

Minimal Sets Representing Davenport Constant over \mathbb{Z}_3^4

Xingliang Yi^{*} Lu Zhao

School of Mathematical Sciences, Tiangong University, Tianjin, 300387

Abstract

Let G be a finite abelian group. Let $\mathcal{B}(G)$ be the monoid consisting of all zero-sum sequences over G, and let $\mathcal{A}(G)$ be the set consisting of all irreducible elements of the monoid $\mathcal{B}(G)$. For $\Omega \subset \mathcal{B}(G)$, the universal zero-sum invariant $d_{\Omega}(G)$ is defined to be the smallest positive integer ℓ such that every sequence T over G of length ℓ has a subsequence in Ω . If Ω is equal to $\mathcal{A}(G)$, then $d_{\Omega}(G)$ reduces to the well-known Davenport constant D(G). A set $\Omega \subset \mathcal{B}(G)$ is called a minimal set (to represent the Davenport constant) if $d_{\Omega}(G) = D(G)$ and $d_{\Omega'} \neq D(G)$ for every proper subset Ω' of Ω . In [8], for any finite abelian group G with $\exp(G) \neq 3$, G. Wang determined all classes of groups in which $\mathcal{A}(G)$ is a minimal set, and furthermore conjectured that for the case $\exp(G) = 3$, i.e., $G \cong \mathbb{Z}_3^r(r \ge 1)$, then $\mathcal{A}(G)$ is a minimal set. In this paper, we confirm the conjecture for the group \mathbb{Z}_3^r with $r \le 4$.

Key Words: Davenport constant; the minimal set representing Davenport constant; Universal zerosum invariant; zero-sum; elementary 3-groups

Date of Submission: 13-04-2025

Date of acceptance: 26-04-2025

I. Introduction

Let *G* be a finite abelian group. The Davenport constant D(G) of *G* is defined as the smallest positive integer ℓ such that, every sequence of ℓ terms from *G* contains some terms with sum being the identity element. This invariant was first formulated by K. Rogers [7], and popularized by H. Davenport in the 1960's, notably for its link with algebraic number theory (as reported in [6]), and has been investigated extensively in the past 60 years. A lot of researches were motivated by the Davenport constant together with the celebrated EGZ Theorem obtained by P. Erdős, A. Ginzburg and A. Ziv [1] in 1961 on additive properties of sequences in finite abelian groups, which have been developed into a branch, called zero-sum theory (see [2] for a survey). To generalize the Davenport constant and some other zero-sum invariants and to understand their common properties, Gao, Li, etc. [5], defined the universal zero-sum invariant of a finite abelian group as follows.

Let $\mathcal{B}(G)$ be the free commutative monoid, multiplicatively written, with basis G, i.e., consisting of all finite zero-sum sequences of terms from the group G. For any nonempty set $\Omega \subset \mathcal{B}(G)$, we define the *universal zero-sum invariant* $d_{\Omega}(G)$ to be the smallest positive integer ℓ (if it exists, otherwise $d_{\Omega}(G) = \infty$) such that every sequence over G of length ℓ has a subsequence in Ω .

The universal zero-sum invariant motivates some reseraches (see [3,4,8] for example). Among which, the minimal set to represent the Davenport constant is the basic question on the universal zero-sum invariant, the definition for which is proposed as follows.

Definition [5] Let G be a finite abelian group, and let t > 0 be an integer. A set $\Omega \subset \mathcal{B}(G)$ is called minimal with respect to t provided that $d_{\Omega}(G) = t$ and $d_{\Omega'}(G) \neq t$ for any subset $\Omega' \subseteq \Omega$. In particular, if t = D(G) then we just call Ω a minimal set for short.

Let $\mathcal{A}(G)$ be the set consisting of all minimal zero-sum sequences over G. It is easy to show that $d_{\mathcal{A}(G)}(G) = D(G)$ (see [8]). The following basic question on the minimality of $\mathcal{A}(G)$ to represent the Davenport constant is proposed.

Question[5] Is $\Omega = \mathcal{A}(G)$ minimal with respect to $d_{\Omega}(G) = D(G)$, i.e., does there exist $\Omega' \subsetneq \mathcal{A}(G)$ such that $d_{\Omega'}(G) = D(G)$?

