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I. INTRODUCTION 

Infectious diseases remain a significant global health concern, with historical and ongoing threats posed by 

pathogens like Corynebacterium diphtheriae, the causative agent of diphtheria. Despite advancements in medical 

science and vaccination programs, diphtheria continues to pose challenges in both developed and developing 

countries. Understanding the dynamics of diphtheria transmission and optimizing vaccination strategies are 

crucial for effective disease control and prevention. 

Diphtheria has a storied history as a major public health threat, particularly before the introduction of 

vaccines. The disease is characterized by a thick membrane formation in the throat and upper respiratory tract, 

often leading to severe complications such as airway obstruction and myocarditis. Before widespread 

immunization, diphtheria outbreaks were frequent and devastating, especially among children and adolescents 

[1]. The advent of diphtheria toxoid vaccines, first introduced in the 1920s and later combined into the DTP 

(diphtheria-tetanus-pertussis) vaccine, marked a turning point in disease prevention efforts. Vaccination programs 

have successfully reduced diphtheria incidence worldwide, contributing to its near-elimination in many developed 

countries. However, sporadic outbreaks and endemic transmission still occur, particularly in regions with 

suboptimal vaccination coverage and health infrastructure [2]. C. diphtheriae is primarily transmitted through 
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respiratory droplets from infected individuals or carriers. The bacterium colonizes the upper respiratory tract, 

where it produces diphtheria toxin—a potent exotoxin responsible for the disease's clinical manifestations. The 

dynamics of diphtheria transmission are influenced by various factors, including population density, 

socioeconomic conditions, and immunization coverage rates [3]. Mathematical modelling provides a valuable tool 

for understanding these transmission dynamics. Compartmental models, such as the susceptible-infected-

recovered (SIR) framework adapted for diphtheria, divide populations into compartments based on disease status 

(susceptible, infected, recovered) and vaccination status. These models incorporate parameters such as 

transmission rates, vaccine efficacy, and the duration of immunity to simulate disease spread and evaluate 

intervention strategies [4]. 

Vaccination is the cornerstone of diphtheria control strategies, aimed at achieving herd immunity by 

reducing the susceptible population's size. The DTP vaccine, comprising diphtheria toxoid, tetanus toxoid, and 

acellular pertussis components, is routinely administered to infants and young children worldwide. Booster doses 

in adolescence and adulthood help maintain immunity levels and prevent outbreaks [5]. Despite vaccine 

availability, challenges persist in achieving and sustaining high immunization coverage. Vaccine hesitancy—a 

complex phenomenon influenced by factors such as misinformation, mistrust in healthcare authorities, and 

cultural beliefs—poses a significant barrier to achieving optimal vaccination rates. Addressing vaccine hesitancy 

requires targeted communication strategies, community engagement, and trust-building efforts [6]. 

The duration of vaccine-induced immunity against diphtheria is an essential consideration for 

immunization programs. While primary vaccination provides robust protection, immunity may wane over time, 

particularly in older adults and individuals without recent booster doses. Waning immunity increases susceptibility 

to infection and poses challenges for maintaining herd immunity levels within populations [7]. Mathematical 

models that incorporate waning immunity dynamics help predict the long-term effectiveness of vaccination 

programs and inform policy decisions regarding booster dose recommendations. These models assess the potential 

resurgence of diphtheria in populations with declining immunity levels and guide strategies for maintaining high 

vaccine coverage rates [8]. Despite the proven efficacy of diphtheria vaccines, vaccine hesitancy remains a 

significant challenge in achieving and maintaining high immunization coverage. Vaccine hesitancy is influenced 

by a complex interplay of factors including safety concerns, misinformation, religious beliefs, and distrust in 

healthcare systems [9]. These factors can undermine confidence in vaccination programs, leading to suboptimal 

vaccine uptake and reduced community immunity. 

Recent studies highlight the detrimental effects of vaccine hesitancy on disease control efforts. For 

instance, outbreaks of vaccine-preventable diseases, including diphtheria, have been attributed to pockets of 

unvaccinated individuals within communities [10]. Inadequate vaccine coverage due to hesitancy increases the 

risk of disease resurgence, particularly in populations where vaccination rates fall below the threshold required 

for herd immunity [11]. Addressing vaccine hesitancy requires multifaceted strategies tailored to specific cultural 

and social contexts. Effective communication campaigns that provide accurate information about vaccines' safety, 

efficacy, and importance in disease prevention are essential [12]. Engaging with communities through trusted 

healthcare providers, community leaders, and educational initiatives can help build trust and address concerns 

related to vaccination [13]. 

Mathematical models play a crucial role in understanding the dynamics of diphtheria transmission and 

evaluating the impact of vaccination strategies. These models integrate biological parameters such as transmission 

rates, vaccine efficacy, and population demographics to simulate disease spread under different scenarios [14]. 

By quantifying the effectiveness of vaccination programs, models inform policy decisions on vaccination 

schedules, booster doses, and outbreak response strategies [15]. One notable model is the susceptible-infected-

vaccinated-recovered (SIVR) framework, which extends traditional SIR models to include compartments for 

vaccinated individuals and those with waning immunity. This allows for a more nuanced analysis of vaccine 

coverage and its impact on disease transmission dynamics over time [16]. Models also assess the potential 

consequences of vaccine hesitancy by simulating scenarios with varying levels of vaccine uptake and community 

immunity. 

Achieving high vaccine coverage is essential for diphtheria control, but it requires overcoming logistical 

challenges and addressing disparities in access to immunization services. In low-resource settings, limited 

infrastructure, vaccine supply chains, and healthcare worker capacity can hinder vaccination efforts [17]. 

Strengthening health systems, expanding immunization outreach programs, and integrating vaccination with 

primary healthcare services are critical strategies for improving vaccine coverage and equity [18]. Furthermore, 

ensuring vaccine affordability and accessibility is essential for global vaccination efforts. International 

partnerships, such as the Global Alliance for Vaccines and Immunization (GAVI), play a vital role in securing 

vaccine supplies and supporting immunization programs in resource-limited settings [19]. Sustainable financing 

mechanisms and advocacy for political commitment to immunization are necessary to maintain progress towards 

disease elimination goals. 



