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I. Introduction 
Due to their advantages over other batteries with various chemistries, such as higher energy density 

and longer lifespan, lithium-ion batteries are currently the most widely used battery in electronic gadgets (EGs) 

and electric vehicles (EVs)[1, 2].Longer driving ranges, quicker speeds, and more potent energy sources are all 

necessary for EV performance needs. Still unable to supply enough energy to propel EVs farther than gasoline 

in conventional cars. The precision of a lithium-ion battery's parameter detection is linked to both its safety and 

efficiency [3-5]. The battery management system (BMS) is designed to supervise and track the battery's data, 

such as current, voltage, and temperature, to ensure both the battery's safety and the power system's reliability. 

In these conditions, the BMS should be used to completely use the energy that EV batteries have to offer[6]. 

The accuracy of the state of charge (SOC) estimate is a key responsibility of the BMS and affects how 

well other BMS functions operate, including charging control[7], balancing control[8], thermal management[9], 

and safety management[10]. Since the nonlinear features and various working environments of EV batteries 

make correct SOC extremely difficult to achieve, the BMS needs a well-designed SOC estimate 

mechanism[11].Due to its minimal computation and reliable results, the ampere-hour (Ah) method was 

previously the most used approach for calculating the SOC in BMS when combined with beginning value 

adjustment via a look-up table[12].Nevertheless, the approach only accounts for accurate battery capacity, 

which is difficult to ascertain in practical applications[13]. Typically, capacity estimation methods require a 

particular, steady environment that is distinct from that of electric vehicles[14]. 

Certain techniques developed using the neural network methodology and machine learning will 

significantly increase the processing load on the BMS since they require large amounts of computation and 

training data. Furthermore, data-driven algorithms' accuracy is impacted by the quality of training samples[15, 

16]. The model-based approach is ubiquitous, and the estimation accuracy is independent of historical data. The 
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integral technique is the basic SOC method in the conventional method, even though it has both initial and 

cumulative flaws[17, 18]. There has been minimal accuracy in the estimation[19].Although this corrective 

mechanism allows model-based SOC prediction algorithms to partially accept battery capacity error, it also 

requires a more accurate battery model.[20]. 

Data-driven estimation approaches have attracted more attention recently because of the developments 

in big data and artificial intelligence techniques. These methods often use machine learning algorithms to 

characterize SOC estimation based on historical monitoring data[21, 22]. Over the course of charging or 

discharging, these statistics typically include voltage, current, and other measurable data. In [23], utilized the 

least squares support vector machine to create an estimation model after extracting the aging features from the 

short-term charging profiles of lithium-ion batteries. In [24, 25], the relevance vector machine to map the 

nonlinear relationship between other parameters and the SOC estimate. Furthermore, several approaches to 

estimating the SOC of lithium-ion batteries have been documented in the literature. These include Gaussian 

Process Regression[26], Random Forest, and BP Neural Network (BPNN)[27]. 

As one of the most promising data-driven techniques for determining the state of charge (SOC) of 

batteries, long short-term memory (LSTM) neural networks have dominated deep learning algorithms due to 

their superiority in processing time series data [28]. In [29], proposed a novel technique for estimating the SOC 

of batteries using stacked LSTM and rapid charge data. Experiments were conducted to confirm the efficacy of 

this technique. In [30, 31], proposed a method for estimating system outage SOH that combines enhanced 

incremental capacity (ICA) with LSTM neural network. The experimental findings showed that the maximum 

error is limited. In[32], an LSTM-based approach for lithium-ion batteries was introduced. To predict the 

conditions of different types of batteries, transfer learning was employed. It's crucial to keep in mind that, 

despite LSTM's proven effectiveness in battery SOC prediction, there are still several outstanding problems[33]. 

For instance, the key model hyperparameters, including the quantity of neurons in each LSTM layer, have been 

pre-defined by the research's inventor. 

Finding the hyper-parameters is typically difficult, and choosing these aspects largely depends on 

experience. The LSTM-based SOC estimation methodologies' estimation accuracy will be affected by the 

selection of hyperparameters. In situations where the filtering error and the prediction error are negligible, the 

EKF is utilized to accurately and instantly realize the SOC estimation. There are numerous ways to extend the 

Kalman filter to nonlinear systems using modified Kalman filtering, or KF. When first-order Taylor series 

expansion is utilized to linearize the nonlinear system, the EKF technique will inevitably ignore the high-order 

terms, leading to large linearization errors. 

