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I. Introduction 

Let 𝐺 be a finite abelian group. The Davenport constant D(𝐺) of 𝐺 is defined as the smallest positive 

integer ℓ such that, every sequence of ℓ terms from 𝐺 contains some terms with sum being the identity element. 

This invariant was first formulated by K. Rogers [7], and popularized by H. Davenport in the 1960’s, notably for 

its link with algebraic number theory (as reported in [6]), and has been investigated extensively in the past 60 

years. A lot of researches were motivated by the Davenport constant together with the celebrated EGZ Theorem 

obtained by P. Erdős, A. Ginzburg and A. Ziv [1] in 1961 on additive properties of sequences in finite abelian 

groups, which have been developed into a branch, called zero-sum theory (see [2] for a survey). To generalize 

the Davenport constant and some other zero-sum invariants and to understand their common properties, Gao, Li, 

etc. [5], defined the universal zero-sum invariant of a finite abelian group as follows. 

Let ℬ(𝐺) be the free commutative monoid, multiplicatively written, with basis 𝐺, i.e., consisting of all 

finite zero-sum sequences of terms from the group 𝐺. For any nonempty set Ω ⊂ ℬ(𝐺), we define the universal 

zero-sum invariant𝖽Ω(𝐺) to be the smallest positive integer ℓ (if it exists, otherwise 𝖽Ω(𝐺) = ∞) such that 

every sequence over 𝐺 of length ℓ has a subsequence in Ω. 

The universal zero-sum invariant motivates some reseraches (see [3,4,8] for example). Among which, 

the minimal set to represent the Davenport constant is the basic question on the universal zero-sum invariant, the 

definition for which is proposed as follows. 

Definition [5] Let 𝐺 be a finite abelian group, and let 𝑡 > 0 be an integer. A set Ω ⊂ ℬ(𝐺) is called minimal 

with respect to 𝑡 provided that 𝖽Ω(𝐺) = 𝑡 and 𝖽Ω′(𝐺) ≠ 𝑡 for any subset Ω′ ⊊ Ω. In particular, if 𝑡 = D(𝐺) then 

we just call Ω a minimal set for short. 

Let 𝒜(𝐺) be the set consisting of all minimal zero-sum sequences over 𝐺. It is easy to show that 𝖽𝒜(𝐺)(𝐺) =

D(𝐺) (see [8]). The following basic question on the minimality of 𝒜(𝐺) to represent the Davenport constant is 

proposed. 

Abstract 

Let 𝐺 be a finite abelian group. Letℬ(𝐺) be the monoid consisting of all zero-sum sequences over 

𝐺, and let 𝒜(𝐺) be the set consisting of all irreducible elements of the monoid ℬ(𝐺). For 𝛺 ⊂

ℬ(𝐺), the universal zero-sum invariant 𝘥𝛺(𝐺) is defined to be the smallest positive integer ℓ such 

that every sequence 𝑇 over 𝐺 of length ℓ has a subsequence in 𝛺. If 𝛺 is equal to 𝒜(𝐺), then 𝘥𝛺(𝐺) 

reduces to the well-known Davenport constant 𝐷(𝐺). A set 𝛺 ⊂ ℬ(𝐺) is called a minimal set (to 

represent the Davenport constant) if𝑑𝛺(𝐺) = 𝐷(𝐺) and 𝑑𝛺′ ≠ 𝐷(𝐺) for every proper subset 𝛺′ of 

𝛺. In [8], for any finite abelian group 𝐺 with 𝑒𝑥𝑝(𝐺) ≠ 3, G. Wang determined all classes of 

groups in which 𝒜(𝐺) is a minimal set, and furthermore conjectured that for the case 𝑒𝑥𝑝(𝐺) = 3, 

i.e., 𝐺 ≅ ℤ3
𝑟(𝑟 ≥ 1), then 𝒜(𝐺) is a minimal set. In this paper, we confirm 

𝑡ℎ𝑒𝑐𝑜𝑛𝑗𝑒𝑐𝑡𝑢𝑟𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝ℤ3
𝑟𝑤𝑖𝑡ℎ𝑟 ≤ 4. 
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Question[5] Is Ω = 𝒜(𝐺) minimal with respect to 𝖽Ω(𝐺) = D(𝐺), i.e., does there exist Ω′ ⊊ 𝒜(𝐺) such that 

𝖽Ω′(𝐺) = D(𝐺)? 