Among other results, very recently Wang proved the following theorem on the minimal set with respect to the Davenport constant.

Theorem[8] Let *G* be a finite nonzero abelian group with $\exp(G) \neq 3$. Then $\mathcal{A}(G)$ is a minimal set with respect to Davenport constant D(G) if and only if one of the following conditions holds: $(i)G \cong \mathbb{Z}_4$; $(ii)G \cong \mathbb{Z}_5$; $(iii)G \cong \mathbb{Z}_2^r$ for $r \ge 1$.

However, for the case of exp(G) = 3, i.e., $G \cong \mathbb{Z}_3^r (r \ge 1)$ this question remains unsolved. Hence, Wang [8] proposed the following conjecture.

Conjecture [8] $\mathcal{A}(G)$ is a minimal set with respect to D(G) if $G \cong \mathbb{Z}_3^r$ where $r \ge 1$.

In this paper, we prove that this conjecture holds true for the case that $r \le 4$, which is stated as Theorem 1 in Section 3.

Notation

Let \mathbb{N} denote the set of positive integers. For $n, r \in \mathbb{N}$, let \mathbb{Z}_n be the cyclic group of order n, and $\mathbb{Z}_n^r = \mathbb{Z}_n \bigoplus \cdots \bigoplus \mathbb{Z}_n$ the direct sum of r copies of \mathbb{Z}_n . A set $\{e_1, \cdots, e_r\} \subseteq \mathbb{Z}_n^r$ is called a basis of \mathbb{Z}_n^r if $\mathbb{Z}_n^r = \langle e_1 \rangle \bigoplus \widetilde{r}$

 $\dots \bigoplus \langle e_r \rangle$. Let *G* be a finite abelian group, $\mathcal{F}(G)$ the free abelian monoid with basis *G*, whose operation is denoted by '.'. Denote $[x, y] = \{z \in \mathbb{Z} : x \le z \le y\}$ for integers $x, y \in \mathbb{Z}$. By $T \in \mathcal{F}(G)$, we mean *T* is a sequence of terms from *G* which is unordered, repetition of terms allowed. We write $T = \prod_{a \in G} a^{v_a(T)}$, where $v_a(T)$ denotes the multiplicity of element *a* in *T*. By |T|, we denote the length of *T* and $|T| = \sum_{a \in T} v_a(T)$. By *T'*, we donote a subsequence of *T* (written $T' \mid T$) if $v_a(T') \le v_a(T)$ for all $a \in T$. Let $\sigma(T) = \sum a \mid Ta$ be the sum of all terms of the sequence *T*. A sequence *T* is called zero-sum if $\sigma(T) = 0_G$ (where 0_G is the identity element of *G*), and minimal zero-sum if none of its proper subsequences is zero-sum. The Davenport constant D(G) is defined as the smallest positive integer such that every sequence *T* over *G* with $|T| \ge D(G)$ contains a non-empty zero-sum subsequence. Let $\mathcal{A}(G) \subset \mathcal{F}(G)$ denote the set consisting of all minimal zero-sum sequences over *G*.

Minimal sets representing Davenport constant over \mathbb{Z}_3^4

Lemma 1[9] $\mathcal{A}(G)$ is a minimal set to represent the Davenport constant in the groups \mathbb{Z}_3^r with $r \leq 3$.

Lemma 2[6] If G is a finite abelian p-group, i.e., $G \cong \mathbb{Z}_{p^{n_1}} \bigoplus \cdots \bigoplus \mathbb{Z}_{p^{n_r}}$, then $D(G) = 1 + \sum_{i=1}^r (p^{n_i} - 1)$.

Lemma 3[8] Let *G* be a finite abelian group and *V* a non-empty zero-sum sequence over *G*. Then *V* belongs to every minimal set contained in $\mathcal{A}(G)$ if and only if there exists a sequence $T \in \mathcal{F}(G)$ of length D(G) such that every minimal zero-sum subsequence of *T* is equal to *V*.

Now we are in a position to prove the main theorem of this paper.

Theorem 1Let $G \cong \mathbb{Z}_3^r (r \le 4)$. $\mathcal{A}(G)$ is a minimal set representing Davenport constant for G.

