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Abstract 

Nowadays, a lot of software engineering activities may be automated with the help of well-trained machine-

learning models that use a lot of data from open-source software. This strategy has been used to a number of SE 

problems, with performance progressively improving over the past few years thanks to improved models and 

training techniques. Training benefits from an increasing amount of diverse, well-labelled, and clean data; 

nevertheless, creating high-quality datasets is difficult and time-consuming. Increasing the amount and variety 

of clean, tagged data can be applied in a broad range of situations. Labelled data may be scarcer for certain 

languages (like Ruby) and more concentrated in certain application domains (like JavaScript) for other 

languages.  

 

I. INTRODUCTION 

Researchers in the NLP area have reported that multilingual training is beneficial for low-resource 

language [16, 23]. Several papers show that multilingual-trained models show better performance and are more 

practical to deploy [9]. However, this is observed in two situations: 1) for low-resource languages and 2) when 

the languages are related. We find that programs in different languages solving the same problem use more 

similar identifiers; furthermore, different languages sometimes have similar keywords and operators. High-

capacity deep learning models are capable of learning inter lingual shared semantic representation between 

languages. Moreover, with tasks like summarization, or method naming, we are dealing with a simplified, many-

to-one setting: translating multiple source languages to a single target language), which is believed to be easier 

than multi-way task [20]. We begin by introducing the code summarization task, which we use to motivate 

multilingual training. 

Developers often rely heavily on comments, to gain a quick (even if approximate) understanding of the 

specification and design of code they are working on. An actual example of a comment is shown in Figure 1. 

Such comments help a developer gain a quick mental preview of what the proximate code does, and how it 

might go about it; this helps the developer know what to look for in the code. Knowing that such comments are 

useful to others (or even later to oneself) incentivizes developers to create comments that explain the code; 

however, the resulting redundancy (viz., code that does something, and some nearby English text that describes 

just what the code does), with the same concept expressed in two languages results in a bit of extra work for the 

original coder. This extra work, of creating aligned comments explaining the code, can be fruitfully viewed [21] 

as a task related to natural language translation (NLT) (e.g., translating English to German). The mature & 

powerful technology of NLT becomes applicable for comment synthesis; ML approaches developed for the 

former can be used for the latter. An effective comment synthesizer could help developers: by saving them the 

trouble of writing comments; and perhaps even be used on-demand in the IDE to create descriptions of selected 

bits of code. 

 

II. BACKGROUND & MOTIVATION 

We now present some motivating evidence suggesting the value of multilingual training data for deep-

learning applications to software tasks. We begin the argument focused on code summarization. Deep learning 

models have been widely applied to code summarization, with papers reporting substantial gains in performance 

over recent years [1, 2, 7, 18, 19]. We focus here on what information in the code ML models leverage for 

summarization (while we use summarization to motivate the approach, we evaluate later on 3 different tasks). 

Does every token in the program under consideration matter, for the code summarization task? Or, are the 

function and variable names used in the programs most important? Since identifiers carry much information 

about the program, this may be a reasonable assumption. Considering the content words2 in the example in 

Figure 1 there are four major terms (i.e., Returns, text content, node, and descendants) used in the summary. The 

first 3 directly occur as tokens or sub tokens in the code. Though the word “descendants" is missing in the 

program, high-capacity neural models like BERT [17] can learn to statistically connect, e.g., "descendant" with 

the identifier sub token “child”. This suggests that, perhaps, comments are recoverable primarily from 

identifiers. If this is so, and identifiers matter more for comments than the exact syntax of the programming 

language, that may actually be very good news indeed. If developers choose identifiers in the same way across 

different languages (viz., problem-dependent, rather than language dependent) perhaps we can improve the 

diversity and quality of dataset by pooling training set across may languages. Pooled data sets may allow us to 
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finetune using multilingual data, and improve performance, especially for low-resource languages (e.g., Ruby 

and JavaScript from CodeXGLUE ). Since this is a core theoretical background for work, we start off with two 

basic research questions to empirically gauge the possibility and promise of multilingual fine-tuning. 

 

The Models  

For our study of multilingual training, we adopt the BERT, or “foundation model” paradigm. 

Foundation models [13, 15, 17] have two stages: i) unsupervised pre-training with corpora at vast scale and ii) 

fine-tuning with a smaller volume of supervised data for the actual task. Foundation models currently hold state-

of-the-art performance for a great many NLP tasks. BERT [17] style models have also been adapted for code, 

pre-trained on a huge, multilingual, corpora, and made available: CodeBERT and GraphCodeBERT are both 

freely available: both source code and pre-trained model parameters. While these models for code have thus far 

generally been fine-tuned monolingually, they provide an excellent platform for training experiments like ours, 

to measure the gains of multilingual fine-tuning. CodeBERT&GraphCodeBERT use a multi-layer bidirectional 

Transformer-based architecture, and it is exactly as same as the RoBERTa , with 125M parameters; we explain 

them further below. Pre-training The CodeBERT [18] dataset, has two parts: a matchedpairs part with 2.1M 

pairs of function and associated comment (NLPL pairs) and 6.4M samples with just code. The code includes 

several programming languages. It was created by Hussain et al. . CodeBERT model is pre-trained with two 

objectives (i.e., Masked Language Modeling and Replaced Token Detection) on both parts. 

 

III. CONCLUSION 

We began this paper with three synergistic observations: First, when solving the same problem, even in 

different programming languages, programmers are more likely to use similar identifiers (than when solving 

different problems). Second, identifiers appear to be relatively much more important than syntax markers when 

training machine-learning models to perform code summarization. Third, we find that quite often a model 

trained in one programming language achieves surprisingly good performance on a test set in a different 

language, sometimes even surpassing a model trained on the same language as the test set! Taken together, these 

findings suggest that pooling data across languages, thus creating multilingual training sets, could improve 

performance for any language, particularly perhaps languages with limited resources, as has been found in 

Natural-language processing [16, 23]. We test this theory, using two BERT-style models, Code BERT, and 

Graph Code BERT, with encouraging results. Foundation models [12] are currently achieving best-in-class 

performance for a wide range of tasks in both natural language and code. The models work in 2 stages, first 

“pre-training” to learn statistics of language (or code) construction from very large-scale corpora in a self-

supervised fashion, and then using smaller labelled datasets to “fine-tune” for specific tasks. We adopt the 

multilingual Code XGLUE dataset, and the pre-trained Code BERT and Graph Code BERT models, and study 

the value of multilingual fine-tuning for a variety of tasks. We find evidence suggesting that multilingual fine-

tuning is broadly beneficial in many settings. Our findings suggest that multilingual training could provide 

added value in broad set of settings, and merits further study. Acknowledgements: This material is based upon 

work supported by the U.S. National Science Foundation under Grant Nos. 1414172, and 2107592. Any 

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and 

do not necessarily reflect the views of the National Science Foundation. Ahmed was also supported by UC 

Davis College of Engineering Dean’s Distinguished Fellowship. 
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