
ISSN (e): 2250 – 3005 || Volume, 14 || Issue, 4|| Jul. - Aug. – 2024 ||

International Journal of Computational Engineering Research (IJCER)

www.ijceronline.com Open Access Journal Page 261

Software Engineering Training in Several Languages

Biswajit Tripathy1 Subhadra Biswal2 Snehalata Parida3

1,2,3 Dept. of CSE, Einstein Academy of Technology and Management, Bhubaneswar

Abstract

Nowadays, a lot of software engineering activities may be automated with the help of well-trained machine-

learning models that use a lot of data from open-source software. This strategy has been used to a number of SE

problems, with performance progressively improving over the past few years thanks to improved models and

training techniques. Training benefits from an increasing amount of diverse, well-labelled, and clean data;

nevertheless, creating high-quality datasets is difficult and time-consuming. Increasing the amount and variety

of clean, tagged data can be applied in a broad range of situations. Labelled data may be scarcer for certain

languages (like Ruby) and more concentrated in certain application domains (like JavaScript) for other

languages.

I. INTRODUCTION

Researchers in the NLP area have reported that multilingual training is beneficial for low-resource

language [16, 23]. Several papers show that multilingual-trained models show better performance and are more

practical to deploy [9]. However, this is observed in two situations: 1) for low-resource languages and 2) when

the languages are related. We find that programs in different languages solving the same problem use more

similar identifiers; furthermore, different languages sometimes have similar keywords and operators. High-

capacity deep learning models are capable of learning inter lingual shared semantic representation between

languages. Moreover, with tasks like summarization, or method naming, we are dealing with a simplified, many-

to-one setting: translating multiple source languages to a single target language), which is believed to be easier

than multi-way task [20]. We begin by introducing the code summarization task, which we use to motivate

multilingual training.

Developers often rely heavily on comments, to gain a quick (even if approximate) understanding of the

specification and design of code they are working on. An actual example of a comment is shown in Figure 1.

Such comments help a developer gain a quick mental preview of what the proximate code does, and how it

might go about it; this helps the developer know what to look for in the code. Knowing that such comments are

useful to others (or even later to oneself) incentivizes developers to create comments that explain the code;

however, the resulting redundancy (viz., code that does something, and some nearby English text that describes

just what the code does), with the same concept expressed in two languages results in a bit of extra work for the

original coder. This extra work, of creating aligned comments explaining the code, can be fruitfully viewed [21]

as a task related to natural language translation (NLT) (e.g., translating English to German). The mature &

powerful technology of NLT becomes applicable for comment synthesis; ML approaches developed for the

former can be used for the latter. An effective comment synthesizer could help developers: by saving them the

trouble of writing comments; and perhaps even be used on-demand in the IDE to create descriptions of selected

bits of code.

II. BACKGROUND & MOTIVATION

We now present some motivating evidence suggesting the value of multilingual training data for deep-

learning applications to software tasks. We begin the argument focused on code summarization. Deep learning

models have been widely applied to code summarization, with papers reporting substantial gains in performance

over recent years [1, 2, 7, 18, 19]. We focus here on what information in the code ML models leverage for

summarization (while we use summarization to motivate the approach, we evaluate later on 3 different tasks).

Does every token in the program under consideration matter, for the code summarization task? Or, are the

function and variable names used in the programs most important? Since identifiers carry much information

about the program, this may be a reasonable assumption. Considering the content words2 in the example in

Figure 1 there are four major terms (i.e., Returns, text content, node, and descendants) used in the summary. The

first 3 directly occur as tokens or sub tokens in the code. Though the word “descendants" is missing in the

program, high-capacity neural models like BERT [17] can learn to statistically connect, e.g., "descendant" with

the identifier sub token “child”. This suggests that, perhaps, comments are recoverable primarily from

identifiers. If this is so, and identifiers matter more for comments than the exact syntax of the programming

language, that may actually be very good news indeed. If developers choose identifiers in the same way across

different languages (viz., problem-dependent, rather than language dependent) perhaps we can improve the

diversity and quality of dataset by pooling training set across may languages. Pooled data sets may allow us to

Software Engineering Training in Several Languages

www.ijceronline.com Open Access Journal Page 262

finetune using multilingual data, and improve performance, especially for low-resource languages (e.g., Ruby

and JavaScript from CodeXGLUE). Since this is a core theoretical background for work, we start off with two

basic research questions to empirically gauge the possibility and promise of multilingual fine-tuning.

The Models

For our study of multilingual training, we adopt the BERT, or “foundation model” paradigm.

Foundation models [13, 15, 17] have two stages: i) unsupervised pre-training with corpora at vast scale and ii)

fine-tuning with a smaller volume of supervised data for the actual task. Foundation models currently hold state-

of-the-art performance for a great many NLP tasks. BERT [17] style models have also been adapted for code,

pre-trained on a huge, multilingual, corpora, and made available: CodeBERT and GraphCodeBERT are both

freely available: both source code and pre-trained model parameters. While these models for code have thus far

generally been fine-tuned monolingually, they provide an excellent platform for training experiments like ours,

to measure the gains of multilingual fine-tuning. CodeBERT&GraphCodeBERT use a multi-layer bidirectional

Transformer-based architecture, and it is exactly as same as the RoBERTa , with 125M parameters; we explain

them further below. Pre-training The CodeBERT [18] dataset, has two parts: a matchedpairs part with 2.1M

pairs of function and associated comment (NLPL pairs) and 6.4M samples with just code. The code includes

several programming languages. It was created by Hussain et al. . CodeBERT model is pre-trained with two

objectives (i.e., Masked Language Modeling and Replaced Token Detection) on both parts.