ProofBy Lemma 1, it suffices to consider the case of r = 4, i.e., $G \cong \mathbb{Z}_3^4$. Then it follows from Lemma 2 that D(G) = 9. To prove $\mathcal{A}(G)$ is a minimal set, by Lemma 3 it suffices to show that for each $S \in \mathcal{A}(G)$, there exists a sequence $T \in \mathcal{F}(G)$ of length 9 such that every minimal zero – sum subsequence of *T* is equal to *S*. Since $|S| \le 9 = D(G)$. Let $\{e_1, e_2, e_3, e_4\}$ be a basis of *G*.

Claim. If the cardinality of the maximal linearly independent subset of supp(S) is no more than 4 then the conclusion holds.

www.ijceronline.com

Proof of the claim. We can assume without loss of generality that *S* is a sequence of terms from the subgroup $H = \langle e_1, e_2, e_3 \rangle \cong \mathbb{Z}_3^3$. Then it follows from Lemma 1 that we can find a sequence *T'* over *H* with |T'| = D(H) = 7 such that every minimal zero-sum sequences of *T'* is equal to *S*. Then we take $T = T' \cdot e_4^2$ to be a sequence over *G* with length |T| = 9. It is easy to check that every minimal zero-sum subsequence is equal to *S*, we are done. \Box

If |S| = 9 = D(G) we can just take T = S and have the conclusion proved. Hence, combined with the above claim, we need only to consider the case of $|S| \in [5,8]$. Then we shall distinguish some cases by the length of |S| as follows.

Case 1. Suppose |S| = 5. Since S contains four linearly independent elements, we can assume without loss of generality that $S = e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot (2e_1 + 2e_2 + 2e_3 + 2e_4)$. Then we check that $T = S \cdot e_1 \cdot e_2 \cdot e_3 \cdot e_4$ is the desired sequence.

Case 2. Suppose |S| = 6.

If *S* contains a pair of same elements, we can show that under the isomorphism of G, $S = e_1^2 \cdot e_2 \cdot e_3 \cdot e_4 \cdot (e_1 + 2e_2 + 2e_3 + 2e_4))$. Then we take $T = S \cdot e_2 \cdot e_3 \cdot e_4$.

Otherwise, *S* contains no duplicate elements. Then there are four possible subcases $(1)S = e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot (e_1 + e_2) \cdot (e_1 + e_2 + 2e_3 + 2e_4)$; (2) $S = e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot (e_1 + 2e_2) \cdot (e_1 + 2e_3 + 2e_4)$; (3) $S = e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot (e_1 + e_2 + e_3) \cdot (e_1 \cdot e_2 \cdot e_3 \cdot 2e_4)$; (4) $S = e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot (2e_1 + e_2 + e_3) \cdot (e_2 + e_3 + 2e_4)$. Then we can construct *T* has the forms (1) $T = S \cdot e_2 \cdot e_3 \cdot e_4$; (2) $T = S \cdot e_2 \cdot e_3 \cdot e_4 \cdot$; (3) $T = S \cdot e_2 \cdot e_3 \cdot e_4 \cdot$; (4) $T = S \cdot e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot$; (5) $T = S \cdot e_2 \cdot e_3 \cdot e_4 \cdot$; (4) $T = S \cdot e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot$; (5) $T = S \cdot e_2 \cdot e_3 \cdot e_4 \cdot$; (4) $T = S \cdot e_1 \cdot e_2 \cdot e_4$, respectively.

Case 3. Suppose |S| = 7. Then various constructions based on elements repetitions and linear combinations.

If S contains four linearly independent elements and 2 pairs of same elements, we can show that under the isomorphism of G, $S = e_1^2 \cdot e_2^2 \cdot e_3 \cdot e_4 \cdot (e_1 + e_2 + 2e_3 + 2e_4)$, then take $T = S \cdot e_3 \cdot e_4$.