Modeling Diphtheria Pathogen Dynamics and Vaccine Strategies Considering Vaccine .. 

www.ijceronline.com                                                Open Access Journal                                                 Page 202 

Akponana et al. (2024) tackle the ongoing public health issue of diphtheria, which persists despite 

effective vaccines. They presented a mathematical model with five compartments: Susceptible (S), Infected (I), 

Vaccinated (V), Vaccine-Induced Immunity (W), and Recovered (R) to study the transmission dynamics of the 

disease. By analyzing key model properties such as the disease-free equilibrium and basic reproduction number, 

the study evaluated the conditions under which diphtheria may spread or be controlled. Numerical simulations 

were used to examine the effects of vaccination coverage, waning immunity, and susceptibility on disease 

transmission. Their findings suggest that combining vaccination, effective treatment, and contact tracing can 

significantly reduce and manage diphtheria outbreaks [20]. Arierhie et al. (2024) explored the critical role of 

immunization in public health, particularly underscored by the urgent need for COVID-19 vaccines during the 

pandemic. They employed a deterministic SEIVR model to analyze vaccine deployment strategies and their 

impact. Their research focused on understanding disease-free and endemic equilibria, calculating the basic 

reproduction number (𝑅0), and assessing stability through Jacobian matrix analysis. Their findings highlight a 

calculated (𝑅0) value of approximately 1.1251426e-10, indicating a very low potential for COVID-19 

transmission. This suggests that vaccination efforts can significantly reduce the spread of the disease. Overall, the 

study emphasized the effectiveness of vaccines in creating immunity and preventing severe illness associated with 

COVID-19, thereby contributing valuable insights to ongoing global vaccination strategies [21]. 

Akponana et al. (2023) in their study addressed the persistent public health challenge posed by diphtheria 

through mathematical modelling. They develop a model to simulate the transmission dynamics of the disease, 

evaluating the impact of vaccination coverage, waning immunity, and susceptibility on its spread. Their findings 

underscore the effectiveness of combined strategies including vaccination, treatment, and contact tracing in 

controlling outbreaks. The research highlights the need for robust public health policies informed by mathematical 

models to mitigate the burden of diphtheria and identifies gaps in understanding, particularly concerning 

asymptomatic carriers, warranting further investigation [22]. Egbune et al. (2024) investigated the dynamics and 

control of diphtheria using mathematical modeling, focusing particularly on the effectiveness of Diphtheria 

Antitoxin (DAT) in mitigating the disease's impact. They developed compartmental models and formulated a 

system of differential equations to capture the complexities of diphtheria transmission. Utilizing numerical 

solutions such as the Runge-Kutta Fehlberg method, they analyzed the dynamics and assess the potential impact 

of DAT administration on disease outcomes. Their findings underscore the crucial role of DAT efficiency in 

reducing disease severity, preventing severe cases, and curbing epidemic spread. By exploring various scenarios 

and sensitivity analyses of model parameters, the study provides insights into optimal strategies for controlling 

and intervening in diphtheria outbreaks effectively. Overall, this research enhances understanding of diphtheria 

epidemiology and informs public health policies aimed at improving vaccination coverage and availability of 

DAT, thereby contributing to sustainable disease control and prevention efforts [23]. 

By synthesizing current knowledge and evidence from epidemiological studies, mathematical modelling, 

and public health interventions, this study seeks to assess the effectiveness of vaccination strategies in reducing 

diphtheria incidence and achieving herd immunity, with a focus on vaccine coverage and hesitancy and explore 

the impact of waning immunity on diphtheria epidemiology and the implications for vaccine policy and public 

health responses. 

II. MODEL FORMULATION 
The mathematical model for diphtheria transmission includes five compartments (S, I, V, W, R) 

representing different states of individuals related to the disease. It extends the basic epidemiological 
framework with parameters like recruitment rate (Λ), transition rate (β), and natural death rate (μ). 
Vaccination (ω) leads individuals to immunity or recovery, with potential immunity loss over time. This 
model analyzes diphtheria dynamics, vaccination impact, and compartmental interactions shown in the 
diagram below: The compartmental diagram for the mathematical model describing the interactions 
between the various compartments is shown in the figure below: 

The dynamics of each compartment are described by a set of differential equations which are given below 

 

𝑑𝑆

𝑑𝑡
= Λ + 𝑛𝜉𝑊 + 𝜏𝑅 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 −

𝜂𝑞𝑆𝑉

𝑁
                                       (1)  

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
+ (1 − 𝑛)𝜉𝑊 − ηI −  𝛾𝐼 − (μ + δ)I                                 (2) 
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Figure 1: Compartmental Diagram  

 

𝑑𝑉

𝑑𝑡
=

𝜂𝑞𝑆𝑉

𝑁
+ ηI − 𝜈𝑉 − 𝜇𝑉                                                                   (3) 

𝑑𝑊

𝑑𝑡
= (1 − 𝑚)𝜈𝑉 − 𝜉𝑊 − (μ + δ)𝑊                                                   (4) 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼 + 𝑚𝜈𝑉 − (𝜏 + 𝜇)𝑅                                                                   (5) 

with  

𝑆(0) = 990000, 𝐼(0) = 5000, 𝑉(0) = 3000,𝑊(0) = 1000, 𝑅(0) = 1000, 𝑁(0) = 1000000 

Pathogen Dynamics: 

• Incorporate a parameter (𝜔) representing pathogen dynamics, including factors such as 
pathogen evolution and persistence in the environment.  

• The recovery rate (𝛾) in the equations is modified to reflect the impact of 
pathogen dynamics: 

𝛾 = 𝛾0(1 −  𝜔) 

2. Vaccine Hesitancy: 

• Introduce a parameter (𝜌) representing the degree of vaccine hesitancy, which affects the uptake 
of vaccination.  

• Modify the vaccination rate (𝜂) in the equations to reflect the impact of vaccine hesitancy: 
𝜂 =  𝜂0 (1 − 𝜌) 

3. Vaccine Coverage and Immunization: 

Introduce a parameter 𝝂 representing rate of vaccination, then transmission rate is modified as  

𝛽 = 𝛽0(1 −  𝜈) 

Introduce a parameter (𝐶) representing vaccine coverage, which determines the proportion of the 
population eligible for vaccination.  Introduce a parameter (𝜙) representing the effectiveness of 
immunization 
campaigns in increasing vaccine coverage.  Modify the vaccination rate (𝜂) and immunization rate (𝜙) in 
the equations to reflect vaccine coverage and immunization efforts: 

𝜂 =  𝜂0 𝐶(1 − 𝜌) 

𝜙 = 𝜙0 𝐶 

In these equations: 

𝑆(𝑡): Number of susceptible individuals at time t. 

