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Abstract

Let G be a finite abelian group. LetB(G) be the monoid consisting of all zero-sum sequences over
G, and let A(G) be the set consisting of all irreducible elements of the monoid B(G). For 2 c
B(G), the universal zero-sum invariant d,,(G) is defined to be the smallest positive integer ¢ such
that every sequence T over G of length £ has a subsequence in Q. If 2 is equal to A (G), then d, (G)
reduces to the well-known Davenport constant D(G). A set 2 < B(G) is called a minimal set (to
represent the Davenport constant) ifd,(G) = D(G) and d,, # D(G) for every proper subset 2’ of
0. In [8], for any finite abelian group G with exp(G) # 3, G. Wang determined all classes of
groups in which A(G) is a minimal set, and furthermore conjectured that for the case exp(G) = 3,
ie, G=7Zi(r=1), then A(G) is a minimal set. In this paper, we confirm
theconjecture for the groupZiwithr < 4.
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l. Introduction

Let G be a finite abelian group. The Davenport constant D(G) of G is defined as the smallest positive
integer ¢ such that, every sequence of £ terms from G contains some terms with sum being the identity element.
This invariant was first formulated by K. Rogers [7], and popularized by H. Davenport in the 1960’s, notably for
its link with algebraic number theory (as reported in [6]), and has been investigated extensively in the past 60
years. A lot of researches were motivated by the Davenport constant together with the celebrated EGZ Theorem
obtained by P. Erdds, A. Ginzburg and A. Ziv [1] in 1961 on additive properties of sequences in finite abelian
groups, which have been developed into a branch, called zero-sum theory (see [2] for a survey). To generalize
the Davenport constant and some other zero-sum invariants and to understand their common properties, Gao, Li,
etc. [5], defined the universal zero-sum invariant of a finite abelian group as follows.

Let B(G) be the free commutative monoid, multiplicatively written, with basis G, i.e., consisting of all
finite zero-sum sequences of terms from the group G. For any nonempty set Q < B(G), we define the universal
zero-sum invariantd,(G) to be the smallest positive integer ¢ (if it exists, otherwise do(G) = o) such that
every sequence over G of length £ has a subsequence in Q.

The universal zero-sum invariant motivates some reseraches (see [3,4,8] for example). Among which,
the minimal set to represent the Davenport constant is the basic question on the universal zero-sum invariant, the
definition for which is proposed as follows.

Definition [5] Let G be a finite abelian group, and let t > 0 be an integer. A set Q c B(G) is called minimal
with respect to ¢t provided that do (G) = t and d/(G) # t for any subset Q' < Q. In particular, if t = D(G) then
we just call Q a minimal set for short.

Let A(G) be the set consisting of all minimal zero-sum sequences over G. It is easy to show that d ;¢ (G) =
D(G) (see [8]). The following basic question on the minimality of A (G) to represent the Davenport constant is
proposed.
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Question[5] Is Q = A(G) minimal with respect to do(G) = D(G), i.e., does there exist Q" & A(G) such that
dg’(G) =D(G)?

Among other results, very recently Wang proved the following theorem on the minimal set with respect to the
Davenport constant.

Theorem[8] Let G be a finite nonzero abelian group with exp(G) # 3. Then A(G) is a minimal set with respect
to Davenport constant D(G) if and only if one of the following conditions holds: ()G = Z,; (ii)G =
Zs; (ii))G = Zhforr = 1.

However, for the caseofexp(G) = 3,i.e.,G = Z5(r = 1)this question remains unsolved. Hence, Wang [8]
proposed the following conjecture.

Conjecture [8] A(G) is a minimal set with respect to D(G) if G = Z% where r > 1.

In this paper, we prove that this conjecture holds true for the case that » < 4, which is stated as Theorem 1 in
Section 3.

Notation

Let N denote the set of positive integers. For n,r € N, let Z, be the cyclic group of order n, and Zj, =
Z, D --- D Z, the direct sum of r copies of Z,,. A set {e;,---, e} € Z7, is called a basis of Z, if ZI, = (e;) ®

[

b
- @ (e,). Let G be a finite abelian group, F(G) the free abelian monoid with basis G, whose operation is

denoted by ‘-’. Denote [x,y] = {z € Z:x < z < y} for integers x,y € Z. By T € F(G), we mean T is a
sequence of terms from G which is unordered, repetition of terms allowed. We write T = [[zc; a’2™, where
v, (T) denotes the multiplicity of element a in T. By |T|, we denote the length of T and |T| = Y 4er v, (T). By
T', we donote a subsequence of T (written T' | T) if vo(T") < v,(T) forall a € T. Let o(T) = Ya | Ta be the
sum of all terms of the sequence T. A sequence T is called zero-sum if o(T) = 0, (where 0 is the identity
element of G), and minimal zero-sum if none of its proper subsequences is zero-sum. The Davenport constant
D(G) is defined as the smallest positive integer such that every sequence T over G with |T| = D(G) contains a
non-empty zero-sum subsequence. Let A(G) < F(G) denote the set consisting of all minimal zero-sum
sequences over G.