Among other results, very recently Wang proved the following theorem on the minimal set with respect to the 

Davenport constant. 

Theorem[8] Let 𝐺 be a finite nonzero abelian group with exp(𝐺) ≠ 3. Then 𝒜(𝐺) is a minimal set with respect 

to Davenport constant D(𝐺) if and only if one of the following conditions holds: (𝑖)𝐺 ≅ ℤ4; (𝑖𝑖)𝐺 ≅

ℤ5; (𝑖𝑖𝑖)𝐺 ≅ ℤ2
𝑟for 𝑟 ≥ 1. 

However, for the caseofexp(𝐺) = 3, i. e. , 𝐺 ≅ ℤ3
𝑟(𝑟 ≥ 1)this question remains unsolved. Hence, Wang [8] 

proposed the following conjecture. 

Conjecture [8] 𝒜(𝐺) is a minimal set with respect to D(𝐺) if 𝐺 ≅ ℤ3
𝑟  where 𝑟 ≥ 1. 

In this paper, we prove that this conjecture holds true for the case that 𝑟 ≤ 4, which is stated as Theorem 1 in 

Section 3. 

Notation 

Let ℕ denote the set of positive integers. For 𝑛, 𝑟 ∈ ℕ, let ℤ𝑛 be the cyclic group of order 𝑛, and ℤ𝑛
𝑟 =

ℤ𝑛 ⊕ ⋯ ⊕ ℤ𝑛
⏟

𝑟

 the direct sum of 𝑟 copies of ℤ𝑛. A set {𝑒1, ⋯ , 𝑒𝑟} ⊆ ℤ𝑛
𝑟  is called a basis of ℤ𝑛

𝑟  if ℤ𝑛
𝑟 = ⟨𝑒1⟩ ⊕

⋯ ⊕ ⟨𝑒𝑟⟩. Let 𝐺 be a finite abelian group, ℱ(𝐺) the free abelian monoid with basis 𝐺, whose operation is 

denoted by ‘⋅’. Denote [𝑥, 𝑦] = {𝑧 ∈ ℤ: 𝑥 ≤ 𝑧 ≤ 𝑦} for integers 𝑥, 𝑦 ∈ ℤ. By 𝑇 ∈ ℱ(𝐺), we mean 𝑇 is a 

sequence of terms from 𝐺 which is unordered, repetition of terms allowed. We write 𝑇 = ∏ 𝑎v𝑎(𝑇)
𝑎∈𝐺 , where 

v𝑎(𝑇) denotes the multiplicity of element 𝑎 in 𝑇. By |𝑇|, we denote the length of 𝑇 and |𝑇| = ∑ 𝑣𝑎𝑎∈𝑇 (𝑇). By 

𝑇′, we donote a subsequence of 𝑇 (written 𝑇′ ∣ 𝑇) if v𝑎(𝑇′) ≤ v𝑎(𝑇) for all 𝑎 ∈ 𝑇. Let 𝜎(𝑇) = ∑𝑎 ∣ 𝑇𝑎 be the 

sum of all terms of the sequence 𝑇. A sequence 𝑇 is called zero-sum if 𝜎(𝑇) = 0𝐺 (where 0𝐺 is the identity 

element of 𝐺), and minimal zero-sum if none of its proper subsequences is zero-sum. The Davenport constant 

D(𝐺) is defined as the smallest positive integer such that every sequence 𝑇 over 𝐺 with |𝑇| ≥ D(𝐺) contains a 

non-empty zero-sum subsequence. Let 𝒜(𝐺) ⊂ ℱ(𝐺) denote the set consisting of all minimal zero-sum 

sequences over 𝐺. 