𝐼(𝑡): Number of infectious individuals at time t. 

𝑅(𝑡): Number of recovered (or immune) individuals at time t. 

𝑉(𝑡): Number of vaccinated individuals at time t. 
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𝑊(𝑡): Number of immunized individuals at time t. 

𝑁: Total population size. 

𝜌: Vaccine hesitancy. 

𝜔: pathogen dynamics, including factors such as pathogen evolution and persistence in the environment 

𝐶: Vaccine coverage. 

𝑛𝜉 proportion of individual whose immunity through vaccination waned and become infected 

(1 − 𝑛)𝜉 proportion of individual whose immunity through vaccination waned and become infected 

𝜏 Recovered individual who became susceptible 

𝜈 Rate of vaccinated individuals transitioning from V to either W or R classes  
Λ Recruitment into susceptible class  
𝛽 Transmission rate  

Η Rate of infected individuals getting vaccinated  

𝜇 Natural death rate  

𝛿 Disease induced death rate  

𝛾 Recovery rate  

𝑞 reduction in susceptibility due to vaccination  

𝜂 vaccination rate 

𝛽0: Baseline transmission rate. 

𝛾0: Baseline recovery rate. 

𝜌0: Baseline vaccination rate. 

𝜙0: Baseline immunization rate. 

The total population is given by 𝑁(𝑡) = 𝑆(𝑡) +  𝐼(𝑡) + 𝑉(𝑡) + 𝑊(𝑡) + 𝑅(𝑡) at any time 𝑡. 

 

III. ANALYSIS OF THE MODEL 
Qualitatively study the dynamical properties of the model (1) as follows: 

3.1. Positivity and boundedness 

For the model to be epidemiologically meaningful and mathematically well posed, it is necessary to establish that 

all solutions of system with positive initial data will remain positive for all times 𝑡 ≥  0.  

Positivity of Solution 

Following from equations (2) to (5) we have 

𝑑𝐼

𝑑𝑡
≥ −(η +  𝛾 + μ + δ)𝐼 ⟹ 𝐼(𝑡) ≥ 𝐼(0)𝑒−(η+ 𝛾+μ+δ)t                               (6) 

𝑑𝑉

𝑑𝑡
≥ −(𝜈 + 𝜇)𝑉 ⟹ 𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝜈+𝜇)𝑡                                                      (7) 

𝑑𝑊

𝑑𝑡
≥ −(𝜉 + 𝜇 + δ)𝑊 ⟹ 𝑊(𝑡) ≥ 𝑊(0)𝑒−(𝜉+𝜇+δ)𝑡                                     (8) 

𝑑𝑅

𝑑𝑡
≥ −(𝜏 + 𝜇)𝑅 ⟹ 𝑅(𝑡) ≥ 𝑅(0)𝑒−(𝜏+𝜇)𝑡                                                       (9) 

From equation (1), 

𝑑𝑆

𝑑𝑡
≥  − (

𝛽𝐼

𝑁
+ 𝜇 +

𝜂𝑞𝑉

𝑁
 ) 𝑆 ⟹

𝑑𝑆

𝑆
≥ −(

𝛽𝐼

𝑁
+ 𝜇 +

𝜂𝑞𝑉

𝑁
)𝑑𝑡 

which leads to 

𝑑𝑆

𝑆
≥ −(

𝛽

𝑁
𝐼(0)𝑒−(η+ 𝛾+μ+δ)t + 𝜇 +

𝜂𝑞

𝑁
𝑉(0)𝑒−(𝜈+𝜇)𝑡)𝑑𝑡 

𝑆(𝑡) ≥
𝜂𝑞𝑉(0)

𝑁(𝜂 + 𝜇)
(𝑒−(𝜈+𝜇)𝑡 − 1) +

𝛽𝐼(0)

𝑁(η +  𝛾 + μ + δ)
(𝑒−(η+ 𝛾+μ+δ)t − 1) − 𝜇𝑡 + 𝑆(0)    (10) 
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From equations (6) – (10) we can see that each equation in the system ensures positive derivatives for positive 

initial conditions. Thus, solutions 𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡),𝑊(𝑡), 𝑅(𝑡) remain positive for all times 𝑡 ≥  0, which proves 

the positivity of solutions. 

Boundedness 

To ensure the solutions to the given system of differential equations are bounded, we need to demonstrate that 

each variable remains within finite limits for all time. This is essential for the solutions to be both non-negative 

and meaningful in the context of the model’s application. 

To prove the boundedness, we will show that the total population   

𝑁(𝑡) = 𝑆(𝑡) +  𝐼(𝑡) + 𝑉(𝑡) + 𝑊(𝑡) + 𝑅(𝑡) 

is bounded. 

Therefore, adding all the equations of the system together, gives 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑉

𝑑𝑡
+

𝑑𝑊

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

= (Λ + 𝑛𝜉𝑊 + 𝜏𝑅 −
𝛽𝑆𝐼

𝑁
− 𝜇𝑆 −

𝜂𝑞𝑆𝑉

𝑁
) + (

𝛽𝑆𝐼

𝑁
+ (1 − 𝑛)𝜉𝑊 − ηI −  𝛾𝐼 − (μ + δ)I) 

+(
𝜂𝑞𝑆𝑉

𝑁
+ ηI − 𝜈𝑉 − 𝜇𝑉) + ((1 − 𝑚)𝜈𝑉 − 𝜉𝑊 − (μ + δ)𝑊) + (𝛾𝐼 + 𝑚𝜈𝑉 − (𝜏 + 𝜇)𝑅) 

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑆 − (μ + δ)I − 𝜇𝑉 − (μ + δ)𝑊 − 𝜇𝑅 

𝑑𝑁

𝑑𝑡
= Λ − 𝜇(𝑆 + I + V + W + R) − δI − δ𝑊 

The recruitment rate Λ and death terms suggest that the population is affected by a constant inflow and 

various outflows. As 𝑁 increases, the term −𝜇𝑁 becomes dominant, indicating that 
𝑑𝑁

𝑑𝑡
< 0 for sufficiently large 

𝑁, thereby limiting population growth. Thus, 𝑁(𝑡) is bounded above by: 

𝑁(𝑡) ≤  
Λ

𝜇
   

for large 𝑡. This ensures that 𝑁 remains finite and provides a bound based on the parameters Λ and 𝜇. 