Minimal sets representing Davenport constant over Z3
Lemma 1[9] A(G) is a minimal set to represent the Davenport constant in the groups Z% with r < 3.
Lemma 2[6] If G is a finite abelian p-group, i.e., G = Z,n @ - @ Z,nr, then D(G) = 1 + Xi_,(p™ — 1).

Lemma 3[8] Let G be a finite abelian group and V a non-empty zero-sum sequence over G. Then V belongs to
every minimal set contained in A(G) if and only if there exists a sequence T € F(G) of length D(G) such that
every minimal zero-sum subsequence of T is equal to V.

Now we are in a position to prove the main theorem of this paper.
Theorem 1Let G = ZL(r < 4). A(G) is a minimal set representing Davenport constant for G.

ProofBy Lemma 1, it suffices to consider the case of r = 4, i.e, G = Z%. Then it follows from Lemma 2 that
D(G) = 9. To prove A(G) is a minimal set, by Lemma 3 it suffices to show that for each S € A(G), there
exists a sequence T € F(G) of length 9such that every minimal zero —
sum subsequence of Tis equal toS. Since|S| < 9 = D(G). Let {ey, e,, 5, e,} be a basis of G.

Claim. If the cardinality of the maximal linearly independent subset of supp(S) is no more than 4 then the
conclusion holds.
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Proof of the claim. We can assume without loss of generality that S is a sequence of terms from the subgroup
H =< e, e, e; >=TZ5. Then it follows from Lemma 1 that we can find a sequence T' over H with |T’'| =
D(H) = 7 such that every minimal zero-sum sequences of T’ is equal to S. Then we take T =T’ - eZ to be a
sequence over G with length |T| = 9. It is easy to check that every minimal zero-sum subsequence is equal to S,
we are done. [

If |S| =9 =D(G) we can just take T = S and have the conclusion proved. Hence, combined with the above
claim, we need only to consider the case of |S| € [5,8]. Then we shall distinguish some cases by the length of
|S| as follows.

Case 1. Suppose |S| = 5. Since S contains four linearly independent elements, we can assume without loss of
generality that S = e; - e, - e3 - e, - (2e, + 2e, + 2e5 + 2e,). Then we check that T =S -e; - e, - e5 - e, is the
desired sequence.

Case 2. Suppose |S| = 6.

If S contains a pair of same elements, we can show that under the isomorphism of G, S = e? - e, - e; - e, - (e; +
2e, + 2e; + 2e,)). Thenwetake T =S - e, - e5 - e,.

Otherwise, S contains no duplicate elements. Then there are four possible subcases (1)S =e; ‘e, - e3 e,
(e;+ey) (e +ey;+2e3+2e);, (2 S=e -e,-e3-¢e,-(e;+2e;) (e;+2e3+2e,);, B S=e;-e, €3
es-(e;+ey+e3) (e;-ey-e3-2e,);, (4) S=e;-e,-e5-€e,-(2e;+e,+e3) (e, +e3+2e,). Then we
canconstruct T hasthe forms (1) T =S-e, - e;-e,; Q)T =S-e,-e;3-e,; (T =S-e,-e3-e,; (T =S
e, - e, - ey, respectively.

Case 3. Suppose |S| = 7. Then various constructions based on elements repetitions and linear combinations.

If S contains four linearly independent elements and 2 pairs of same elements, we can show that under the
isomorphismof G, S = ef -e2 - e;- e, - (e; + e, + 2e5 + 2e,), thentake T = S - e5 - e,.

If S contains a pair of same elements, we can show that under the isomorphism of G, S =e? - e, - e;-e,-x - y.
Then there are five possible subcases (1)x = e, + e,y =e; + e, +es+2e,; (Dx =e, +2e5, y=e, +e, +
2e,; Bx=e+e,+es+e, y=e,+es+e,;, Bx=e,+2e;+e,, y=¢e,+e,+e, BO)x=e, +2e;+
2e,, ¥y = e + e,. Then we can construct T has the forms ()T =S -e,-e4,;(QT =S -x-y; )T =S -e; - es;
AT =S-e,-e3;(B)T =S - e5 - ey, respectively.