Minimal sets representing Davenport constant over ℤ3
4 

Lemma 1[9] 𝒜(𝐺) is a minimal set to represent the Davenport constant in the groups ℤ3
𝑟  with 𝑟 ≤ 3. 

Lemma 2[6] If 𝐺 is a finite abelian 𝑝-group, i.e., 𝐺 ≅ ℤ𝑝𝑛1 ⊕ ⋯ ⊕ ℤ𝑝𝑛𝑟 , then D(𝐺) = 1 + ∑ (𝑟
𝑖=1 𝑝𝑛𝑖 − 1). 

Lemma 3[8] Let 𝐺 be a finite abelian group and 𝑉 a non-empty zero-sum sequence over 𝐺. Then 𝑉 belongs to 

every minimal set contained in 𝒜(𝐺) if and only if there exists a sequence 𝑇 ∈ ℱ(𝐺) of length D(𝐺) such that 

every minimal zero-sum subsequence of 𝑇 is equal to 𝑉. 

Now we are in a position to prove the main theorem of this paper. 

Theorem 1Let 𝐺 ≅ ℤ3
𝑟(𝑟 ≤ 4). 𝒜(𝐺) is a minimal set representing Davenport constant for 𝐺. 

ProofBy Lemma 1, it suffices to consider the case of 𝑟 = 4, i.e, 𝐺 ≅ ℤ3
4. Then it follows from Lemma 2 that 

D(𝐺) = 9. To prove 𝒜(𝐺) is a minimal set, by Lemma 3 it suffices to show that for each 𝑆 ∈ 𝒜(𝐺), there 

exists a sequence 𝑇 ∈ ℱ(𝐺) of length 9such that every minimal zero −

sum subsequence of 𝑇is equal to𝑆. Since|𝑆| ≤ 9 = D(𝐺).  Let {𝑒1, 𝑒2, 𝑒3, 𝑒4} be a basis of 𝐺. 

Claim. If the cardinality of the maximal linearly independent subset of s𝑢𝑝𝑝(𝑆) is no more than 4 then the 

conclusion holds. 
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Proof of the claim. We can assume without loss of generality that 𝑆 is a sequence of terms from the subgroup 

𝐻 =< 𝑒1, 𝑒2, 𝑒3 >≅ ℤ3
3. Then it follows from Lemma 1 that we can find a sequence 𝑇′ over 𝐻 with |𝑇′| =

D(𝐻) = 7 such that every minimal zero-sum sequences of 𝑇′ is equal to 𝑆. Then we take 𝑇 = 𝑇′ ⋅ 𝑒4
2 to be a 

sequence over 𝐺 with length |𝑇| = 9. It is easy to check that every minimal zero-sum subsequence is equal to 𝑆, 

we are done. ◻ 

If |𝑆| = 9 = D(𝐺) we can just take 𝑇 = 𝑆 and have the conclusion proved. Hence, combined with the above 

claim, we need only to consider the case of |𝑆| ∈ [5,8]. Then we shall distinguish some cases by the length of 

|𝑆| as follows. 

Case 1. Suppose |𝑆| = 5. Since 𝑆 contains four linearly independent elements, we can assume without loss of 

generality that 𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ (2𝑒1 + 2𝑒2 + 2𝑒3 + 2𝑒4). Then we check that 𝑇 = 𝑆 ⋅ 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 is the 

desired sequence. 

Case 2. Suppose |𝑆| = 6. 

If 𝑆 contains a pair of same elements, we can show that under the isomorphism of 𝐺, 𝑆 = 𝑒1
2 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ (𝑒1 +

2𝑒2 + 2𝑒3 + 2𝑒4)). Then we take 𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4. 