If *S* contains a pair of same elements, we can show that under the isomorphism of *G*, $S = e_1^2 \cdot e_2 \cdot e_3 \cdot e_4 \cdot x \cdot y$. Then there are five possible subcases $(1)x = e_2 + e_3$, $y = e_1 + e_2 + e_3 + 2e_4$; $(2)x = e_2 + 2e_3$, $y = e_1 + e_2 + 2e_4$; $(3)x = e_1 + e_2 + e_3 + e_4$, $y = e_2 + 2e_3 + e_4$; $(4)x = e_2 + 2e_3 + e_4$, $y = e_1 + e_2 + e_4$; $(5)x = e_2 + 2e_3 + 2e_4$; $(2)T = S \cdot e_2 + 2e_3 + 2e_4$; $(2)T = S \cdot e_2 \cdot e_3$; $(3)T = S \cdot e_2 \cdot e_3$; $(4)T = S \cdot e_2 \cdot e_3$; $(5)T = S \cdot e_3 \cdot e_4$, respectively.

If *S* contains no duplicate element, we can show that under the isomorphism of *G*, $S = e_1 \cdot e_2 \cdot e_3 \cdot e_4 \cdot x \cdot y \cdot z$. Then there are ten possible subcases $(1)x = e_1 + e_2$, $y = e_3 + e_4$, $z = e_1 + e_2 + e_3 + e_4$; $(2)x = e_1 + 2e_2$, $y = 2e_2 + e_3 + e_4$, $z = e_1 + e_2 + e_3 + e_4$; $(3)x = e_1 + 2e_2 + 2e_3$, $y = 2e_2 + 2e_3 + e_4$, $z = e_1 + e_2 + e_3 + e_4$; $(4)x = e_1 + e_2$, $y = 2e_2 + e_3 + e_4$, $z = e_1 + 2e_2 + e_3 + e_4$; $(5)x = e_1 + 2e_2$, $y = e_2 + e_3 + e_4$, $z = e_1 + e_2 + e_3 + e_4$; $(6)x = e_2 + 2e_3 + 2e_4$, $y = e_1 + 2e_2 + 2e_3 + 2e_4$, $z = e_1 + 2e_2 + e_3 + e_4$; $(7)x = e_2 + 2e_4$, $y = e_1 + 2e_2 + e_3 + 2e_4$, $z = e_1 + 2e_2 + 2e_3 + 2e_4$. Then we can construct *T* has the forms $(1)T = S \cdot e_1 \cdot e_3$; $(2)T = S \cdot e_3 \cdot e_4$; $(9)T = S \cdot e_3 \cdot e_4$; $(10)T = S \cdot e_3 \cdot e_4$, respectively.

Case 4. Suppose |S| = 8. If *S* contains 3 pairs of same elements, we can show that under the isomorphism of *G*, $S = e_1^2 \cdot e_2^2 \cdot e_3^2 \cdot e_4 \cdot (e_1 + e_2 + e_3 + 2e_4)$, then take $T = S \cdot e_4$.

If S contains 2 pairs of same elements, we can show that under the isomorphism of G, $S = e_1^2 \cdot e_2^2 \cdot e_3 \cdot e_4 \cdot x \cdot y$. If $x = e_3 + e_4$, $y = e_1 + e_2 + e_3 + e_4$, take $T = S \cdot e_3$; if $x = e_3 + 2e_4$, $y = e_1 + e_2 + e_3$, take $T = S \cdot e_3$.

If S contains a pair of same elements, we can show that under the isomorphism of G, $S = e_1^2 \cdot e_2 \cdot e_3 \cdot e_4 \cdot x \cdot y \cdot z$. Then there are six possible subcases $(1)x = e_2 + e_4$, $y = e_3 + e_4$, $z = e_1 + e_2 + e_3$; $(2)x = e_1 + e_2$, $y = e_3 + e_4$, $z = e_2 + e_3 + e_4$; $(3)x = 2e_2 + e_4$, $y = e_1 + e_2 + e_3$, $z = 2e_2 + e_3 + e_4$; $(4)x = e_2 + e_3$, $y = e_1 + 2e_2 + e_4$, $z = 2e_2 + e_3 + e_4$; $(5)x = e_2 + 2e_3$, $y = 2e_2 + e_3 + e_4$, $z = e_1 + 2e_2 + 2e_3 + e_4$; $(6)x = e_1 + e_2 + 2e_3$, $y = 2e_2 + e_3 + e_4$, $z = 2e_2 + e_3 + e_4$; $(6)x = e_1 + e_2 + 2e_3$, $y = 2e_2 + e_3 + e_4$, $z = 2e_2 + 2e_3 + e_4$. Then T has the form $T = S \cdot e_3$ is the desired.