3.2. Equilibrium Points 

Identifying equilibrium points in disease mathematical models is essential for effective decision-making regarding 

disease control and eradication strategies. In infectious disease modeling, the Disease-Free Equilibrium (DFE) 

point and the Disease-Endemic Equilibrium (DEE) point are of particular importance. Analyzing these points 

offers significant insights into disease dynamics and management. 

3.2.1. The Disease-Free Equilibrium (DFE) 

In mathematical models of infectious diseases, the Disease-Free Equilibrium (DFE) is a state where no infections 

occur in the population. This stable point indicates the disease is not spreading. In epidemiology and disease 

control, understanding the DFE is essential for evaluating the success of interventions designed to prevent or 

eradicate infectious diseases. Here we take 𝐼 = 0, which when solved results in two cases namely; when  𝑆 =
𝑁(𝜇+𝜈)

𝜂𝑞
or V = 0 

For case 1, when V = 0, we get our DFE to be 

𝑆 =
Λ

𝜇
, V = W = R = 0 

Hence 

𝐷𝐹𝐸1 = (𝑆, 𝐼, 𝑉,𝑊, 𝑅) = (
Λ

𝜇
, 0, 0, 0,0)                                                                  (11) 
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For case 2, when 𝑆 =
𝑁(𝜇+𝜈)

𝜂𝑞
, we get our DFE to be 

𝑆 =
𝑁(𝜇 + 𝜈)

𝜂𝑞
, V = W = R = 0 where q =

𝜇𝑁(𝜇 + 𝜈)

Λ𝜂
  

Hence 

𝐷𝐹𝐸2 = (𝑆, 𝐼, 𝑉,𝑊, 𝑅) = (
𝑁(𝜇 + 𝜈)

𝜂𝑞
, 0, 0, 0,0)                                                   (12) 

 

3.2.2. The Disease-Endemic Equilibrium (DEE) 

In mathematical models of infectious diseases, the Endemic Equilibrium Point (EEP) represents a stable state 

where the disease persists at a steady level within a population over time. The EEP describes a situation where the 

disease continues to spread but remains stable due to balanced transmission and recovery rates. Understanding the 

EEP is crucial for assessing long-term disease control strategies and predicting the impact of interventions on 

disease prevalence. We then solve the entire system of equations to get 

𝑆𝑒 =
1

2

𝑁𝑐2𝑐8 + 𝛽𝑐3 ± √𝑁2𝑐2
2𝑐8

2 − 2𝑁𝛽(𝑐2𝑐8 − 2𝑐7)𝑐2 + 𝛽2𝑐3
2

𝛽𝑐2

 

 

𝐼𝑒 =

(((𝑁μ𝑐8 − 𝛬𝛽)(𝑁𝑐8 − 𝛽𝑐6)(𝑁𝑐8𝑐9 − 𝛽𝑐5)𝑐2
2 − 2𝛽𝑐7𝑁 (((−

1

2
𝑐6μ−

1

2
𝛬) 𝑐9 −

1

2
𝑐5μ) 𝛽

+𝑁𝑐8𝑐9μ)𝑐2−𝛽2𝑁μ𝑐9𝑐7𝑐3)√𝑁2𝑐2
2𝑐8

2 − 2𝑁𝛽(𝑐2𝑐8 + 2𝑐7)𝑐2 + 𝛽2𝑐3
2 − 𝑁𝑐8(𝑁μ𝑐8

−𝛬𝛽)(𝑁𝑐8 − 𝛽𝑐6)(𝑁𝑐8𝑐9 − 𝛽𝑐5)𝑐2
3 + 𝛽(−𝛽3𝛬𝑐6𝑐5𝑐3 + (𝑐6𝛬𝑐9 + 𝑐5(μ𝑐6 + 𝛬))(𝑐3𝑐8

+2𝑐7)𝑁𝛽2 − (𝑐3𝑐8 + 3𝑐7)((μ𝑐6 + 𝛬)𝑐9 + 𝑐5μ)𝑐8𝑁
2𝛽 + 𝑁3𝑐8

2 𝑐9μ(𝑐3𝑐8 + 4𝑐7))𝑐2
2

+𝛽2𝑐7𝑁(−((μ𝑐6 + 𝛬)𝑐9 + 𝑐5μ)𝑐3𝛽 + 𝑁𝑐9μ(𝑐3𝑐8 − 2𝑐7)) 𝑐2 + 𝑁𝛽3μ𝑐2
3𝑐7𝑐9)

(𝛽 (((𝑐6(−𝑐5𝑐8 + 𝑐4)𝛽
2 − ((−𝑐6𝑐9 − 𝑐5)𝑐8 + 𝑐6𝑞𝜂𝜏𝛾 + 𝑐5𝜂 + 𝑐4)𝑐8𝑁𝛽 − 𝑐8

2𝑁2(𝑐8𝑐9

−𝜂 (𝛾𝑞𝜏 + 𝑐9))) 𝑐2
2 + 2𝛽 (−

1

2
(𝑐7 + 𝑐1)(𝑐6𝑐9 + 𝑐5)𝛽 + (𝑐9 (𝑐7 +

1

2
𝑐1) 𝑐8 −

1

2
𝑐7𝜂(𝛾𝑞𝜏

+𝑐9))𝑁) 𝑐2+𝑐3𝑐9𝛽
2(𝑐7 + 𝑐1))√𝑁2𝑐2

2𝑐8
2 − 2𝑁𝛽(𝑐2𝑐8 + 2𝑐7)𝑐2 + 𝛽2𝑐3

2 + 𝑁𝑐8(−𝑐6

(−𝑐5𝑐8 + 𝑐4)𝛽
2 + ((−𝑐6𝑐9 − 𝑐5)𝑐8 + 𝑐6𝑞𝜂𝜏𝛾 + 𝑐5𝜂 + 𝑐4)𝑐8𝑁𝛽 + 𝑐8

2𝑁2(𝑐8𝑐9 − 𝜂(𝛾𝑞𝜏

+𝑐9))𝑐3
2
− 𝛽(−𝑐6(−𝑐3𝑐5𝑐8 − 2𝑐1𝑐5 + 𝑐3𝑐4 − 2𝑐5𝑐7)𝛽

2 + (−𝑐3(𝑐6𝑐9 + 𝑐5)𝑐8
2 + (−3(𝑐7

+
1

3
𝑐1) 𝑐6𝑐9 − 3𝑐5𝑐7 + 𝑐3𝑐6𝑞𝜂𝜏𝛾 + (𝜂𝑐5 + 𝑐4)𝑐3 − 𝑐5𝑐1)𝑐8 + 2𝑐7(𝜂𝛾𝑞𝜏𝑐6 + 𝜂𝑐5 + 𝑐4))

