolving conditions. Furthermore, multi-objective trade-off flexibility allows users—

whether individual drivers or fleet managers—to prioritize based on their immediate needs, whether that’s 

minimizing time, conserving energy, or extending battery life. A cornerstone of the system’s effectiveness is its 

self-adaptive learning capability, which continuously evolves using historical trip data, user preferences, and 

performance outcomes to refine and personalize future recommendations.These innovations translate into 

significant, measurable impacts. The system is projected to extend battery life by up to 20% through smoother 

State of Charge (SOC) profiles and reduced thermal stress, cutting long-term maintenance and replacement 

costs. It also contributes to lower operational costs, with optimized driving strategies reducing unnecessary 
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detours, high acceleration, and inefficient charging behaviors—yielding total energy savings of 10–18%. 

Beyond individual benefits, the model supports smarter urban mobility by optimizing traffic distribution and 

aligning with power grid loads, particularly as electric vehicles become more widespread.Scalability is a core 

strength of the system. It can be implemented across individual EVs via mobile apps or onboard platforms, 

deployed in commercial fleets such as delivery or rideshare services, and adapted for public transit vehicles with 

semi-fixed routes. Looking ahead, the architecture is well-positioned for integration with Vehicle-to-Grid (V2G) 

systems, adaptive behavior in autonomous EVs, and collaboration with urban planning tools for intelligent 

routing that considers infrastructure changes, energy demand peaks, and congestion mitigation.In summary, the 

MOGA-based dynamic routing framework advances far beyond conventional eco-routing by making battery 

efficiency a central optimization parameter. Through the strategic use of real-time data, predictive modeling, 

and evolutionary algorithms, it delivers tangible benefits to drivers, fleet operators, and cities. Its adaptability 

and foresight set the foundation for a future where electric mobility is not only efficient but truly intelligent. 

 
Fig. 1. The schematic of the Proposed Dynamic Energy-Efficient Eco-Driving Route Planning and Battery 

Efficiency for Electric Vehicles Using MOGA. 

 

III. Simulation Results and Discussion 
To evaluate the performance of the proposed dynamic energy-efficient eco-driving route planning 

system, extensive simulations were conducted under varying urban traffic conditions, terrain profiles, and 

battery states. The core objective was to demonstrate how the Multi-Objective Genetic Algorithm (MOGA) 

enhances route planning for electric vehicles (EVs) by optimizing both energy consumption and battery 

longevity. The simulation framework incorporated real-world data from open-source traffic datasets, digital 

elevation models, and empirical battery degradation curves derived from existing literature. 

The simulation environment was built using Python and integrated with SUMO (Simulation of Urban 

MObility) to model urban traffic dynamics. The testbed covered three representative urban scenarios: a flat 

metropolitan grid (City A), a hilly suburban network (City B), and a mixed-terrain area with variable traffic 

density (City C). Each city simulation spanned 50 km² with varying traffic intensities and included fixed and 

dynamic charging infrastructure. 

The EV model used was based on a mid-range electric sedan with a 60 kWh lithium-ion battery pack. 

The model accounted for regenerative braking, variable load, ambient temperature impact, and driving behavior 

profiles. A total of 1,000 simulation runs were performed for each scenario under different optimization settings: 

(1) shortest path (baseline), (2) energy-only optimization, and (3) MOGA-based optimization (proposed). 

To evaluate and compare performance, the following metrics were used: 

• Total Energy Consumption (kWh): Energy used during the trip. 
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• Travel Time (minutes): Duration to reach the destination. 

• Battery Degradation Index (% loss): Estimated capacity loss over repeated cycles. 

• Distance Traveled (km): Route length. 

• Charging Stops (count): Number and frequency of recharges. 

Each metric was averaged across 1,000 runs per scenario, and the results were statistically validated 

using ANOVA and paired t-tests with a 95% confidence interval.Across all scenarios, the MOGA-based system 

outperformed both the shortest path and energy-only strategies in terms of overall efficiency and battery 

preservation.Figure 2 shows the energy consumption reduction. In City A (flat terrain), MOGA reduced 

energy use by 12.4% compared to the shortest-path route and by 4.7% compared to energy-only optimization. In 

City B (hilly terrain), the improvements were even more significant: 18.6% versus the baseline and 9.3% versus 

energy-only. This underscores the MOGA’s ability to navigate elevation and traffic complexities that pure 

energy-focused approaches overlook.Figure 3 shows the battery health optimization. The battery degradation 

index showed compelling differences. While shortest-path routes frequently favored high-speed roads with steep 

inclines (leading to rapid discharges and thermal buildup), MOGA routes were more conservative, avoiding 

sharp gradients and accelerating gently. Over simulated 1,000 trip cycles, MOGA reduced cumulative battery 

degradation by up to 15% compared to shortest-path planning and 7% compared to energy-only strategies. This 

finding is crucial as battery longevity is directly tied to operational cost and EV resale value.Figure 4 shows 

travel time, MOGA incurred a minor average delay of 4.5% compared to the shortest path. However, this was 

still competitive, especially in Cities B and C where congestion led shortest-path vehicles into longer idle times. 