When the filtering error and the prediction error are minor, the EKF is utilized to correctly and in real 

time perform the SOC estimation. A network structure is suggested by the LSTM-EKF model to deal with the 

problem of gradient explosion or disappearance in the LSTM. The classic LSTM's state unit is replaced with the 

cyclic unit structure of the LSTM-EKF model. The accuracy of the LSTM-EKF-based SOC calculation is 

dependent on the accuracy of the battery model, and the primary reason of the divergence of LSTM-EKF is the 

linearization mistake for removing high-order terms. The hybrid models that are produced by feeding the 

LSTM-estimated SOC into an EKF under three difficult operating conditions consistently reduce noise and 

enhance the precision of the final SOC estimations.These error results show that the proposed hybrid models, 

LSTM-EKF, are resilient and correct when compared to data-driven approaches of the model LSTM network. 

The accuracy of SOC estimate using an LSTM network is investigated in this study in relation to the working 

conditions utilized for training and testing datasets. As a data optimizer, a pertinent attention mechanism is 

incorporated into the LSTM network. In order to create a hybrid model that iteratively denoises and optimizes 

the accuracy of the final SOC estimations of HPPC, BBDST, and DST operating conditions, the SOC predicted 

by the LSTM is fed into an EKF. 

The rest of the paper is structured as follows: The methodology and the theoretical analysisof the Long 

Short-Term Memory Network and Extended Kalman Filtering Algorithm are shown in Section 2. In Section 3, 

the battery experiment platform and the outcomes and discussions of the experiment are presented. In Section 4, 

finally, wrap up the paper. 

 

II. Mathematical Analysis 

2.1 Neural Network for Battery Modeling 

In this section, the structure and the training algorithm of long short-term memory (LSTM) are first introduced 

as preparation and then its application to the battery modeling will be described in detail. 

2.1.2 Long Short-Term Memory 

To solve the problem of gradient explosion or disappearance in the LSTM network structure of the LSTM-EKF 

model is proposed and the state unit of the classical LSTM is replaced by the cyclic unit structure of the LSTM-

EKF model.The extension of the feedforward neural network (FNN) is the recurrent neural network (RNN). The 
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running process of lithium-ion batteries, through the capacity test, charge and discharge experiment, and the 

experimental data analysis of 4.2V/40Ah ternary lithium-ion batteries. The self-discharge rate of lithium-ion 

batteries has been reduced greatly due to the improvement of the manufacturing process. The structure of LSTM 

and EKF for the SOC estimation is presented in Figure 1. 
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Figure 1: The Structure of LSTM and EKF for the SOC Estimation  

 
σ is the sigmoid layer that helps the LSTM network to either discard or update information by closely directing 

it to 0 and 1, respectively. the tanh is the hyperbolic tangent function that controls the information flowing 

through the network between -1 and 1 to avoid the fading effect. 

  ̂ 
   ̂ 

    
 
      ̂  (1) 

       
              

      
       (2) 

Equations (1) and (2),ϒ is the weighting parameters, which are tuned within 2<ϒ>4, to denoise the estimated 

SOC and make it more adaptable to the actual SOC of the battery system. Also, Ssis the fading factor tuned 

within a range of 0.80<s<1. 

The three gates of the LSTM model are the forget gate ft, input gate it, and output gate ot, to protect and control 

the memory cell Ct. the mathematical expressions and working principle for the gates. The forget gate controls 

the degree of forgetting of historical information as shown in Equation (3). 

                         (3) 

The input gate controls the memory level of the current input information as shown in Equation (4). 

 {
                       

 ̃                        
 (4) 

The output gate controls the extent to which the current internal state. An output of 1 means that information 

passes and 0 means that the threshold is closed so that no information can pass are shown in Equations (5) and 

(6).  