𝑁𝛽 + (𝑐3𝑐8
2𝑐9 + ((−𝜂𝑐3 + 𝑐1 + 4𝑐7)𝑐9 − 𝑐3𝑞𝜂𝜏𝛾)𝑐8 − 3𝑐7𝜂(𝛾𝑞𝜏 + 𝑐9))𝑐8𝑁

2)𝑐2
2 − 𝛽2

(−𝑐3(𝑐7 + 𝑐1)(𝑐6𝑐9 + 𝑐5)𝛽 + 𝑐7(𝑐3𝑐8𝑐9 + (−𝜂𝑐3 − 2𝑐1 − 2𝑐7)𝑐9 − 𝑐3𝑞𝜂𝜏𝛾)𝑁)𝑐2 − 𝑐3
2

𝑐9𝛽
3(𝑐7 + 𝑐1)))

 

𝑉𝑒 =
𝜂𝐼𝑒𝑁

−𝜂𝑞𝑆𝑒 + 𝑁μ + 𝑁𝜈
, 𝑊𝑒 =

(1 − 𝑚)𝜈𝜂𝐼𝑒𝑁

(−𝜂𝑞𝑆𝑒 + 𝑁μ + 𝑁𝜈)
 

 

𝑅𝑒 =
−𝐼𝑒𝑞𝜂𝛾𝑆𝑒 + 𝐼𝑒𝑁((μ + 𝜈)𝛾 + 𝑚𝜈𝜂)

(−𝜂𝑞𝑆𝑒 + 𝑁μ + 𝑁𝜈)(𝜏 + μ)
 

where 𝑐1 = 𝑛𝜉(1 − 𝑚)𝜈𝜂𝑁, 𝑐2 = 𝜂𝑞(𝜉 + μ + 𝛿), 𝑐3 = (𝑁μ + 𝑁𝜈)(𝜉 + μ + 𝛿),  𝑐4 = (𝑁𝛾𝜏(μ + 𝜈) +

𝑚𝜏𝜈𝜂𝑁), 𝑐5 = 𝑁(𝜏 + μ)(μ + 𝜈), 𝑐6 =
𝑁μ+𝑁𝜈

𝜂𝑞
, 𝑐7 = (1 − 𝑛)𝜉(1 − 𝑚)𝜈𝜂𝑁, 𝑐8 = (𝜂 + 𝛾 + (μ + 𝛿)), 𝑐9 = 𝜂(𝜏 +

μ)𝑞 

 3.3. Stability Analysis 

In epidemiological modeling, stability analysis is crucial for understanding the long-term behavior of disease 

dynamics within a population. For the 𝑆𝐼𝑉𝑊𝑅 (Susceptible-Infectious-Vaccinated-Immunized-Recovered) 
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model, stability analysis helps determine whether the disease will eventually be eradicated or persist over time by 

examining the equilibrium solutions of the system. 

At the Disease-Free Equilibrium (DFE), the Jacobian matrix of the system is computed and then evaluated at the 

DFE to assess its stability. 

𝐽|(𝑆0,𝐼0,𝑉0,𝑊0,𝑅0) =

[
 
 
 
 
−ℎ1 − 𝜆 −𝑒1 −𝑓1 𝑛𝜉 𝜏

0 −𝑔1 − 𝜆 0 𝑗1 0
0 𝜂 −ℎ1 − 𝜆 0 0
0 0 −𝑖1 −𝑐1 − 𝜆 0
0 𝛾 𝑚𝜈 0 −𝑑1 − 𝜆]

 
 
 
 

 

where  

𝑐1 = (𝜉 + 𝜇 + δ), 𝑑1 = (𝜏 + 𝜇),  𝑒1 =
𝛽Λ

μ𝑁
,  𝑓1 =

𝜂𝑞Λ

μ𝑁
, 𝑔1 = (η +  𝛾 + μ + δ) −

𝛽Λ

μ𝑁
, 

ℎ1 = (𝜈 + 𝜇) −
𝜂𝑞Λ

μ𝑁
, 𝑖1 = (1 − 𝑚)𝜈, 𝑗1 = (1 − 𝑛)𝜉 

The characteristic polynomial is given by 

32𝜆5 + (16μ + 16𝑔1 − 16ℎ1 + 16𝑐1 + 16 𝑑1)𝜆
4 + (7 𝑑1𝑐1 − 7 𝑑1ℎ1 + 7 𝑑1𝑔1 + 7 𝑑1𝜇 

+8𝑔1𝜇 + 8𝑐1ℎ1 + 8𝑐1𝑔1 + 8𝑐1μ − 8ℎ1𝑔1 − 8ℎ1μ + 𝑑1(μ + 𝑐1 + 𝑔1 − ℎ1))𝜆
3 + (4𝑖1𝜂𝑗1 

−4𝑐1𝑔1ℎ1 + 𝑑1(μ𝑐1 + μ𝑔1 − μℎ1 + 𝑐1𝑔1 − 𝑐1ℎ1 − 𝑔1ℎ1) + 3μ𝑐1𝑑1 + 4μ𝑐1𝑔1 − 4μ𝑐1ℎ1 

+3μ 𝑑1𝑔1 − 3μ 𝑑1ℎ1 − 4μ 𝑔1ℎ1 + 3𝑐1𝑑1ℎ1 − 3𝑑1𝑔1ℎ1)𝜆
2 + (2𝜂μ𝑖1𝑗1 + 𝜂𝑑1𝑖1𝑗1 + μ𝑐1𝑑1𝑔1 

−μ𝑐1𝑑1ℎ1 − 2μ𝑐1𝑔1ℎ1 − μ𝑑1𝑔1ℎ1 − 𝑐1𝑑1𝑔1ℎ1 + 𝑑1(𝜂𝑖1𝑗1 + μ𝑐1𝑔1 − μ𝑐1ℎ1 − 𝑐1𝑔1ℎ1))𝜆 

+𝑑1(𝜂μ𝑖1𝑗1 − μ𝑐1𝑔1ℎ1) 

