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Abstract:  

Capability of traditional differential evolution algorithms for optimization solutions has been well documented 

and demonstrated in this paper. However, differential evolution is generally considered inappropriate for many 

Real world problems based on binary/permutation due to its arithmetic reproduction operator.  Also the 

standard differential evolution algorithm has many limitations as slow convergence and local optima become 

trapped. In this paper, a novel technique that adapts a simple differential evolution algorithm. It is proposed to 

be very effective in solving binary-based problems, such as binary knapsacks. This includes new elements, such 

as the presentation of solutions, a mapping diversity method and technique. Furthermore, a new efficient fitness 

evaluation method for calculating and at the same time, to repair candidate solution of Knapsack is introduced.  
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I. Introduction 

Differential evolution (DE) is a member of the family of evolutionary algorithms (EAs). It is a 

stochastic population-based search technique originally developed by Storn and Price [1] to solve optimization 

problems in continuous domains using real numbers to represent the variables’ values. It has a long history of 

successfully solving continuous optimization problems and is considered one of the best EAs for handling those 

with real-valued variables because of its simple structure, robustness, speed and ease of use. Due to its powerful 

features, DE has been applied to solve a wide range of optimization problems in different areas, such as 

clustering [2], power control systems [3] and chemical engineering [4] as well as for simultaneous transit 

network design [5] and several other practical applications as reviewed in [6]. It is used to optimize a problem 

by iteratively trying to improve a candidate solution over several generations through adaptation, emergence and 

learning (evolutionary) operations. Although, like most general EAs, DE is a population-based algorithm, it 

traditionally produces new solutions in every iteration by perturbing current candidate ones using a scaled 

difference between two other solutions randomly selected from the population whereas other EAs recombine 

solutions under conditions imposed by a probabilistic scheme. In DE, the concept of natural selection in biology 

is mimicked by allowing individuals with good fitness values to survive from generation to generation, with the 

quality of each solution evaluated using a pre-defined fitness function. A knapsack problem (KP) is a 

combinatorial optimization problem (COP) with binary decision variables which has proven to be an NP-

complete problem [7]. In it, there is a set of items, with each item (x) having weight (w) and profit (p) values, 

and the main objective is to select those items that maximize the total profit without exceeding the knapsack’s 

capacity. KPs arise in many practical applications in various fields, such as project selection [8], decision-

making [9], water resource engineering and flood management [10], and the distribution and allocation of 

resources [11]. In a typical KP, the knapsack has a positive integer volume as its total weight capacity (W) in 

which N different items may be placed, each of which (j) has a positive integer weight (wj) and positive integer 

profit (pj). 

Due to its practical value in numerous disciplines, the KP has been extensively studied as a discrete 

programming problem. In recent years, several exact and heuristic techniques for solving binary KPs (0–1 KPs) 

have been proposed. Initially, exact methods, such as linear programming (LP) [12], branch and bound (B&B) 

[13] and dynamic programming (DP) [14], were applied to address them. However, although they could achieve 

exact optimal solutions for many small KPs, they were considered inapplicable for large instances because the 

computational time they required increased exponentially with the problem’s size. The most recent exact 

method for solving KPs was developed by Zenarosa et al. [15] who considered the bi-level quadratic KP 

(BQKP) as a test problem. On the other hand, several heuristic algorithms, which are viewed as advanced 

optimization methodologies for solving large-scale optimization problems with various complex situations, have 

been introduced in the literature. Evolutionary computation-based algorithms are the most popular examples of 

heuristic techniques, several versions of which for solving 0–1 KPs, such as genetic algorithms (GAs) [16], DE 

[17], particle swarm intelligence [18], the firefly algorithm (FA) [19], cuckoo search (CS) [20], ant colony 
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optimization (ACO) [21] and harmony search (HS) [22], have been proposed and, in recent years, new variants 

of heuristic algorithms introduced. In 2018, Feng et al. [23] proposed a novel chaotic monarch butterfly 

optimization (MBO) algorithm for solving 0–1 KPs in which chaos theory was applied in order to improve its 

global optimization capability. Another recent variant introduced by Feng et al. [24] applied a discrete version 

of the moth search algorithm (MSA) for solving KPs which demonstrated the importance of using a 

discretization function to improve the quality of solutions. Recent discrete versions of DE have been 

successfully applied to solve instances of COPs, such as traveling salesman problems (TSPs) [25], multi-skill 

resource-constrained project [26] and flow-shop [27] scheduling problems and showed very promising results. 