Otherwise, S contains no duplicate element and we can show that under the isomorphism of G, $S = e_1 \cdot e_2 \cdot e_3 \cdot e_3$. $e_4 \cdot x \cdot y \cdot z \cdot v$. Then there are twenty-three possible subcases $(1)x = e_1 + e_2 + e_3 + e_4$, $y = e_1 + e_2$, $z = e_1 + e_2$, z = e $2e_2 + e_3$, $v = e_2 + e_4$; $(2)x = e_1 + e_2 + e_3 + e_4$, $y = e_1 + e_2$, $z = 2e_1 + 2e_2$, $v = e_1 + e_2 + e_3$; $(3)x = e_1 + e_2 + e_3$; $(3)x = e_1 + e_2 + e_3$; $(3)x = e_1 + e_2 + e_3 + e_4$, $y = e_1 + e_2 + e_2 + e_3 + e_4$, $y = e_1 + e_2 + e_2 + e_3$, $y = e_1 + e_2 + e_2 + e_3$, y = e $e_2 + e_3 + e_4$, $y = 2e_1 + e_2$, $z = 2e_1 + 2e_2 + e_3$, $v = e_2 + e_4$; (4) $x = e_1 + e_2 + e_3 + e_4$, $y = 2e_1 + e_2$, $z = 2e_$ $e_1 + 2e_2 + e_3, v = e_1 + e_2 + e_4; (5)x = 2e_1 + e_2 + e_3 + e_4, y = e_1 + e_2, z = e_1 + 2e_2 + e_3, v = e_1 + e_2 + e_3 + e_4$ e_4 ; (6) $x = 2e_1 + e_2 + e_3 + e_4$, $y = e_1 + e_2$, $z = 2e_1 + 2e_2 + e_3$, $v = e_2 + e_4$; (7) $x = 2e_1 + e_2 + e_3 + e_4$, $y = e_1 + e_2 + e_3$, $y = e_1 + e_2$, $y = e_1 + e_2 + e_2$, $y = e_1 + e_2$, $y = e_1 + e_2$, $y = e_1 + e_2$ $e_1 + e_2, \ z = 2e_2 + e_4, \ v = 2e_1 + e_2 + e_3; \ (8)x = 2e_1 + e_2 + e_3 + e_4, \ y = 2e_1 + e_2, \ z = e_1 + 2e_2 + e_4, \ v = 2e_1 + 2e_2 + 2e_4, \ v = 2e_1 + 2e_4, \ v = 2e_1 + 2e_4, \ v = 2e_4$ $e_2 + e_3$; (9) $x = 2e_1 + e_2 + e_3 + e_4$, $y = 2e_1 + e_2$, $z = 2e_2 + e_3$, $v = e_1 + e_2 + e_4$; (10) $x = 2e_1 + e_2 + e_3 + e_4$ $e_4, y = 2e_1 + e_2, z = e_1 + 2e_2 + e_3, v = e_2 + e_4; (11)x = 2e_1 + e_2 + e_3 + e_4, y = 2e_1 + e_2 + e_3, z = e_3 + e_4, y = 2e_1 + e_2 + e_3, z = e_3 + e_4, z = e_4 + e_4, z = e$ $e_4, v = e_1 + 2e_3; (12)x = 2e_1 + e_2 + e_3 + e_4, y = 2e_1 + 2e_2 + e_3, z = e_1 + e_2 + 2e_4, v = e_1 + 2e_4; (13)x = 2e_1 + 2e_2 + 2e_3 + 2e_4 + 2e_4$ $2e_1 + 2e_2 + e_3 + e_4$, $y = e_1 + e_2$, $z = e_1 + e_2 + e_3$, $v = e_1 + e_2 + e_4$; $(14)x = 2e_1 + 2e_2 + e_3 + e_4$, $y = e_1 + e_2 + e_3$ $e_1 + e_2, z = 2e_1 + e_2 + e_3, v = e_2 + e_4; (15)x = 2e_1 + 2e_2 + e_3 + e_4, y = e_1 + e_2, z = 2e_1 + e_3, v = 2e_2 + e_3 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_2, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_2, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_2, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e_2 + e_4, v = 2e_1 + e_3, v = 2e_2 + e_4, v = 2e$ e_4 ; (16) $x = 2e_1 + 2e_2 + e_3 + e_4$, $y = 2e_1 + e_2$, $z = e_1 + e_2$, $v = e_2 + e_3$; (17) $x = 2e_1 + 2e_2 + e_3 + e_4$, $y = 2e_1 + 2e_2 + 2e_2 + e_3 + e_4$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_3 + 2e_4$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2 + 2e_3$, $y = 2e_1 + 2e_2 + 2e_2$, y = 2e $2e_1 + e_2$, $z = e_2 + e_3$, $v = e_1 + e_2 + e_4$; (18) $x = 2e_1 + 2e_2 + e_3 + e_4$, $y = 2e_1 + e_2 + e_3$, $z = e_1 + e_2 + 2e_4$, $v = e_2 + 2e_4; (19)x = 2e_1 + 2e_2 + e_3 + e_4, y = 2e_1 + 2e_2 + e_3, z = e_1 + 2e_4, v = e_2 + 2e_4; (20)x = 2e_1 + 2e_4 +$ $2e_2 + 2e_3 + e_4$, $y = e_1 + e_2$, $z = e_1 + e_3$, $v = e_1 + 2e_2 + 2e_3 + e_4$; (21) $x = 2e_1 + 2e_2 + 2e_3 + e_4$, $y = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_3 + 2e_4$, $v = e_1 + 2e_2 + 2e_2 + 2e_$ $e_2, z = e_1 + 2e_3, v = e_1 + 2e_2 + e_3 + e_4; (22)x = 2e_1 + 2e_2 + 2e_3 + e_4, y = e_1 + e_2, z = e_1 + 2e_3 + 2e_4, z = e_1 + 2e_2 + 2e_3 + 2e_4, z = e_1 + 2e_2 + 2e_3 + 2e_4, z = e_1 + 2e_4, z = e_1$ $v = e_1 + 2e_2 + e_3 + 2e_4; (23)x = 2e_1 + 2e_2 + 2e_3 + e_4, y = e_1 + e_3, z = e_1 + 2e_2 + e_3 + e_4, v = e_1 + e_2 + e_3 + e_4, v = e_1 + e_2 + e_3 + e_4, v = e_1 + e_2 + e_3 + e_4, v = e_1 + e_2 + e_3 + e_4, v = e_1 + e_2 + e_3 + e_4, v = e_1 + e_3 + e_$ e_3 . Then we construct $T = S \cdot e_4$ for the subcases (19) and (21), and $T = S \cdot e_1$ for other subcases, respectively. This completes the proof of the Theorem 1. \Box