The above characteristic polynomial equation is of the form 

𝑃(𝜆) = 𝑎5𝜆
5 + 𝑎4𝜆

4 + 𝑎3𝜆
3 + 𝑎2𝜆

2 + 𝑎1𝜆 + 𝑎0 = 0 

𝑎5 = 32,  

𝑎4 = 16μ + 16𝑔1 − 16ℎ1 + 16𝑐1 + 16 𝑑1,  

𝑎3 = 7 𝑑1𝑐1 − 7 𝑑1ℎ1 + 7 𝑑1𝑔1 + 7 𝑑1𝜇 + 8𝑔1𝜇 + 8𝑐1ℎ1 + 8𝑐1𝑔1 + 8𝑐1μ − 8ℎ1𝑔1 − 8ℎ1μ
+ 𝑑1(μ + 𝑐1 + 𝑔1 − ℎ1), 

𝑎2 = 4𝑖1𝜂𝑗1 − 4𝑐1𝑔1ℎ1 + 𝑑1(μ𝑐1 + μ𝑔1 − μℎ1 + 𝑐1𝑔1 − 𝑐1ℎ1 − 𝑔1ℎ1) + 3μ𝑐1𝑑1 + 4μ𝑐1𝑔1 − 4μ𝑐1ℎ1

+ 3μ 𝑑1𝑔1 − 3μ 𝑑1ℎ1 − 4μ 𝑔1ℎ1 + 3𝑐1𝑑1ℎ1 − 3𝑑1𝑔1ℎ1,  

𝑎1 = 2𝜂μ𝑖1𝑗1 + 𝜂𝑑1𝑖1𝑗1 + μ𝑐1𝑑1𝑔1 − μ𝑐1𝑑1ℎ1 − 2μ𝑐1𝑔1ℎ1 − μ𝑑1𝑔1ℎ1 − 𝑐1𝑑1𝑔1ℎ1

+ 𝑑1(𝜂𝑖1𝑗1 + μ𝑐1𝑔1 − μ𝑐1ℎ1 − 𝑐1𝑔1ℎ1) 

𝑎0 = 𝑑1(𝜂μ𝑖1𝑗1 − μ𝑐1𝑔1ℎ1) 

By Routh-Hurwitz criterion governing the polynomials of order 5 the system is stable if all and only if 

all roots of the equation have negative real parts. And for the system to be stable, all entries in the first column of 

the Routh array must be. From the Routh array construction we have 32 which is positive while for the rest to 

satisfy that condition 

1. 𝑎4 > 0 

2. 𝑏31 > 0  

3. 𝑏41 > 0 

4. 𝑏51 > 𝑎3 

where 𝑏31 =
𝑎4𝑎3−32𝑎2

𝑎4
, 𝑏41 =

𝑏31𝑎2−𝑎4𝑏32

𝑏31
, 𝑏51 =

𝑏41 𝑏32− 𝑏31𝑏42

𝑏41
, 𝑏32 =

𝑎4𝑎1−32𝑎0

𝑎4
, 𝑏42 =

𝑏31𝑎0

𝑏31
 

From the expansion above, all the conditions are satisfied. Therefore, the disease-free equilibrium is locally 

asymptotically stable. This completes the proof. 

 

3.4. The Basic Reproduction Number 

The basic reproduction number, 𝑅0, is the average number of secondary cases produced by one infected person 

in a fully susceptible population during their infective period. To find 𝑅0, the next-generation matrix approach 

is employed. Let 𝑋(𝑡) = ( 𝐼, 𝑉,𝑊) and obtain that 

𝑋′(𝑡) = ℱ(𝑡) − 𝒱(𝑡)  

where: 
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ℱ(𝑡) = (

𝛽𝑆

𝑁
0 (1 − 𝑛)𝜉

0 0 0
0 0 0

) , 𝒱(𝑡) = (

−(𝜂 + 𝛾 + 𝜇 + 𝛿) 0 0

𝜂
𝜂𝑞𝑆

𝑁
− (𝜈 + μ) 0

0 (1 − 𝑚)𝜈 −(𝜉 + μ + 𝛿)

) 

 

Evaluating the derivatives of 𝐹 and 𝑉 at the disease-free equilibrium point obtained above, yields 𝐹𝒱−1  as seen 

below: 

𝐹𝒱−1 = (

(−𝜈𝜉(1 − 𝑛)(1 − 𝑚)𝑁2 + 𝑐1𝑆
2𝑞𝛽)𝜂 − 𝑁𝛽𝑆𝑏1𝑐1

𝑁𝑎1(−𝑆𝜂𝑞 + 𝑁𝑏1)𝑐1

−
(1 − 𝑛)𝜉(1 − 𝑚)𝜈𝑁

(−𝑆𝜂𝑞 + 𝑁𝑏1)𝑐1

−
(1 − 𝑛)𝜉

𝑐1

0 0 0
0 0 0

) 

where 𝑎1 = (𝜂 + 𝛾 + 𝜇 + 𝛿), 𝑏1 = (𝜈 + μ), 𝑐1 = (𝜉 + μ + 𝛿) 

By solving the dominant eigenvalue of the next generation matrix 𝐹𝒱−1, we get the basic reproduction number 

to be 

𝑅0 = −
(−𝜈𝜉(1 − 𝑛)(1 − 𝑚)𝑁2 + 𝑐1𝑆

2𝑞𝛽)𝜂 − 𝑁𝛽𝑆𝑏1𝑐1

𝑁𝑎1(−𝑆𝜂𝑞 + 𝑁𝑏1)𝑐1

 

Therefore, the basic reproduction number of the given system of equations denoted by 𝑅0 is:  

𝑅0 = −
(−𝑁2𝜈𝜉(1 − 𝑛)(1 − 𝑚)μ2 + 𝛬2𝑐1𝑞𝛽)𝜂 − 𝛬𝑁𝛽μ𝑏1𝑐1

𝑁μ𝑎1(−𝛬𝜂𝑞 + 𝑁μ𝑏1)𝑐1

 

 

3.5. Parameter Effects on the BRN   

Sensitivity analysis helps determine the sensitivity index, measuring the relative change in a state variable with a 

change in a parameter. Using the approach by [24], we calculate the sensitivity indices of 𝑅0 for model parameters, 

showing each parameter's role in disease transmission dynamics and prevalence. The sensitivity of a parameter, 

such as 𝛽, on 𝑅0 is defined as: 

𝜉𝛽
𝑅0 =

𝜕𝑅0

𝜕𝛽
×

𝛽

𝑅0

                                                                                          (13) 

Consequently, the table below displays the sensitivity indices of the parameters affecting the Basic Reproduction 

Number. 