Also, versions of DE for solving different instances of complex resource-constrained project scheduling 

problems have achieved outstanding performances compared with those of other algorithms [28,29]. Although 

DE has presented an effective way of solving COPs and achieved (near-) optimal solutions within a reasonable 

time, further enhancements are still required to improve its performance in many aspects, such as its capability 

to optimally solve binary/discrete problems with large dimensions in a reasonable amount of time, speed up its 

convergence and avoid becoming trapped in local optima. Motivated by the defined limitations of the standard 

DE in the literature but DE’s potential for solving other COPs, a new design adds components to it to enhance 

its performance and make it suitable for solving binary KPs. In order to cope with the continuous nature of DE 

processes, a mapping method, which uses the average continuous value of each vector, is applied to map every 

gene in that vector to its binary value immediately after its generation. Also, representations for maintaining 

both the continuous and binary values of each vector are proposed as any change in one side will affect the 

other, and a new way of repairing and calculating the fitness value of a KP’s solution is introduced. In this 

method, the feasibility of each solution is checked and the solutions placed in feasible and infeasible groups, 

with those in the former improved and those in the latter (which violate one or more of a problem’s constraints) 

repaired. Also, a diversity mechanism is applied to prevent the DE from becoming stuck in a local optimum 

solution and maintain the diversity of the population. Ultimately, the performances of this novel binary DE 

(NBin-DE) algorithm for solving 44 instances of KPs with different numbers of items are compared with those 

of 22 state-of-the-art algorithms. 

 

II. Typical differential evolution (DE) 

DE is considered a powerful tool for solving optimization problems in continuous spaces and has also 

proven to be a more robust and less biased optimization model than some other EAs, such as GAs and particle 

swarm optimization (PSO) [30]. It has three main parameters that need to be tuned, the scale factor (F), 

crossover rate (cr) and population size (PS). In the lastfew decades, several research efforts have attempted to 

realize the optimal values of these parameters and study their effectson the performance of DE [31]. Based on its 

original formulation provided by Storn and Price [1], DE randomly generates an initial PS of individuals, with a 

uniform distribution in the decision space (N). Then, it optimizes a problem by iteratively trying to improve 

each individual ( x!i) in the population using three evolutionary operators, mutation, crossover and 

selection,which are applied in an iterative way to direct the search towards (near-) optimal solutions. The three 

major operators of thetypical version of DE are described in the following sub-sections. 

 

III. Proposed binary DE algorithm 

As a traditional DE was developed mainly to solve problems in continuous domains and so can handle only real-

valued problems using its current operators, it is inapplicable for solving several permutation-based real-world 

combinatorial problems. Although some techniques using DE to solve discrete problems have been proposed, 

they are only suitable for small ones and need several enhancements to improve their performances. To 

overcome these issues, an efficient version of DE which incorporates useful and enhanced components, such as 

1) an improved solution representation and mapping approach, 2) a new repairing and fitness calculation method 

and 3) a population diversity mechanism, is proposed in this paper. 
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Fig 1. Pseudo code for proposed model 

 

IV. Experimental results 

To demonstrate the effectiveness of our proposed NBin-DE algorithm, which was coded in MATLAB R2017b 

and run on a PC (i7 processor and 16 GB memory), several benchmark binary KPs (0-1KPs) with different 

dimensions were used. They were classified in four groups based on their sizes and sources, with the previously 

developed techniques used to solve them. 

For each KP, the algorithm was executed 30 times with 5,000 fitness evaluations in each run. In order to assess 

its performance and those of other algorithms, AE%, which is the average error between the solution obtained 

by an algorithm and the optimal/best-known one for that problem, was used for comparison and calculated.  The 

proposed NBin-DE significantly outperformed the average of the other algorithms in terms of total profits when 

solving 

f1, f2, f5 and f10 and, although there was no significant difference for f7, it could solve it to optimality. 

 

 
Fig. 2. Pie charts showing computational times for KP09, KP10 and KP11 taken by NBin-DE and six other 

algorithms 
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