References

[1] P. Erdős, A. Ginzburg and A. Ziv, Theorem in additive number theory, Bull. Res. Council Israel, 10F (1961) 41–43.

[2] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24 (2006) 337–369.

[3] W. Gao, S. Hong, W. Hui, X. Li, Q. Yin and P. Zhao, Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group, Period. Math. Hungar., 85 (2022) 52–71.

[4] W. Gao, S. Hong, W. Hui, X. Li, Q. Yin and P. Zhao, *Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group II*, J. Number Theory, **241** (2022) 738–760.

[5] W. Gao, Y. Li, J. Peng and G. Wang, A unifying look at zero-sum invariants, Int. J. Number Theory, 14 (2018) 705–711.

[6] J.E. Olson, A Combinatorial Problem on Finite Abelian Groups, I, J. Number Theory, 1 (1969) 8-10.

[7] K. Rogers, A combinatorial problem in Abelian groups, Math. Proc. Cambridge Philos. Soc., 59 (1963) 559-562.

[8] G. Wang, *The universal zero-sum invariant and weighted zero-sum for infinite abelian groups*, Communications in algebra, **53** (2025) 1581–1599.

[9] X. Zhao, X. Wu, Representation of Minimal Set of Davenport Constants in the Elementary 3-group, Journal of Luoyang Normal University, 42 (2023) 1–4.