                ̃  (5) 
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 ̃                   
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𝑠
 is the sigmoid layer, which helps the LSTM network to either discard or update information by closely 

directing it to 0 and 1, respectively. The tanh is the hyperbolic tangent function that controls the information 

flowing through the network between –1 and 1 to avoid fading. Each gate in the network has a weight  
 
,  
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𝑐
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 associated with the forget gate, input gate, memory cell, and output gate, respectively. Also, each 

gate of the network possesses a bias  
 
,  

 
,  

𝑐
, and  

 
 vector by the forget gate, input gate, memory cell, and 

output gate, respectively, to enhance the flexibility of the network to adapt to the training data for accurate 

SOC.The attention mechanism of humans to select the relevant inherent features from a piece of information, 
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this study employs the attention mechanism as a relevant data optimizer due to its working mechanism. The 

attention mechanism for the n-dimensional feature sequence  
 
  in the input data sequence  

 
 is established 

based on the hidden state ℎ
 −1 

and the cell state of the encoder layer’s output unit  
 
 at the previous time step, as 

expressed in Equations (7), (8), (9), (10), and (11): 

First stage attention-weighted: 

  ̃     
   

    
   

        
   

    (7) 

 

Encoder layer:  

              ̃   (8) 

Weighted vector calculation:  

                 𝑠         (9) 

Attention probability:  

    
      

  

∑       
   

   

 (10) 

Weighted vector calculation: 

      ∑    

 

   

 (11) 

 

2.1.3 Extended Kalman Filter Algorithm  

The basic Kalman filter algorithm is used to obtain an improved estimation after the extended Kalman 

filter (EKF) algorithm has linearized the nonlinear state-space model and estimated the nonlinear system.[34, 

35]. In addition to the Taylor series expansions of the state equation and the range equation, the partial 

derivatives of the observation equation and the state equation are also produced. The fundamentals of EKF and 

its use based on the battery's LSTM will be covered in this chapter. The classical EKF usually is divided into 

three parts, namely time update and measurement update, and its calculation procedure is shown in Equations. 

The working steps of extended Kalman filtering: 

Step 1: Calculate the state prediction and estimate the error covariance matrix as shown in Equations (12) and 

(13). 

  ̂        ̂         (12) 

  ̃             
       (13) 

Step 2: Calculate the Kalman gain K as shown in Equation (14). 

     ̃      
    ̃      

     
   (14) 

Step 3: Estimate system residual error, predict state and update the error covariance matrix as shown in 

Equation (15). 

 {

 ̃            ̂               

 ̂     ̂         ̃   

             ̃     

 (15) 

 

Where xkis the system state at the sampling point k and x^k is its guess value; Pkis the covariance matrix of state 

error; x0 is the initial system state and x^0is its guess value; wk is the process noise vector and Qk-1 are its 

covariance matrix; vk is the measurement noise vector and Rk-1are its covariance matrix. 

 

III. Experimental Analysis 

3.1 Implementation of Test Platform 

An experimental platform for lithium-ion batteries was constructed, and pertinent experiments were planned in 

accordance with the real working conditions to gather experimental data. This allowed for the verification of the 

model parameter's accuracy as well as the tracking of the filtered results of the SOC and the true values. Figure 

2 displays the specifications of the lithium-ion batteries used in the experiment as well as the experimental 

apparatus. 
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Figure 2: Experimental Set-up Equipment 

 

A ternary lithium-ion battery with a 40Ah capacity and a 4.2V charging voltage is utilized in the 

experiment, as shown in Figure 2. Test box TT5166TT can regulate temperature by offering a consistent 

temperature during battery charging and discharging. When charging and discharging lithium-ion batteries, the 

Neware BTS-4000 battery test equipment is utilized as a high-power charge and discharge tester for power 

batteries.The process of charging and discharging The lithium-ion battery is linked to the charging and 

discharging method tester's host computer, which also configures the stages involved in the charging and 

discharging process. Such a main-machine interface module allows for control over the operating conditions of 

the lithium-ion battery experiment in a temperature-controlled environment. 

 

3.2Complex Conditions 

The voltage and current required for testing and training in the HPPC, BBDST, and DST operating 

environments. The battery is discharged to a cut-off voltage of 2.75V over the course of nine distinct charge-

discharge cycles in the HPPC, BBDST, and DST operating conditions test. The changes in voltage and current 

that occur during HPPC, BBDST, and DST operations. Figure 3 displays the current and voltage for the training 

and testing profile under the BBDST, DST, and HPPC working conditions. 
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(e): Complete DST Current Curve (f): Complete DST Voltage Curve 

Figure 3: The Training Current and Voltage Curves  

Figure 3, contains the initial charging process. The acquired current and voltage data were internal resistance 

and SOC of the battery during the whole experiment was acquired. The final result of the state estimation is 

shown in Figure 4. 