Otherwise, 𝑆 contains no duplicate elements. Then there are four possible subcases (1)𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅

(𝑒1 + 𝑒2) ⋅ (𝑒1 + 𝑒2 + 2𝑒3 + 2𝑒4); (2) 𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ (𝑒1 + 2𝑒2) ⋅ (𝑒1 + 2𝑒3 + 2𝑒4); (3) 𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅

𝑒4 ⋅ (𝑒1 + 𝑒2 + 𝑒3) ⋅ (𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 2𝑒4); (4) 𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ (2𝑒1 + 𝑒2 + 𝑒3) ⋅ (𝑒2 + 𝑒3 + 2𝑒4). Then we 

can construct 𝑇 has the forms (1) 𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4; (2) 𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅; (3)𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅; (4)𝑇 = 𝑆 ⋅

𝑒1 ⋅ 𝑒2 ⋅ 𝑒4, respectively. 

Case 3. Suppose |𝑆| = 7. Then various constructions based on elements repetitions and linear combinations. 

If 𝑆 contains four linearly independent elements and 2 pairs of same elements, we can show that under the 

isomorphism of 𝐺, 𝑆 = 𝑒1
2 ⋅ 𝑒2

2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ (𝑒1 + 𝑒2 + 2𝑒3 + 2𝑒4), then take 𝑇 = 𝑆 ⋅ 𝑒3 ⋅ 𝑒4. 

If 𝑆 contains a pair of same elements, we can show that under the isomorphism of 𝐺, 𝑆 = 𝑒1
2 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ 𝑥 ⋅ 𝑦. 

Then there are five possible subcases (1)𝑥 = 𝑒2 + 𝑒3, 𝑦 = 𝑒1 + 𝑒2 + 𝑒3 + 2𝑒4; (2)𝑥 = 𝑒2 + 2𝑒3, 𝑦 = 𝑒1 + 𝑒2 +

2𝑒4; (3)𝑥 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒2 + 𝑒3 + 𝑒4; (4)𝑥 = 𝑒2 + 2𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2 + 𝑒4; (5)𝑥 = 𝑒2 + 2𝑒3 +

2𝑒4, 𝑦 = 𝑒1 + 𝑒2. Then we can construct 𝑇 has the forms (1)𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒4;(2)𝑇 = 𝑆 ⋅ 𝑥 ⋅ 𝑦; (3)𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3; 

(4)𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3; (5)𝑇 = 𝑆 ⋅ 𝑒3 ⋅ 𝑒4, respectively. 

If 𝑆 contains no duplicate element, we can show that under the isomorphism of 𝐺, 𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ 𝑥 ⋅ 𝑦 ⋅ 𝑧. 

Then there are ten possible subcases (1)𝑥 = 𝑒1 + 𝑒2, 𝑦 = 𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4; (2)𝑥 = 𝑒1 + 2𝑒2, 𝑦 =

2𝑒2 + 𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4; (3)𝑥 = 𝑒1 + 2𝑒2 + 2𝑒3, 𝑦 = 2𝑒2 + 2𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4; 

(4)𝑥 = 𝑒1 + 𝑒2, 𝑦 = 2𝑒2 + 𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4; (5)𝑥 = 𝑒1 + 2𝑒2, 𝑦 = 𝑒2 + 𝑒3 + 𝑒4, 𝑧 = 𝑒1 +

2𝑒2 + 𝑒3 + 𝑒4; (6)𝑥 = 𝑒2 + 2𝑒3 + 2𝑒4, 𝑦 = 𝑒1 + 2𝑒2 + 2𝑒3 + 2𝑒4, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4; (7)𝑥 = 𝑒2 + 2𝑒4, 

𝑦 = 𝑒1 + 2𝑒2 + 𝑒3 + 2𝑒4, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4; (8)𝑥 = 𝑒1 + 2𝑒2, 𝑦 = 𝑒2 + 2𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 2𝑒2 + 2𝑒3 +

𝑒4; (9)𝑥 = 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 2𝑒2 + 2𝑒3, 𝑧 = 𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4; (10)𝑥 = 𝑒2 + 𝑒3 + 2𝑒4, 𝑦 = 𝑒1 +