If S contains no duplicate element, we can show that under the isomorphismof G, S =e; e, -e;-e, - x-y-z.
Then there are ten possible subcases (1)x =e; +e,,y=es+es,z=e;+e, +es+e,; (Qx=e, +2e,,y =
2e,+es3+e, z=e +e,+es+e,; (Bx=e +2e,+2e;, y=2e,+2e3+e, z=e +e,+e;+ey,;
Wx=e +e, y=2e,+es+e, z=e,+2e,+e3+e,; O)x=e,+2e, y=e,+es;+e, z=¢e +
2e,+e;+e,; B)x =e,+2e;3+2e,, y=e, +2e,+2e;+2e, z=e,+2e,+e;+e, (Nx=e,+ 2e,,
y=e +2e,+e;+2e4,z=e +2e,+e;+e,; Bx=e +2e,,y=e,+2e;+e, z=e,+2e,+2e;+
ey, Ox=e,+es+e, y=e +2e,+2e;, z=e, +2e,+2e5+e,; (10)x=e,+e;+2e, y=e +
2e, + 2e3 + 2e,, z = e, + 2e, + 2e53 + e,. Then we can construct T has the forms (1)T =S -e; - e3; (2)T =
S-e;-e3;3T=Se,-e5;A)T=S-e;-e3;, )T =S-e3-e,;, )T =S-e,-e35;, (NT=S-e5-¢e,; (8)T =
S-e3:e,;, (AT =S-e3-¢e,;, (10)T =S - e5 - e, , respectively.

Case 4. Suppose |S| = 8. If S contains 3 pairs of same elements, we can show that under the isomorphism of G,
S=e?-ef-e2-e,-(e;+e,+e;+2e,) thentakeT =S -e,.

If S contains 2 pairs of same elements, we can show that under the isomorphism of G, S = e? - e? -e; - e, - x -
y.Ifx=e;+e,y=e +te,+e;+e,takeT =5 e;ifx =e3+2e,y=€;,+e,+e;,takeT =S -e;3.
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If S contains a pair of same elements, we can show that under the isomorphism of G, S =e? - e, -e;- e, x-y -
z. Then there are six possible subcases (1)x = e, +e,, y=e;+e,, z=e;+e,+e;3 (Dx=e;+e,, y =
este,, z=e,+es+e, Bx=2e,+e, y=e +e,+e;, z=2e,+es+e,; @x=e,+e;, y=e,+
2e,+e,z=2e,+e;+e,; (B)x=e,+2e;,y=2e,+e;+e,,z=e,+2e,+2e;+e,, B)x =e,+e,+
2e5,y =2e,+e;+e,,z=2e,+2e;+e, ThenT hasthe form T = S - e; is the desired.

Otherwise, S contains no duplicate element and we can show that under the isomorphismof G, S =e; - e, - e5 -
e, x-y-z-v. Then there are twenty-three possible subcases (1)x =e; +e,+es+e,, y=e, +e, z=
2e,+ e, v=e,+e, QDx=e,+e,+e;+e, y=e +e,, z=2e,+2e,, v=e,+e,+e5; B)x=e, +
e;tes+e,, y=2e +te, z=2e,+2e,+e;, v=e,+e,, Ax=e +e,+te;+e, y=2e +e, z=
e1+2e,+e;, v=e +e,+e, BOx=2e+e,+e;+e, y=e,+e,, z=e;,+2e,+e;, v=e;,+e,+
ey, B)x =2e;+e,+este,, y=e+e,,z=2e,+2e,+e5,v=e,+e,;, (MNx=2e;,+e,+es+e,y=
e;+tey,, z=2e,+e, v=2e +e,+e;; B)x=2e,+e,+es+e, y=2e,+e,, z=e,+2e,+e, v=
e, +es; Ox=2e,+e,+es+e, y=2e,+e, z=2e,+e3, v=e;+e, +e, (10)x =2e; +e,+e5+
ey y=2e+e,, z=e +2e,+e3, v=e,+e, (I)x=2e,+e,+e3+e,, y=2e,+e,+e;3, z=e5;+
e v=e+2e; (12)x =2e;+e,+es+e,,y=2e,+2e,+e;,z=e,+e,+2e,,v=e;+2e,; (13)x =
2e;+2e,+es+e, y=e +te, z=e +te,+e;, v=e te,+e, (14)x=2e +2e,+es3+e, y=
e;te,,z=2e +te,+e;, v=e,+e, (15)x =2e, +2e,+es+e, y=e, +e,, z=2e +e3, v=2e,+
ey, (16)x =2e; +2e,+es+e,, y=2e,+e,, z=e;+e,, v=e,+e3; (17)x =2e, +2e,+e5+e,, y=
2e;+e,z=e,+e3, v=e,+e,+e, (18)x =2e; +2e, +e5+e,, y=2e, +e,+e3,z=¢e;+e, + 2e,,
v=e,+2e, (19)x =2e, +2e,+e5+e,, y=2e +2e,+e;, z=e + 2e,, v=-e, + 2¢e,; (20)x = 2e; +
2e,+2es;+e,y=e +te,,z=e +es, V=e+2e,+2e;+e,, 2L)x =2e; +2e,+2e;+e,y=¢e +
ey Z=e, +2e;, V=e +2e,+e;+e, (22x =2e +2e,+2e3+e,, y=e;+e, z=e +2e;+ 2e,,
v=e;+2e,+e;+2¢e, (23)x =2e; +2e,+2e5+ e, V=€, +e3, z=e;+2e,+e;+e, v=e +e,+
es. Then we construct T = S - e, for the subcases (19) and (21), and T = S - e, for other subcases, respectively.
This completes the proof of the Theorem 1. [
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