Table: Sensitivity analysis on Basic Reproduction Number 𝑹𝟎  

Parameter Sensitivity Index Parameter Sensitivity Index 

Λ 0.001135 𝜈 0.130283 

𝛽 0.001131 𝑞 0.0000043 

𝛿 -0.319836 𝜂 0.914128 

𝛾 -0.847458 𝜉 0.443942 

𝜇 -0.323325   

 

IV. DISCUSSION OF RESULTS 
In this section, we present the results of our numerical simulation analysis for the SIVWR (Susceptible-

Infectious-Vaccinated-Immunized-Recovered) model. This analysis is fundamental for understanding the long-

term behavior of Diphtheria transmission within the population. 

Figure 2 demonstrates the impact of the natural death rate (𝜇) on the infectious population. When 𝜇 = 0, 

the infectious population declines slowly, indicating a prolonged infectious period that allows the disease to persist 

longer and complicates outbreak control. As 𝜇 increases (from 0.2 to 0.6), the decline in the infectious population 

becomes more rapid, reflecting a shorter duration of infectiousness and faster disease prevalence reduction. Higher 

natural death rates lead to quicker stabilization of the infectious population, suggesting that similar effects can be 

achieved through interventions like medical treatments and vaccination efforts. Figure 3 illustrates the effect of 𝜇 

on the vaccinated population (𝑉(𝑡)) over 30 months. All curves show a decline in the vaccinated population, but 
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the rate varies with 𝜇. The red curve (𝜇 = 0) shows the slowest decrease, with the vaccinated population 

remaining relatively stable. In contrast, as \(\mu\) increases, the decline becomes steeper: the black dashed curve 

(𝜇 = 0.2) shows a moderate decline, while the purple dash-dotted (𝜇 = 0.4) and blue dotted (𝜇 = 0.6) curves 

show increasingly rapid declines. This indicates that higher natural death rates significantly impact the vaccinated 

population, highlighting the need for continued vaccination efforts and minimized mortality to sustain effective 

immunity levels. Figure 4 shows the impact of the natural death rate (𝜇) on the immunized population (𝑊(𝑡)) 

over 30 months. With 𝜇 = 0 (red curve), the immunized population steadily grows as individuals move into this 

class through vaccination or recovery, enhancing overall immunity. However, as 𝜇 increases (black dashed for 

𝜇 = 0.2, purple dash-dotted for 𝜇 = 0.4, and blue dotted for 𝜇 = 0.6), the immunized population declines more 

sharply. Higher mortality rates significantly reduce the number of immunized individuals, with the blue dotted 

curve showing the steepest decline, indicating that a high natural death rate quickly depletes the immunized class. 

Figure 5 illustrates the effect of the recovery rate (𝛾) on the infected population (𝐼(𝑡)) over 30 months. 

Higher recovery rates lead to a significant reduction in the infected population. The red curve (𝛾 = 0) represents 

a scenario with no recovery, resulting in unchecked growth of infections and potential severe outbreaks. As 𝛾 

increases, the decline in the infected population becomes more pronounced: the black dashed curve (𝛾 = 0.2) 

shows a moderate decrease, while the purple dash-dotted (𝛾 = 0.4) and blue dotted (𝛾 = 0.6) curves show 

increasingly rapid declines. This highlights the critical role of recovery in controlling disease spread and 

underscores the importance of enhancing recovery rates through effective treatments and healthcare interventions. 

Figure 6 shows the effect of different recovery rates (𝛾) on the recovered population (𝑅(𝑡)) over 30 months. The 

recovery rate (𝛾) indicates how quickly infected individuals recover and move into the recovered class. At 𝛾 = 0 

(red curve), there is no recovery, so the recovered population remains low, indicating prolonged transmission and 

potential re-infections. As 𝛾 increases to 0.2 (black dashed curve), the recovered population rises sharply before 

gradually declining, reflecting the buildup of immunity and a subsequent decrease in new infections. Higher 

recovery rates 𝛾=0.4 and 𝛾=0.6, purple dash-dotted and blue dotted curves, respectively) lead to a rapid increase 

in the recovered population, peaking earlier and at higher levels. This quick recovery results in a substantial 

buildup of immunity, followed by a decline as the epidemic subsides. Figure 7 depicts the effect of varying 

vaccination rates (𝜂) on the infected population (𝐼(𝑡))  over 30 months. The vaccination rate (𝜂) indicates the 

speed at which infected individuals receive vaccines, reducing the number of active cases. This transition to the 

vaccinated class is vital for controlling disease spread. When 𝜂 = 0 (red curve), the infected population declines 

slowly, as natural recovery and death are the main factors reducing infections. As the vaccination rate increases 

to 𝜂 = 0.2 (black dashed curve), the decline in the infected population becomes steeper, showing that vaccination 

accelerates the decrease in infections. Higher vaccination rates 𝜂 = 0.4 and 𝜂 = 0.6, purple dash-dotted and blue 

dotted curves) result in an even faster decline, indicating that increased vaccination effectively curtails disease 

spread and mitigates the epidemic. Figure 8 shows the effect of varying vaccination rates (𝜂) on the vaccinated 

population (𝑉(𝑡))over 30 months. The vaccination rate (𝜂) reflects how quickly infected individuals are 

vaccinated, crucial for reducing infection spread and building population immunity. With 𝜂 = 0 (red curve), the 

vaccinated population remains nearly constant, relying only on natural immunity from recovery. As 𝜂 increases 

to 0.2 (black dashed curve), the vaccinated population grows, enhancing immunity and reducing transmission. 

Higher rates 𝜂 = 0.4 and 𝜂 = 0.6, purple dash-dotted and blue dotted curves) show rapid expansion in the 

vaccinated population, indicating the effectiveness of vaccination in achieving herd immunity and reducing 

disease spread. 