III. CONCLUSION

We began this paper with three synergistic observations: First, when solving the same problem, even in

different programming languages, programmers are more likely to use similar identifiers (than when solving

different problems). Second, identifiers appear to be relatively much more important than syntax markers when

training machine-learning models to perform code summarization. Third, we find that quite often a model

trained in one programming language achieves surprisingly good performance on a test set in a different

language, sometimes even surpassing a model trained on the same language as the test set! Taken together, these

findings suggest that pooling data across languages, thus creating multilingual training sets, could improve

performance for any language, particularly perhaps languages with limited resources, as has been found in

Natural-language processing [16, 23]. We test this theory, using two BERT-style models, Code BERT, and

Graph Code BERT, with encouraging results. Foundation models [12] are currently achieving best-in-class

performance for a wide range of tasks in both natural language and code. The models work in 2 stages, first

“pre-training” to learn statistics of language (or code) construction from very large-scale corpora in a self-

supervised fashion, and then using smaller labelled datasets to “fine-tune” for specific tasks. We adopt the

multilingual Code XGLUE dataset, and the pre-trained Code BERT and Graph Code BERT models, and study

the value of multilingual fine-tuning for a variety of tasks. We find evidence suggesting that multilingual fine-

tuning is broadly beneficial in many settings. Our findings suggest that multilingual training could provide

added value in broad set of settings, and merits further study. Acknowledgements: This material is based upon

work supported by the U.S. National Science Foundation under Grant Nos. 1414172, and 2107592. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation. Ahmed was also supported by UC

Davis College of Engineering Dean’s Distinguished Fellowship.

REFERENCES
[1]. Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-training for Program Understanding and

Generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Association for Computational Linguistics, Online, 2655–2668.
https://www.aclweb.org/anthology/2021.naaclmain.211

[2]. Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A Transformer-based Approach for Source

Code Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL).
[3]. Toufique Ahmed, Premkumar Devanbu, and Anand Ashok Sawant. 2021. Learning to Find Usage of Library Functions in

Optimized Binaries. IEEE Transactions on Software Engineering (2021). https://doi.org/10.1109/TSE.2021.3106572

[4]. Toufique Ahmed, Noah Rose Ledesma, and Premkumar Devanbu. 2021. SYNFIX: Automatically Fixing Syntax Errors using

Compiler Diagnostics. arXiv:2104.14671 [cs.SE]

[5]. MiltiadisAllamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings of the 2019
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. 143–

153.

[6]. MiltiadisAllamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network for extreme summarization of source
code. In International conference on machine learning. PMLR, 2091–2100.

[7]. Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating Sequences from Structured Representations of

Code. In International Conference on Learning Representations. https://openreview.net/forum?id=H1gKYo09tX
[8]. Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of code.

Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–29.

https://www.aclweb.org/anthology/2021.naaclmain.211
https://doi.org/10.1109/TSE.2021.3106572
https://openreview.net/forum?id=H1gKYo09tX

Software Engineering Training in Several Languages

www.ijceronline.com Open Access Journal Page 263

[9]. Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu Chen, Yuan Cao,

George Foster, Colin Cherry, et al. 2019. Massively multilingual neural machine translation in the wild: Findings and challenges.

arXiv preprint arXiv:1907.05019 (2019).

[10]. Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with
human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or

summarization. 65–72.

[11]. Eeshita Biswas, Mehmet Efruz Karabulut, Lori Pollock, and K Vijay-Shanker. 2020. Achieving Reliable Sentiment Analysis in the
Software Engineering Domain using BERT. In 2020 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 162–173.

[12]. Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette
Bohg, Antoine Bosselut, Emma Brunskill, et al. 2021. On the Opportunities and Risks of Foundation Models. arXiv preprint

arXiv:2108.07258 (2021).

[13]. Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020).

[14]. Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020. Electra: Pre-training text encoders as

discriminators rather than generators. arXiv preprint arXiv:2003.10555 (2020).
[15]. Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language model pretraining. Advances in Neural Information

Processing Systems 32 (2019), 7059– 7069.

[16]. Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan. 2020. A survey of multilingual neural machine translation. ACM Computing
Surveys (CSUR) 53, 5 (2020), 1–38.

[17]. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:1810.04805 (2018).

[18]. Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et

al. 2020. CodeBERT: A PreTrained Model for Programming and Natural Languages. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: Findings. 1536–1547.
[19]. Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lun Yiu Nie, and Xin Xia. 2021. Code Structure Guided Transformer for

Source Code Summarization. arXiv preprint arXiv:2104.09340 (2021).

[20]. Ekaterina Garmash and Christof Monz. 2016. Ensemble learning for multi-source neural machine translation. In Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. 1409–1418.

[21]. David Gros, Hariharan Sezhiyan, Prem Devanbu, and Zhou Yu. 2020. Code to Comment?Translation?: Data, Metrics, Baselining &

Evaluation. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 746–757.
[22]. Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu

Fu, et al. 2020. GraphCodeBERT: Pre-training Code Representations with Data Flow. In International Conference on Learning

Representations.
[23]. Thanh-Le Ha, Jan Niehues, and Alexander Waibel. 2016. Toward multilingual neural machine translation with universal encoder

and decoder. arXiv preprint arXiv:1611.04798 (2016).