2𝑒2 + 2𝑒3 + 2𝑒4, 𝑧 = 𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4. Then we can construct 𝑇 has the forms (1)𝑇 = 𝑆 ⋅ 𝑒1 ⋅ 𝑒3; (2)𝑇 =

𝑆 ⋅ 𝑒1 ⋅ 𝑒3; (3)𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3; (4)𝑇 = 𝑆 ⋅ 𝑒1 ⋅ 𝑒3; (5)𝑇 = 𝑆 ⋅ 𝑒3 ⋅ 𝑒4; (6)𝑇 = 𝑆 ⋅ 𝑒2 ⋅ 𝑒3; (7)𝑇 = 𝑆 ⋅ 𝑒3 ⋅ 𝑒4; (8)𝑇 =

𝑆 ⋅ 𝑒3 ⋅ 𝑒4; (9)𝑇 = 𝑆 ⋅ 𝑒3 ⋅ 𝑒4; (10)𝑇 = 𝑆 ⋅ 𝑒3 ⋅ 𝑒4 , respectively. 

Case 4. Suppose |𝑆| = 8. If 𝑆 contains 3 pairs of same elements, we can show that under the isomorphism of 𝐺, 

𝑆 = 𝑒1
2 ⋅ 𝑒2

2 ⋅ 𝑒3
2 ⋅ 𝑒4 ⋅ (𝑒1 + 𝑒2 + 𝑒3 + 2𝑒4), then take 𝑇 = 𝑆 ⋅ 𝑒4. 

If 𝑆 contains 2 pairs of same elements, we can show that under the isomorphism of 𝐺, 𝑆 = 𝑒1
2 ⋅ 𝑒2

2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ 𝑥 ⋅

𝑦. If 𝑥 = 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, take 𝑇 = 𝑆 ⋅ 𝑒3; if 𝑥 = 𝑒3 + 2𝑒4, 𝑦 = 𝑒1 + 𝑒2 + 𝑒3, take 𝑇 = 𝑆 ⋅ 𝑒3. 
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If 𝑆 contains a pair of same elements, we can show that under the isomorphism of 𝐺, 𝑆 = 𝑒1
2 ⋅ 𝑒2 ⋅ 𝑒3 ⋅ 𝑒4 ⋅ 𝑥 ⋅ 𝑦 ⋅

𝑧. Then there are six possible subcases (1)𝑥 = 𝑒2 + 𝑒4, 𝑦 = 𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 𝑒2 + 𝑒3; (2)𝑥 = 𝑒1 + 𝑒2, 𝑦 =

𝑒3 + 𝑒4, 𝑧 = 𝑒2 + 𝑒3 + 𝑒4; (3)𝑥 = 2𝑒2 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2 + 𝑒3, 𝑧 = 2𝑒2 + 𝑒3 + 𝑒4; (4)𝑥 = 𝑒2 + 𝑒3, 𝑦 = 𝑒1 +

2𝑒2 + 𝑒4, 𝑧 = 2𝑒2 + 𝑒3 + 𝑒4; (5)𝑥 = 𝑒2 + 2𝑒3, 𝑦 = 2𝑒2 + 𝑒3 + 𝑒4, 𝑧 = 𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4; (6)𝑥 = 𝑒1 + 𝑒2 +

2𝑒3, 𝑦 = 2𝑒2 + 𝑒3 + 𝑒4, 𝑧 = 2𝑒2 + 2𝑒3 + 𝑒4. Then 𝑇 has the form 𝑇 = 𝑆 ⋅ 𝑒3 is the desired. 