Figure 9 illustrates the impact of varying waning immunity rates (𝜉) on the immunized population over 

30 months. Without waning immunity (𝜉 = 0), the immunized population grows steadily, indicating lasting herd 

immunity. As 𝜉 increases to 0.2, 0.4, and 0.6, the immunized population declines more rapidly, highlighting the 

need for ongoing vaccination efforts and booster doses to maintain protection and prevent outbreaks. Managing 

waning immunity is crucial for sustained community protection against diseases like diphtheria. The rate 𝜈, which 

dictates how quickly vaccinated individuals transition from the 𝑉 (vaccinated) class to either the 𝑊 (immunized) 

or 𝑅 (recovered) class as shown in Figure 10 and Figure 11, plays a crucial role in shaping the dynamics of these 

populations. When 𝜈 is high, individuals move rapidly from 𝑉 to 𝑊 or 𝑅 This results in a swift reduction in the 

number of people in the vaccinated class, 𝑉, while potentially leading to a significant increase in the immunized 

class, 𝑊. However, if a large proportion of these individuals transitions to 𝑅 (recovered), the growth in 𝑊 might 
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be less pronounced, as fewer individuals are available to join the immunized group. With a moderate 𝜈, the 

transition rates are balanced, which results in a steady but manageable decrease in the vaccinated class and a more 

controlled and gradual increase in the immunized class. This balance allows for a more stable buildup of immunity 

over time and can help maintain effective vaccination coverage. In contrast, a low 𝜈 indicates that individuals 

remain in the vaccinated class for a longer period before transitioning to 𝑊 or 𝑅. This leads to a larger and more 

persistent 𝑉 population, as fewer individuals are moving out of this class. Consequently, the growth of the 

immunized class 𝑊 is slower, which can impact the overall effectiveness of the vaccination program. Slower 

transitions might delay the establishment of robust immunity within the population, potentially reducing the 

program's ability to achieve and maintain high levels of protection against disease outbreaks. 

 

Figure 2: Effect of the natural mortality rate on the 

infected class. 

 

Figure 3:  Effect of the natural mortality rate on the 

vaccinated class. 

 

Figure 4: Effect of natural mortality rate on the 

immunized class. 

 

Figure 5: Effect of recovery rate on infected class. 
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Figure 6: Effect of recovery rate on infected class. 

 

Figure 7: Effect of infected individuals getting vaccinated 

on the infected population. 

 

Figure 8: Effect of infected individuals getting 

vaccinated on the vaccinated population. 

 

Figure 9: Effect of the waning immunity on the 

immunized population. 

 

Figure 10: Effect of the natural mortality rate on the 

vaccinated population. 

 

Figure 11: Effect of the natural mortality rate on the 

infected population. 

 

4.2 Validation of Results 

In the study by Akponana et al. (2024), the authors consider individuals with waning immunity to 

transition back into the susceptible population. However, in the current study, we posit a more nuanced approach, 

suggesting that individuals with waning immunity, despite being previously vaccinated, may not simply revert to 

a fully susceptible state. Instead, these individuals may experience re-infection by *Corynebacterium 
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diphtheriae*, although not necessarily with the same intensity as a primary infection. Moreover, those who have 

recovered from the disease might also become susceptible again if strict immunization protocols are not followed. 

This perspective suggests that the scenarios explored by Akponana et al. (2024) and Egbune et al. (2024) are 

specific instances within a broader framework presented in our current study. Our findings align with previous 

research when the additional assumptions about waning immunity and recovered individuals are accounted for, 

demonstrating that the results of our study extend and refine the understanding of diphtheria transmission 

dynamics as modeled in earlier works. 

V. CONCLUSION 

The analysis of diphtheria dynamics through the SIVWR model highlights the intricate relationship 

between vaccination strategies, natural death rates, recovery rates, and immunity waning. Higher natural death 

rates lead to quicker declines in the infectious and immunized populations, while increased recovery rates help 

manage disease spread and build immunity. Effective vaccination strategies, including higher vaccination rates 

and timely booster doses, are essential for reducing infections and maintaining herd immunity. Waning immunity 

poses a challenge to long-term vaccine effectiveness, underscoring the need for continued research and improved 

vaccine formulations. The numerical simulations of the SIVWR model reveal critical insights into how various 

parameters impact the dynamics of diphtheria transmission and vaccination strategies. The natural death rate (𝜇) 

significantly affects both the infectious and immunized populations. A higher 𝜇 leads to a quicker reduction in the 

infectious population, reflecting a shorter infectious period and faster disease stabilization. Conversely, it also 

accelerates the decline in the vaccinated and immunized populations, underscoring the sensitivity of these groups 

to mortality rates and highlighting the importance of maintaining vaccination efforts to ensure sustained immunity. 

The recovery rate (𝛾) plays a crucial role in managing disease spread. Higher recovery rates lead to a more rapid 

reduction in the infected population and an increase in the recovered class, which helps in building immunity and 

controlling the outbreak more effectively. This underscores the necessity of effective treatments and healthcare 

interventions to enhance recovery rates and manage disease transmission. The vaccination rates have a profound 

impact on controlling diphtheria as increased vaccination rates among infected individuals and the general 

population lead to a more significant and immediate reduction in infections and a faster expansion of the 

vaccinated population. This highlights the effectiveness of vaccination in reducing disease prevalence and the 

importance of higher vaccination coverage to achieve herd immunity. Waning immunity (𝜉) affects the longevity 

of protection offered by vaccines. Without waning immunity, the immunized population grows steadily, indicating 

strong and lasting herd immunity. However, as waning immunity rates increase, the number of immunized 

individuals declines more rapidly, emphasizing the need for booster doses and improved vaccine formulations to 

maintain high levels of protection. The rate of transition from vaccinated to immunized or recovered classes (𝜈) 

also impacts vaccine effectiveness. High 𝜈 results in a rapid reduction of the vaccinated class but can boost the 

immunized population. In contrast, low 𝜈 leads to a larger and more persistent vaccinated class but slows the 

growth of the immunized class, which may affect overall vaccine program effectiveness. 

From the discussion of result of this study, the following key finding are deduced: 

 The SIVWR model highlights the critical roles of vaccination strategies, natural death rates, and recovery 

rates in managing diphtheria transmission and immunity. 

 Higher natural death rates accelerate the decline of both infectious and immunized populations, impacting 

disease stabilization and long-term immunity. 

 Increased recovery rates are essential for reducing infection spread and building immunity, emphasizing the 

need for effective treatments. 

 Effective vaccination, including higher coverage and timely booster doses, is key to reducing infections and 

achieving herd immunity. 

 Waning immunity challenges long-term vaccine effectiveness, necessitating booster doses and improved 

vaccine formulations. 

 The transition rate from vaccinated to immunized classes influences overall vaccine program effectiveness, 

with higher rates boosting the immunized population. 
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