The optimization's awareness of real-time traffic enabled it to reroute vehicles around bottlenecks with minimal 

sacrifice to timing. In scenarios with low congestion, MOGA's travel time was almost identical to baseline.A 

critical benefit of the proposed system was its predictive battery use modeling. MOGA-planned routes resulted 

in 23% fewer emergency charging stops compared to baseline routes as shown in Table 1. Additionally, vehicles 

under MOGA control arrived at charging stations with more consistent state-of-charge levels, enabling better 

grid load balancing. This aspect supports a smoother integration between EV route planning and smart charging 

infrastructure. 

 

Table 1.Charging Frequency and Efficiency 

Metric Shortest Path 

Energy-Only 

Optimization MOGA Optimization 

Improvement 
(MOGA vs. 

Baseline) 

Emergency Charging Stops (per 
1000 trips) 260 210 200 -23% 

State-of-Charge (SOC) Variance 

at Charging (%) 18.4 14.9 11.2 -39% 

 

The MOGA-based approach offers a holistic enhancement to eco-driving for EVs by harmonizing route 

planning with energy consumption and battery wear mitigation. Its ability to manage the inherent trade-offs 

among distance, energy, and time makes it adaptable for real-world deployment.Unlike single-objective 

optimization models, which risk overfitting to energy metrics or ignoring route practicalities, the MOGA’s 

Pareto-front solution allows stakeholders (drivers, fleet operators, municipalities) to select trade-offs that best 

suit their needs. For instance, delivery fleets may prioritize battery health for long-term cost savings, while 

rideshare operators might emphasize minimal travel time.City B's terrain highlighted the algorithm’s ability to 

recognize and avoid high-power-demand segments such as steep hills, especially during low SOC (state of 

charge). City C, with unpredictable traffic and variable elevation, showcased MOGA’s adaptive rerouting 

capabilities, which led to significantly more stable energy profiles across trips. These insights confirm the 

robustness of the model in dynamic urban environments.Figure 5 shows Real-Time vs Static Optimization. 

One of the notable results was the advantage of real-time data integration. When MOGA was supplied with 

static traffic data, performance dipped by ~6% in energy efficiency and ~9% in time efficiency, underscoring 

the importance of dynamic inputs. Real-time adaptability appears essential to maximizing the benefits of this 

optimization model.While the results are promising, there are limitations. First, the computational overhead of 

running MOGA in real-time may restrict its use on low-power onboard systems. Second, variations in driving 

behavior (aggressive vs. conservative) were modeled but not deeply individualized. In real-world applications, 

driver-specific learning might be necessary to fine-tune recommendations. Third, the model assumes a 

reasonably accurate forecast of traffic and weather, which may not always be available.When benchmarked 

against popular navigation systems (e.g., Google Maps with EV mode), MOGA-based routes yielded on average 

8–10% better energy efficiency and less frequent recharging. However, commercial systems do benefit from 

much more granular user data and cloud processing power, suggesting a potential synergy rather than a 

replacement.The results support the integration of MOGA into fleet management software, EV infotainment 

systems, and municipal traffic planning tools. By proactively guiding vehicles along routes that reduce stress on 

both the grid and the battery, such systems can support long-term goals like peak shaving and decarbonization 
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of transport infrastructure. Additionally, policy tools such as eco-routing incentives or congestion pricing could 

be more precisely targeted using outputs from this system. 

 

 

 
Figure 2. Energy Consumption Reduction 

 

 
Figure 3. The battery degradation index 
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Figure 4. travel time 

 

 
Figure 5. travel time 

 

IV. Conclusions 
This research presents a dynamic, energy-efficient eco-driving route planning framework for electric 

vehicles (EVs) by employing a Multi-Objective Genetic Algorithm (MOGA). The proposed model optimizes 

driving routes based on multiple criteria including real-time traffic, topography, battery health, and energy 

consumption, offering a significant advancement over traditional shortest-path approaches. The integration of 

battery efficiency metrics into the route planning process ensures that the selected paths not only minimize 

distance and travel time but also preserve long-term battery health and performance. Simulation results 

demonstrate that the MOGA-based system effectively balances energy efficiency and battery preservation, 

leading to improved range and sustainability for EVs.The approach shows promise in reducing energy 

consumption by dynamically adapting to road and traffic conditions. By considering real-time parameters, the 
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model maintains robustness across different driving environments. Additionally, the evolutionary algorithm’s 

ability to explore a wide solution space allows it to outperform deterministic models in multi-variable 

optimization tasks, particularly in complex urban networks. 

To enhance the practical deployment of this system, future work should focus on real-world testing 

with live EV fleets to validate simulation outcomes. Incorporating vehicle-to-everything (V2X) communication 

can further improve decision-making by providing richer environmental context. Moreover, integrating driver 

behaviormodeling may yield more personalized and accurate route suggestions. Expanding the optimization 

objectives to include charging station availability, charging time, and energy grid load can improve both driver 

experience and infrastructure utilization. Real-time learning mechanisms, such as reinforcement learning, could 

be explored to allow the system to self-improve based on historical and real-time feedback. Lastly, making the 

system interoperable with various EV makes and models through standardized APIs will ensure broader 

applicability and scalability. These enhancements will push the framework closer to becoming a viable, 

intelligent routing system for the next generation of sustainable transportation. 
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