Otherwise, 𝑆 contains no duplicate element and we can show that under the isomorphism of 𝐺, 𝑆 = 𝑒1 ⋅ 𝑒2 ⋅ 𝑒3 ⋅

𝑒4 ⋅ 𝑥 ⋅ 𝑦 ⋅ 𝑧 ⋅ 𝑣. Then there are twenty-three possible subcases (1)𝑥 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 =

2𝑒2 + 𝑒3, 𝑣 = 𝑒2 + 𝑒4; (2)𝑥 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 2𝑒1 + 2𝑒2, 𝑣 = 𝑒1 + 𝑒2 + 𝑒3; (3)𝑥 = 𝑒1 +

𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2, 𝑧 = 2𝑒1 + 2𝑒2 + 𝑒3, 𝑣 = 𝑒2 + 𝑒4; (4)𝑥 = 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2, 𝑧 =

𝑒1 + 2𝑒2 + 𝑒3, 𝑣 = 𝑒1 + 𝑒2 + 𝑒4; (5)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3, 𝑣 = 𝑒1 + 𝑒2 +

𝑒4; (6)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 2𝑒1 + 2𝑒2 + 𝑒3, 𝑣 = 𝑒2 + 𝑒4; (7)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 =

𝑒1 + 𝑒2, 𝑧 = 2𝑒2 + 𝑒4, 𝑣 = 2𝑒1 + 𝑒2 + 𝑒3; (8)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒4, 𝑣 =

𝑒2 + 𝑒3; (9)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2, 𝑧 = 2𝑒2 + 𝑒3, 𝑣 = 𝑒1 + 𝑒2 + 𝑒4; (10)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 +

𝑒4, 𝑦 = 2𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3, 𝑣 = 𝑒2 + 𝑒4; (11)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2 + 𝑒3, 𝑧 = 𝑒3 +

𝑒4, 𝑣 = 𝑒1 + 2𝑒3; (12)𝑥 = 2𝑒1 + 𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 2𝑒2 + 𝑒3, 𝑧 = 𝑒1 + 𝑒2 + 2𝑒4, 𝑣 = 𝑒1 + 2𝑒4; (13)𝑥 =

2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 𝑒2 + 𝑒3, 𝑣 = 𝑒1 + 𝑒2 + 𝑒4; (14)𝑥 = 2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 =

𝑒1 + 𝑒2, 𝑧 = 2𝑒1 + 𝑒2 + 𝑒3, 𝑣 = 𝑒2 + 𝑒4; (15)𝑥 = 2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 2𝑒1 + 𝑒3, 𝑣 = 2𝑒2 +

𝑒4; (16)𝑥 = 2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 𝑒2, 𝑣 = 𝑒2 + 𝑒3; (17)𝑥 = 2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 =

2𝑒1 + 𝑒2, 𝑧 = 𝑒2 + 𝑒3, 𝑣 = 𝑒1 + 𝑒2 + 𝑒4; (18)𝑥 = 2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 𝑒2 + 𝑒3, 𝑧 = 𝑒1 + 𝑒2 + 2𝑒4, 

𝑣 = 𝑒2 + 2𝑒4; (19)𝑥 = 2𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑦 = 2𝑒1 + 2𝑒2 + 𝑒3, 𝑧 = 𝑒1 + 2𝑒4, 𝑣 = 𝑒2 + 2𝑒4; (20)𝑥 = 2𝑒1 +

2𝑒2 + 2𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 𝑒3, 𝑣 = 𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4; (21)𝑥 = 2𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4, 𝑦 = 𝑒1 +

𝑒2, 𝑧 = 𝑒1 + 2𝑒3, 𝑣 = 𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4; (22)𝑥 = 2𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒2, 𝑧 = 𝑒1 + 2𝑒3 + 2𝑒4, 

𝑣 = 𝑒1 + 2𝑒2 + 𝑒3 + 2𝑒4; (23)𝑥 = 2𝑒1 + 2𝑒2 + 2𝑒3 + 𝑒4, 𝑦 = 𝑒1 + 𝑒3, 𝑧 = 𝑒1 + 2𝑒2 + 𝑒3 + 𝑒4, 𝑣 = 𝑒1 + 𝑒2 +

𝑒3. Then we construct 𝑇 = 𝑆 ⋅ 𝑒4 for the subcases (19) and (21), and 𝑇 = 𝑆 ⋅ 𝑒1 for other subcases, respectively. 

This completes the proof of the Theorem 1. ◻ 
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