 

3.3Simulation and Verification of Algorithms 

At a temperature of 25°C, the suggested LSTM-EKF is employed for SOC estimation and contrasted 

with LSTM under BBDST and HPPC operating circumstances. Figure 4 displays the SOC estimation outcomes 

for both techniques. The terminal voltage comparison utilized to update the state of charge estimation is this 

data. The LSTM-EKF technique uses the network to forecast and update the measured voltage under simulated 

noise and input the current.With an unknown initial value, the initial value of SOC is intentionally set to 1.0 to 

mimic interference in the estimating model. Figures 4(a), (b), and (d) display the algorithm's simulation results 

under HPPC conditions, and Figures 4(c), and (d) display the verification results under BBDST conditions. In 

these figures, the state ofcharge reference value is represented by the LSTM (SOC 1), the estimation result and 

error based on LSTM is represented by the (SOC 2), and the estimation result and error based on the LSTM-

EKF network is represented by the error 1. 
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Figure 4: SOC Estimation Result Under HPPC and BBDST Working Conditions 
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estimate.Due to the LSTM and LSTM-EKF model optimizer's infiltration, the model's results are not assessed 

under working conditions based on training methodology. These error results demonstrate the correctness and 

resilience of the suggested hybrid models, LSTM-EKF, in comparison to the data-driven approaches used in the 

model LSTM network. Both the estimation error result under the BBDST working condition and the maximum 

estimation error under the entire HPPC working condition are less than 0.03, indicating strong stability and 

robustness. 

To assess the efficacy of the LSTM and LSTM-EKF models for the SOC estimation under HPPC and 

BBDST working circumstances, the error metrics are computed utilizing the identical training and testing 

sequence. The LSTM-EKF model is shown to have the fewest mistakes, and the network's errors rise in 

proportion to this. These error results demonstrate the correctness and resilience of the suggested hybrid models, 

LSTM-EKF, in comparison to the data-driven approaches used in the model LSTM network. Figure 5 shows the 

values of the MSE, MAE, and RMSE for the LSTM and LSTM-EKF models..  
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Figure 5:The Performance Analysis of the SOC Estimation Tested Under the HPPC and BBDST working 

conditions 

 

The proposed hybrid models, LSTM-EKF, are more accurate and robust than data-driven LSTM 

network models when employing the identical training and testing sequence for SOC estimate, as demonstrated 

by these error results. The LSTM-EKF model serves as a reference for accuracy, and Table 1 displays the MSE, 

MAE, and RMSE values for the LSTM and LSTM-EKF models. 
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LSTM network under the two conditions, the horizontal comparison demonstrates that the LSTM-EKF 

technique has certain advantages in terms of convergence. Because of the LSTM and LSTM-EKF models' 

optimizer infiltration, the results for these models are not assessed under the working condition-based training 
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technique.With the lowest MSE, MAE, and RMSE of 0.35928%, 9.53124%, and 0.37355%, respectively, under 

HPPC working conditions is the LSTM-EKF model. The lowest values of MSE, MAE, and RMSE for the 

BBDST operating condition are 0.38268%, 0.0022%, and 0.46877%, respectively. These findings demonstrate 

the adaptability, resilience, and competence of the suggested hybrid LSTM-EKF model for SOC estimation

 

IV. Conclusions 
The research of the LSTM model network is utilized in the BBDST, DST, and HPPC working 

conditions for the SOC estimate of a lithium-ion battery based on a working condition training and testing 

datasets technique. The findings demonstrate how the working condition datasets used in training and testing 

affect the LSTM network's ability to estimate the SOC accurately. The LSTM's estimated SOC is fed into the 

EKF iteratively to improve the LSTM model's accuracy through denoising.The LSTM-EKF model, with the 

least MSE and improved robustness, has the best SOC estimate performance, the findings finally demonstrate. 

More rapidly and accurately than the LSTM model, it has better SOC initialization and adapts to the real SOC. 

To guarantee a steady-state estimate, it additionally denoised the predictions from the earlier models. It is found 

that the LSTM-EKF model outperforms the LSTM model in terms of convergence rate during the estimation 

process. This resolves the convergence and speed problems that are necessary for the SOC estimation to 

demonstrate its reliability, competency, and efficiency for an improved and logical real-time application of 

lithium-ion batteries. 
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